|
| 1 | +r""" |
| 2 | +Associated Graded Algebras To Filtered Algebras |
| 3 | +
|
| 4 | +AUTHORS: |
| 5 | +
|
| 6 | +- Travis Scrimshaw (2014-10-08): Initial version |
| 7 | +""" |
| 8 | + |
| 9 | +#***************************************************************************** |
| 10 | +# Copyright (C) 2014 Travis Scrimshaw <tscrim at ucdavis.edu> |
| 11 | +# |
| 12 | +# Distributed under the terms of the GNU General Public License (GPL) |
| 13 | +# http://www.gnu.org/licenses/ |
| 14 | +#***************************************************************************** |
| 15 | + |
| 16 | +from sage.misc.cachefunc import cached_method |
| 17 | +from copy import copy |
| 18 | + |
| 19 | +from sage.categories.modules_with_basis import ModulesWithBasis |
| 20 | +from sage.sets.family import Family |
| 21 | +from sage.combinat.free_module import CombinatorialFreeModule |
| 22 | + |
| 23 | +class AssociatedGradedAlgebra(CombinatorialFreeModule): |
| 24 | + r""" |
| 25 | + The associated graded algebra/module `\operatorname{gr} A` |
| 26 | + of a filtered algebra/module with basis `A`. |
| 27 | +
|
| 28 | + Let `A` be a filtered module over a commutative ring `R`. |
| 29 | + Let `(F_i)_{i \in I}` be the filtration of `A`, with `I` being |
| 30 | + a totally ordered set. Define |
| 31 | +
|
| 32 | + .. MATH:: |
| 33 | +
|
| 34 | + G_i = F_i / \sum_{j < i} F_j |
| 35 | +
|
| 36 | + for every `i \in I`, and then |
| 37 | +
|
| 38 | + .. MATH:: |
| 39 | +
|
| 40 | + \operatorname{gr} A = \bigoplus_{i \in I} G_i. |
| 41 | +
|
| 42 | + There are canonical projections `p_i : F_i \to G_i` for |
| 43 | + every `i \in I`. Moreover `\operatorname{gr} A` is naturally a |
| 44 | + graded `R`-module with `G_i` being the `i`-th graded component. |
| 45 | + This graded `R`-module is known as the *associated graded module* |
| 46 | + (or, for short, just *graded module*) of `A`. |
| 47 | +
|
| 48 | + Now, assume that `A` (endowed with the filtration |
| 49 | + `(F_i)_{i \in I}`) is not just a filtered `R`-module, but also |
| 50 | + a filtered `R`-algebra. |
| 51 | + Let `u \in G_i` and `v \in G_j`, and let `u' \in F_i` and |
| 52 | + `v' \in F_j` be lifts of `u` and `v`, respectively (so that |
| 53 | + `u = p_i(u')` and `v = p_j(v')`). Then, we define a |
| 54 | + multiplication `*` on `\operatorname{gr} A` (not to be mistaken |
| 55 | + for the multiplication of the original algebra `A`) by |
| 56 | +
|
| 57 | + .. MATH:: |
| 58 | +
|
| 59 | + u * v = p_{i+j} (u' v'). |
| 60 | +
|
| 61 | + The *associated graded algebra* (or, for short, just |
| 62 | + *graded algebra*) of `A` is the graded algebra |
| 63 | + `\operatorname{gr} A` (endowed with this multiplication). |
| 64 | +
|
| 65 | + Now, assume that `A` is a filtered `R`-algebra with basis. |
| 66 | + Let `(b_x)_{x \in X}` be the basis of `A`, |
| 67 | + and consider the partition `X = \bigsqcup_{i \in I} X_i` of |
| 68 | + the set `X`, which is part of the data of a filtered |
| 69 | + algebra with basis. We know (see |
| 70 | + :class:`~sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis`) |
| 71 | + that `A` (being a filtered `R`-module with basis) is canonically |
| 72 | + (when the basis is considered to be part of the data) |
| 73 | + isomorphic to `\operatorname{gr} A` as an `R`-module. Therefore |
| 74 | + the `k`-th graded component `G_k` can be identified with |
| 75 | + the span of `(b_x)_{x \in X_k}`, or equivalently the |
| 76 | + `k`-th homogeneous component of `A`. Suppose |
| 77 | + that `u' v' = \sum_{k \leq i+j} m_k` where `m_k \in G_k` (which |
| 78 | + has been identified with the `k`-th homogeneous component of `A`). |
| 79 | + Then `u * v = m_{i+j}`. We also note that the choice of |
| 80 | + identification of `G_k` with the `k`-th homogeneous component |
| 81 | + of `A` depends on the given basis. |
| 82 | +
|
| 83 | + The basis `(b_x)_{x \in X}` of `A` gives rise to a basis |
| 84 | + of `\operatorname{gr} A`. This latter basis is still indexed |
| 85 | + by the elements of `X`, and consists of the images of the |
| 86 | + `b_x` under the `R`-module isomorphism from `A` to |
| 87 | + `\operatorname{gr} A`. It makes `\operatorname{gr} A` into |
| 88 | + a graded `R`-algebra with basis. |
| 89 | +
|
| 90 | + In this class, the `R`-module isomorphism from `A` to |
| 91 | + `\operatorname{gr} A` is implemented as |
| 92 | + :meth:`to_graded_conversion` and also as the default |
| 93 | + conversion from `A` to `\operatorname{gr} A`. Its |
| 94 | + inverse map is implemented as |
| 95 | + :meth:`from_graded_conversion`. |
| 96 | + The projection `p_i : F_i \to G_i` is implemented as |
| 97 | + :meth:`projection` ``(i)``. |
| 98 | +
|
| 99 | + INPUT: |
| 100 | +
|
| 101 | + - ``A`` -- a filtered module (or algebra) with basis |
| 102 | +
|
| 103 | + OUTPUT: |
| 104 | +
|
| 105 | + The associated graded module of `A`, if `A` is just a filtered |
| 106 | + `R`-module. |
| 107 | + The associated graded algebra of `A`, if `A` is a filtered |
| 108 | + `R`-algebra. |
| 109 | +
|
| 110 | + EXAMPLES: |
| 111 | +
|
| 112 | + Associated graded module of a filtered module:: |
| 113 | +
|
| 114 | + sage: A = Modules(QQ).WithBasis().Filtered().example() |
| 115 | + sage: grA = A.graded_algebra() |
| 116 | + sage: grA.category() |
| 117 | + Category of graded modules with basis over Rational Field |
| 118 | + sage: x = A.basis()[Partition([3,2,1])] |
| 119 | + sage: grA(x) |
| 120 | + Bbar[[3, 2, 1]] |
| 121 | +
|
| 122 | + Associated graded algebra of a filtered algebra:: |
| 123 | +
|
| 124 | + sage: A = Algebras(QQ).WithBasis().Filtered().example() |
| 125 | + sage: grA = A.graded_algebra() |
| 126 | + sage: grA.category() |
| 127 | + Category of graded algebras with basis over Rational Field |
| 128 | + sage: x,y,z = map(lambda s: grA.algebra_generators()[s], ['x','y','z']) |
| 129 | + sage: x |
| 130 | + bar(U['x']) |
| 131 | + sage: y * x + z |
| 132 | + bar(U['x']*U['y']) + bar(U['z']) |
| 133 | + sage: A(y) * A(x) + A(z) |
| 134 | + U['x']*U['y'] |
| 135 | +
|
| 136 | + We note that the conversion between ``A`` and ``grA`` is |
| 137 | + the canonical ``QQ``-module isomorphism stemming from the |
| 138 | + fact that the underlying ``QQ``-modules of ``A`` and |
| 139 | + ``grA`` are isomorphic:: |
| 140 | +
|
| 141 | + sage: grA(A.an_element()) |
| 142 | + bar(U['x']^2*U['y']^2*U['z']^3) |
| 143 | + sage: elt = A.an_element() + A.algebra_generators()['x'] + 2 |
| 144 | + sage: grelt = grA(elt); grelt |
| 145 | + bar(U['x']^2*U['y']^2*U['z']^3) + bar(U['x']) + 2*bar(1) |
| 146 | + sage: A(grelt) == elt |
| 147 | + True |
| 148 | +
|
| 149 | + .. TODO:: |
| 150 | +
|
| 151 | + The algebra ``A`` must currently be an instance of (a subclass of) |
| 152 | + :class:`CombinatorialFreeModule`. This should work with any |
| 153 | + filtered algebra with a basis. |
| 154 | +
|
| 155 | + .. TODO:: |
| 156 | +
|
| 157 | + Implement a version of associated graded algebra for |
| 158 | + filtered algebras without a distinguished basis. |
| 159 | +
|
| 160 | + REFERENCES: |
| 161 | +
|
| 162 | + - :wikipedia:`Filtered_algebra#Associated_graded_algebra` |
| 163 | + """ |
| 164 | + def __init__(self, A, category=None): |
| 165 | + """ |
| 166 | + Initialize ``self``. |
| 167 | +
|
| 168 | + EXAMPLES:: |
| 169 | +
|
| 170 | + sage: A = Algebras(QQ).WithBasis().Filtered().example() |
| 171 | + sage: grA = A.graded_algebra() |
| 172 | + sage: TestSuite(grA).run(elements=[prod(grA.algebra_generators())]) |
| 173 | + """ |
| 174 | + if A not in ModulesWithBasis(A.base_ring().category()).Filtered(): |
| 175 | + raise ValueError("the base algebra must be filtered and with basis") |
| 176 | + self._A = A |
| 177 | + |
| 178 | + base_ring = A.base_ring() |
| 179 | + base_one = base_ring.one() |
| 180 | + |
| 181 | + category = A.category().Graded().or_subcategory(category) |
| 182 | + try: |
| 183 | + opts = copy(A.print_options()) |
| 184 | + if not opts['prefix'] and not opts['bracket']: |
| 185 | + opts['bracket'] = '(' |
| 186 | + opts['prefix'] = opts['prefix'] + 'bar' |
| 187 | + except AttributeError: |
| 188 | + opts = {'prefix': 'Abar'} |
| 189 | + |
| 190 | + CombinatorialFreeModule.__init__(self, base_ring, A.basis().keys(), |
| 191 | + category=category, **opts) |
| 192 | + |
| 193 | + # Setup the conversion back |
| 194 | + phi = self.module_morphism(diagonal=lambda x: base_one, codomain=A) |
| 195 | + self._A.register_conversion(phi) |
| 196 | + |
| 197 | + def _repr_(self): |
| 198 | + """ |
| 199 | + Return a string representation of ``self``. |
| 200 | +
|
| 201 | + EXAMPLES:: |
| 202 | +
|
| 203 | + sage: A = Algebras(QQ).WithBasis().Filtered().example() |
| 204 | + sage: A.graded_algebra() |
| 205 | + Graded Algebra of An example of a filtered algebra with basis: |
| 206 | + the universal enveloping algebra of Lie algebra of RR^3 |
| 207 | + with cross product over Rational Field |
| 208 | + """ |
| 209 | + from sage.categories.algebras_with_basis import AlgebrasWithBasis |
| 210 | + if self in AlgebrasWithBasis: |
| 211 | + return "Graded Algebra of {}".format(self._A) |
| 212 | + return "Graded Module of {}".format(self._A) |
| 213 | + |
| 214 | + def _latex_(self): |
| 215 | + r""" |
| 216 | + Return a latex representation of ``self``. |
| 217 | +
|
| 218 | + EXAMPLES:: |
| 219 | +
|
| 220 | + sage: A = Algebras(QQ).WithBasis().Filtered().example() |
| 221 | + sage: latex(A.graded_algebra()) |
| 222 | + \operatorname{gr} ... |
| 223 | + """ |
| 224 | + from sage.misc.latex import latex |
| 225 | + return "\\operatorname{gr} " + latex(self._A) |
| 226 | + |
| 227 | + def _element_constructor_(self, x): |
| 228 | + r""" |
| 229 | + Construct an element of ``self`` from ``x``. |
| 230 | +
|
| 231 | + If ``self`` `= \operatorname{gr} A` for a filtered algebra |
| 232 | + `A` with basis, and if ``x`` is an element of `A`, then |
| 233 | + this returns the image of `x` under the canonical `R`-module |
| 234 | + isomorphism `A \to \operatorname{gr} A`. (In this case, |
| 235 | + this is equivalent to calling |
| 236 | + ``self.to_graded_conversion()(x)``.) |
| 237 | +
|
| 238 | + EXAMPLES:: |
| 239 | +
|
| 240 | + sage: A = Algebras(QQ).WithBasis().Filtered().example() |
| 241 | + sage: grA = A.graded_algebra() |
| 242 | + sage: grA(A.an_element()) |
| 243 | + bar(U['x']^2*U['y']^2*U['z']^3) |
| 244 | + sage: grA(A.an_element() + A.algebra_generators()['x'] + 2) |
| 245 | + bar(U['x']^2*U['y']^2*U['z']^3) + bar(U['x']) + 2*bar(1) |
| 246 | + """ |
| 247 | + if isinstance(x, CombinatorialFreeModule.Element): |
| 248 | + if x.parent() is self._A: |
| 249 | + return self._from_dict(dict(x)) |
| 250 | + return super(AssociatedGradedAlgebra, self)._element_constructor_(x) |
| 251 | + |
| 252 | + def gen(self, *args, **kwds): |
| 253 | + """ |
| 254 | + Return a generator of ``self``. |
| 255 | +
|
| 256 | + EXAMPLES:: |
| 257 | +
|
| 258 | + sage: A = Algebras(QQ).WithBasis().Filtered().example() |
| 259 | + sage: grA = A.graded_algebra() |
| 260 | + sage: grA.gen('x') |
| 261 | + bar(U['x']) |
| 262 | + """ |
| 263 | + try: |
| 264 | + x = self._A.gen(*args, **kwds) |
| 265 | + except AttributeError: |
| 266 | + x = self._A.algebra_generators()[args[0]] |
| 267 | + return self(x) |
| 268 | + |
| 269 | + @cached_method |
| 270 | + def algebra_generators(self): |
| 271 | + """ |
| 272 | + Return the algebra generators of ``self``. |
| 273 | +
|
| 274 | + This assumes that the algebra generators of `A` provided by |
| 275 | + its ``algebra_generators`` method are homogeneous. |
| 276 | +
|
| 277 | + EXAMPLES:: |
| 278 | +
|
| 279 | + sage: A = Algebras(QQ).WithBasis().Filtered().example() |
| 280 | + sage: grA = A.graded_algebra() |
| 281 | + sage: grA.algebra_generators() |
| 282 | + Finite family {'y': bar(U['y']), 'x': bar(U['x']), 'z': bar(U['z'])} |
| 283 | + """ |
| 284 | + G = self._A.algebra_generators() |
| 285 | + return Family(G.keys(), lambda x: self(G[x]), name="generator") |
| 286 | + |
| 287 | + def degree_on_basis(self, x): |
| 288 | + """ |
| 289 | + Return the degree of the basis element indexed by ``x``. |
| 290 | +
|
| 291 | + EXAMPLES:: |
| 292 | +
|
| 293 | + sage: A = Algebras(QQ).WithBasis().Filtered().example() |
| 294 | + sage: grA = A.graded_algebra() |
| 295 | + sage: all(A.degree_on_basis(x) == grA.degree_on_basis(x) |
| 296 | + ....: for g in grA.algebra_generators() for x in g.support()) |
| 297 | + True |
| 298 | + """ |
| 299 | + return self._A.degree_on_basis(x) |
| 300 | + |
| 301 | + @cached_method |
| 302 | + def one_basis(self): |
| 303 | + """ |
| 304 | + Return the basis index of the element `1` of |
| 305 | + `\operatorname{gr} A`. |
| 306 | +
|
| 307 | + This assumes that the unity `1` of `A` belongs to `F_0`. |
| 308 | +
|
| 309 | + EXAMPLES:: |
| 310 | +
|
| 311 | + sage: A = Algebras(QQ).WithBasis().Filtered().example() |
| 312 | + sage: grA = A.graded_algebra() |
| 313 | + sage: grA.one_basis() |
| 314 | + 1 |
| 315 | + """ |
| 316 | + return self._A.one_basis() |
| 317 | + |
| 318 | + def product_on_basis(self, x, y): |
| 319 | + """ |
| 320 | + Return the product on basis elements given by the |
| 321 | + indices ``x`` and ``y``. |
| 322 | +
|
| 323 | + EXAMPLES:: |
| 324 | +
|
| 325 | + sage: A = Algebras(QQ).WithBasis().Filtered().example() |
| 326 | + sage: grA = A.graded_algebra() |
| 327 | + sage: G = grA.algebra_generators() |
| 328 | + sage: x,y,z = G['x'], G['y'], G['z'] |
| 329 | + sage: x * y # indirect doctest |
| 330 | + bar(U['x']*U['y']) |
| 331 | + sage: y * x |
| 332 | + bar(U['x']*U['y']) |
| 333 | + sage: z * y * x |
| 334 | + bar(U['x']*U['y']*U['z']) |
| 335 | + """ |
| 336 | + ret = self._A.product_on_basis(x, y) |
| 337 | + deg = self._A.degree_on_basis(x) + self._A.degree_on_basis(y) |
| 338 | + return self.sum_of_terms([(i,c) for i,c in ret |
| 339 | + if self._A.degree_on_basis(i) == deg], |
| 340 | + distinct=True) |
| 341 | + |
0 commit comments