@@ -135,7 +135,7 @@ def desolve(de, dvar, ics=None, ivar=None, show_method=False, contrib_ode=False)
135
135
EXAMPLES::
136
136
137
137
sage: x = var('x')
138
- sage: y = function('y', x)
138
+ sage: y = function('y')( x)
139
139
sage: desolve(diff(y,x) + y - 1, y)
140
140
(_C + e^x)*e^(-x)
141
141
@@ -152,7 +152,7 @@ def desolve(de, dvar, ics=None, ivar=None, show_method=False, contrib_ode=False)
152
152
We can also solve second-order differential equations.::
153
153
154
154
sage: x = var('x')
155
- sage: y = function('y', x)
155
+ sage: y = function('y')( x)
156
156
sage: de = diff(y,x,2) - y == x
157
157
sage: desolve(de, y)
158
158
_K2*e^(-x) + _K1*e^x - x
@@ -368,7 +368,7 @@ def desolve(de, dvar, ics=None, ivar=None, show_method=False, contrib_ode=False)
368
368
369
369
:trac:`9961` fixed (allow assumptions on the dependent variable in desolve)::
370
370
371
- sage: y=function('y', x); assume(x>0); assume(y>0)
371
+ sage: y=function('y')( x); assume(x>0); assume(y>0)
372
372
sage: sage.calculus.calculus.maxima('domain:real') # needed since Maxima 5.26.0 to get the answer as below
373
373
real
374
374
sage: desolve(x*diff(y,x)-x*sqrt(y^2+x^2)-y == 0, y, contrib_ode=True)
@@ -388,7 +388,7 @@ def desolve(de, dvar, ics=None, ivar=None, show_method=False, contrib_ode=False)
388
388
:trac:`6479` fixed::
389
389
390
390
sage: x = var('x')
391
- sage: y = function('y', x)
391
+ sage: y = function('y')( x)
392
392
sage: desolve( diff(y,x,x) == 0, y, [0,0,1])
393
393
x
394
394
@@ -400,15 +400,15 @@ def desolve(de, dvar, ics=None, ivar=None, show_method=False, contrib_ode=False)
400
400
:trac:`9835` fixed::
401
401
402
402
sage: x = var('x')
403
- sage: y = function('y', x)
403
+ sage: y = function('y')( x)
404
404
sage: desolve(diff(y,x,2)+y*(1-y^2)==0,y,[0,-1,1,1])
405
405
Traceback (most recent call last):
406
406
...
407
407
NotImplementedError: Unable to use initial condition for this equation (freeofx).
408
408
409
409
:trac:`8931` fixed::
410
410
411
- sage: x=var('x'); f=function('f', x); k=var('k'); assume(k>0)
411
+ sage: x=var('x'); f=function('f')( x); k=var('k'); assume(k>0)
412
412
sage: desolve(diff(f,x,2)/f==k,f,ivar=x)
413
413
_K1*e^(sqrt(k)*x) + _K2*e^(-sqrt(k)*x)
414
414
@@ -432,7 +432,7 @@ def desolve(de, dvar, ics=None, ivar=None, show_method=False, contrib_ode=False)
432
432
if is_SymbolicEquation (de ):
433
433
de = de .lhs () - de .rhs ()
434
434
if is_SymbolicVariable (dvar ):
435
- raise ValueError ("You have to declare dependent variable as a function, eg. y=function('y', x)" )
435
+ raise ValueError ("You have to declare dependent variable as a function evaluated at the independent variable , eg. y=function('y')( x)" )
436
436
# for backwards compatibility
437
437
if isinstance (dvar , list ):
438
438
dvar , ivar = dvar
@@ -550,7 +550,7 @@ def sanitize_var(exprs):
550
550
## EXAMPLES:
551
551
## sage: from sage.calculus.desolvers import desolve_laplace
552
552
## sage: x = var('x')
553
- ## sage: f = function('f', x)
553
+ ## sage: f = function('f')( x)
554
554
## sage: de = lambda y: diff(y,x,x) - 2*diff(y,x) + y
555
555
## sage: desolve_laplace(de(f(x)),[f,x])
556
556
## #x*%e^x*(?%at('diff('f(x),x,1),x=0))-'f(0)*x*%e^x+'f(0)*%e^x
@@ -598,7 +598,7 @@ def desolve_laplace(de, dvar, ics=None, ivar=None):
598
598
599
599
EXAMPLES::
600
600
601
- sage: u=function('u', x)
601
+ sage: u=function('u')( x)
602
602
sage: eq = diff(u,x) - exp(-x) - u == 0
603
603
sage: desolve_laplace(eq,u)
604
604
1/2*(2*u(0) + 1)*e^x - 1/2*e^(-x)
@@ -616,15 +616,15 @@ def desolve_laplace(de, dvar, ics=None, ivar=None):
616
616
617
617
::
618
618
619
- sage: f=function('f', x)
619
+ sage: f=function('f')( x)
620
620
sage: eq = diff(f,x) + f == 0
621
621
sage: desolve_laplace(eq,f,[0,1])
622
622
e^(-x)
623
623
624
624
::
625
625
626
626
sage: x = var('x')
627
- sage: f = function('f', x)
627
+ sage: f = function('f')( x)
628
628
sage: de = diff(f,x,x) - 2*diff(f,x) + f
629
629
sage: desolve_laplace(de,f)
630
630
-x*e^x*f(0) + x*e^x*D[0](f)(0) + e^x*f(0)
@@ -639,7 +639,7 @@ def desolve_laplace(de, dvar, ics=None, ivar=None):
639
639
Trac #4839 fixed::
640
640
641
641
sage: t=var('t')
642
- sage: x=function('x', t)
642
+ sage: x=function('x')( t)
643
643
sage: soln=desolve_laplace(diff(x,t)+x==1, x, ics=[0,2])
644
644
sage: soln
645
645
e^(-t) + 1
@@ -670,7 +670,7 @@ def desolve_laplace(de, dvar, ics=None, ivar=None):
670
670
if is_SymbolicEquation (de ):
671
671
de = de .lhs () - de .rhs ()
672
672
if is_SymbolicVariable (dvar ):
673
- raise ValueError ("You have to declare dependent variable as a function, eg. y=function('y', x)" )
673
+ raise ValueError ("You have to declare dependent variable as a function evaluated at the independent variable , eg. y=function('y')( x)" )
674
674
# for backwards compatibility
675
675
if isinstance (dvar , list ):
676
676
dvar , ivar = dvar
@@ -724,8 +724,8 @@ def desolve_system(des, vars, ics=None, ivar=None):
724
724
EXAMPLES::
725
725
726
726
sage: t = var('t')
727
- sage: x = function('x', t)
728
- sage: y = function('y', t)
727
+ sage: x = function('x')( t)
728
+ sage: y = function('y')( t)
729
729
sage: de1 = diff(x,t) + y - 1 == 0
730
730
sage: de2 = diff(y,t) - x + 1 == 0
731
731
sage: desolve_system([de1, de2], [x,y])
@@ -748,16 +748,16 @@ def desolve_system(des, vars, ics=None, ivar=None):
748
748
Check that :trac:`9823` is fixed::
749
749
750
750
sage: t = var('t')
751
- sage: x = function('x', t)
751
+ sage: x = function('x')( t)
752
752
sage: de1 = diff(x,t) + 1 == 0
753
753
sage: desolve_system([de1], [x])
754
754
-t + x(0)
755
755
756
756
Check that :trac:`16568` is fixed::
757
757
758
758
sage: t = var('t')
759
- sage: x = function('x', t)
760
- sage: y = function('y', t)
759
+ sage: x = function('x')( t)
760
+ sage: y = function('y')( t)
761
761
sage: de1 = diff(x,t) + y - 1 == 0
762
762
sage: de2 = diff(y,t) - x + 1 == 0
763
763
sage: des = [de1,de2]
@@ -783,8 +783,8 @@ def desolve_system(des, vars, ics=None, ivar=None):
783
783
784
784
sage: t = var('t')
785
785
sage: epsilon = var('epsilon')
786
- sage: x1 = function('x1', t)
787
- sage: x2 = function('x2', t)
786
+ sage: x1 = function('x1')( t)
787
+ sage: x2 = function('x2')( t)
788
788
sage: de1 = diff(x1,t) == epsilon
789
789
sage: de2 = diff(x2,t) == -2
790
790
sage: desolve_system([de1, de2], [x1, x2], ivar=t)
@@ -1156,7 +1156,7 @@ def desolve_rk4(de, dvar, ics=None, ivar=None, end_points=None, step=0.1, output
1156
1156
desolve function In this example we integrate bakwards, since
1157
1157
``end_points < ics[0]``::
1158
1158
1159
- sage: y=function('y', x)
1159
+ sage: y=function('y')( x)
1160
1160
sage: desolve_rk4(diff(y,x)+y*(y-1) == x-2,y,ics=[1,1],step=0.5, end_points=0)
1161
1161
[[0.0, 8.904257108962112], [0.5, 1.909327945361535], [1, 1]]
1162
1162
0 commit comments