Skip to content

Commit 4f73d49

Browse files
author
Release Manager
committed
Trac #32652: sage.geometry.polyhedron: Mark doctests # optional - sage.rings.number_field
(cherry-picked from #32432) URL: https://trac.sagemath.org/32652 Reported by: mkoeppe Ticket author(s): Matthias Koeppe Reviewer(s): Jonathan Kliem
2 parents 5c0ceda + 1400654 commit 4f73d49

File tree

6 files changed

+210
-206
lines changed

6 files changed

+210
-206
lines changed

src/sage/geometry/polyhedron/backend_field.py

+42-42
Original file line numberDiff line numberDiff line change
@@ -9,13 +9,13 @@
99
1010
sage: p0 = (0, 0)
1111
sage: p1 = (1, 0)
12-
sage: p2 = (1/2, AA(3).sqrt()/2)
13-
sage: equilateral_triangle = Polyhedron([p0, p1, p2])
14-
sage: equilateral_triangle.vertices()
12+
sage: p2 = (1/2, AA(3).sqrt()/2) # optional - sage.rings.number_field
13+
sage: equilateral_triangle = Polyhedron([p0, p1, p2]) # optional - sage.rings.number_field
14+
sage: equilateral_triangle.vertices() # optional - sage.rings.number_field
1515
(A vertex at (0, 0),
1616
A vertex at (1, 0),
1717
A vertex at (0.500000000000000?, 0.866025403784439?))
18-
sage: equilateral_triangle.inequalities()
18+
sage: equilateral_triangle.inequalities() # optional - sage.rings.number_field
1919
(An inequality (-1, -0.5773502691896258?) x + 1 >= 0,
2020
An inequality (1, -0.5773502691896258?) x + 0 >= 0,
2121
An inequality (0, 1.154700538379252?) x + 0 >= 0)
@@ -46,22 +46,22 @@ class Polyhedron_field(Polyhedron_base):
4646
4747
EXAMPLES::
4848
49-
sage: p = Polyhedron(vertices=[(0,0),(AA(2).sqrt(),0),(0,AA(3).sqrt())],
49+
sage: p = Polyhedron(vertices=[(0,0),(AA(2).sqrt(),0),(0,AA(3).sqrt())], # optional - sage.rings.number_field
5050
....: rays=[(1,1)], lines=[], backend='field', base_ring=AA)
51-
sage: TestSuite(p).run()
51+
sage: TestSuite(p).run() # optional - sage.rings.number_field
5252
5353
TESTS::
5454
55-
sage: K.<sqrt3> = QuadraticField(3)
56-
sage: p = Polyhedron([(0,0), (1,0), (1/2, sqrt3/2)])
57-
sage: TestSuite(p).run()
55+
sage: K.<sqrt3> = QuadraticField(3) # optional - sage.rings.number_field
56+
sage: p = Polyhedron([(0,0), (1,0), (1/2, sqrt3/2)]) # optional - sage.rings.number_field
57+
sage: TestSuite(p).run() # optional - sage.rings.number_field
5858
5959
Check that :trac:`19013` is fixed::
6060
61-
sage: K.<phi> = NumberField(x^2-x-1, embedding=1.618)
62-
sage: P1 = Polyhedron([[0,1],[1,1],[1,-phi+1]])
63-
sage: P2 = Polyhedron(ieqs=[[-1,-phi,0]])
64-
sage: P1.intersection(P2)
61+
sage: K.<phi> = NumberField(x^2-x-1, embedding=1.618) # optional - sage.rings.number_field
62+
sage: P1 = Polyhedron([[0,1],[1,1],[1,-phi+1]]) # optional - sage.rings.number_field
63+
sage: P2 = Polyhedron(ieqs=[[-1,-phi,0]]) # optional - sage.rings.number_field
64+
sage: P1.intersection(P2) # optional - sage.rings.number_field
6565
The empty polyhedron in (Number Field in phi with defining polynomial x^2 - x - 1 with phi = 1.618033988749895?)^2
6666
6767
Check that :trac:`28654` is fixed::
@@ -83,10 +83,10 @@ def _is_zero(self, x):
8383
8484
EXAMPLES::
8585
86-
sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA)
87-
sage: p._is_zero(0)
86+
sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA) # optional - sage.rings.number_field
87+
sage: p._is_zero(0) # optional - sage.rings.number_field
8888
True
89-
sage: p._is_zero(1/100000)
89+
sage: p._is_zero(1/100000) # optional - sage.rings.number_field
9090
False
9191
"""
9292
return x == 0
@@ -105,10 +105,10 @@ def _is_nonneg(self, x):
105105
106106
EXAMPLES::
107107
108-
sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA)
109-
sage: p._is_nonneg(1)
108+
sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA) # optional - sage.rings.number_field
109+
sage: p._is_nonneg(1) # optional - sage.rings.number_field
110110
True
111-
sage: p._is_nonneg(-1/100000)
111+
sage: p._is_nonneg(-1/100000) # optional - sage.rings.number_field
112112
False
113113
"""
114114
return x >= 0
@@ -127,10 +127,10 @@ def _is_positive(self, x):
127127
128128
EXAMPLES::
129129
130-
sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA)
131-
sage: p._is_positive(1)
130+
sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA) # optional - sage.rings.number_field
131+
sage: p._is_positive(1) # optional - sage.rings.number_field
132132
True
133-
sage: p._is_positive(0)
133+
sage: p._is_positive(0) # optional - sage.rings.number_field
134134
False
135135
"""
136136
return x > 0
@@ -150,12 +150,12 @@ def _init_from_Vrepresentation_and_Hrepresentation(self, Vrep, Hrep):
150150
151151
sage: from sage.geometry.polyhedron.parent import Polyhedra_field
152152
sage: from sage.geometry.polyhedron.backend_field import Polyhedron_field
153-
sage: parent = Polyhedra_field(AA, 1, 'field')
153+
sage: parent = Polyhedra_field(AA, 1, 'field') # optional - sage.rings.number_field
154154
sage: Vrep = [[[0], [1]], [], []]
155155
sage: Hrep = [[[0, 1], [1, -1]], []]
156-
sage: p = Polyhedron_field(parent, Vrep, Hrep,
157-
....: Vrep_minimal=True, Hrep_minimal=True) # indirect doctest
158-
sage: p
156+
sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest # optional - sage.rings.number_field
157+
....: Vrep_minimal=True, Hrep_minimal=True)
158+
sage: p # optional - sage.rings.number_field
159159
A 1-dimensional polyhedron in AA^1 defined as the convex hull of 2 vertices
160160
"""
161161
self._init_Vrepresentation(*Vrep)
@@ -234,12 +234,12 @@ def _init_Vrepresentation(self, vertices, rays, lines):
234234
235235
sage: from sage.geometry.polyhedron.parent import Polyhedra_field
236236
sage: from sage.geometry.polyhedron.backend_field import Polyhedron_field
237-
sage: parent = Polyhedra_field(AA, 1, 'field')
237+
sage: parent = Polyhedra_field(AA, 1, 'field') # optional - sage.rings.number_field
238238
sage: Vrep = [[[0], [1]], [], []]
239239
sage: Hrep = [[[0, 1], [1, -1]], []]
240-
sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest
240+
sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest # optional - sage.rings.number_field
241241
....: Vrep_minimal=True, Hrep_minimal=True)
242-
sage: p.vertices_list()
242+
sage: p.vertices_list() # optional - sage.rings.number_field
243243
[[0], [1]]
244244
"""
245245
self._Vrepresentation = []
@@ -258,13 +258,13 @@ def _init_Vrepresentation_backend(self, Vrep):
258258
259259
EXAMPLES::
260260
261-
sage: p = Polyhedron(vertices=[(0,1/sqrt(2)),(sqrt(2),0),(4,sqrt(5)/6)],
261+
sage: p = Polyhedron(vertices=[(0,1/sqrt(2)),(sqrt(2),0),(4,sqrt(5)/6)], # optional - sage.rings.number_field
262262
....: base_ring=AA, backend='field') # indirect doctest
263-
sage: p.Hrepresentation()
263+
sage: p.Hrepresentation() # optional - sage.rings.number_field
264264
(An inequality (-0.1582178750233332?, 1.097777812326429?) x + 0.2237538646678492? >= 0,
265265
An inequality (-0.1419794359520263?, -1.698172434277148?) x + 1.200789243901438? >= 0,
266266
An inequality (0.3001973109753594?, 0.600394621950719?) x - 0.4245431085692869? >= 0)
267-
sage: p.Vrepresentation()
267+
sage: p.Vrepresentation() # optional - sage.rings.number_field
268268
(A vertex at (0.?e-15, 0.707106781186548?),
269269
A vertex at (1.414213562373095?, 0),
270270
A vertex at (4.000000000000000?, 0.372677996249965?))
@@ -279,12 +279,12 @@ def _init_Hrepresentation(self, inequalities, equations):
279279
280280
sage: from sage.geometry.polyhedron.parent import Polyhedra_field
281281
sage: from sage.geometry.polyhedron.backend_field import Polyhedron_field
282-
sage: parent = Polyhedra_field(AA, 1, 'field')
282+
sage: parent = Polyhedra_field(AA, 1, 'field') # optional - sage.rings.number_field
283283
sage: Vrep = [[[0], [1]], [], []]
284284
sage: Hrep = [[[0, 1], [1, -1]], []]
285-
sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest
285+
sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest # optional - sage.rings.number_field
286286
....: Vrep_minimal=True, Hrep_minimal=True)
287-
sage: p.inequalities_list()
287+
sage: p.inequalities_list() # optional - sage.rings.number_field
288288
[[0, 1], [1, -1]]
289289
"""
290290
self._Hrepresentation = []
@@ -301,13 +301,13 @@ def _init_Hrepresentation_backend(self, Hrep):
301301
302302
EXAMPLES::
303303
304-
sage: p = Polyhedron(vertices=[(0,1/sqrt(2)),(sqrt(2),0),(4,sqrt(5)/6)],
304+
sage: p = Polyhedron(vertices=[(0,1/sqrt(2)),(sqrt(2),0),(4,sqrt(5)/6)], # optional - sage.rings.number_field
305305
....: base_ring=AA, backend='field') # indirect doctest
306-
sage: p.Hrepresentation()
306+
sage: p.Hrepresentation() # optional - sage.rings.number_field
307307
(An inequality (-0.1582178750233332?, 1.097777812326429?) x + 0.2237538646678492? >= 0,
308308
An inequality (-0.1419794359520263?, -1.698172434277148?) x + 1.200789243901438? >= 0,
309309
An inequality (0.3001973109753594?, 0.600394621950719?) x - 0.4245431085692869? >= 0)
310-
sage: p.Vrepresentation()
310+
sage: p.Vrepresentation() # optional - sage.rings.number_field
311311
(A vertex at (0.?e-15, 0.707106781186548?),
312312
A vertex at (1.414213562373095?, 0),
313313
A vertex at (4.000000000000000?, 0.372677996249965?))
@@ -320,13 +320,13 @@ def _init_empty_polyhedron(self):
320320
321321
TESTS::
322322
323-
sage: empty = Polyhedron(backend='field', base_ring=AA); empty
323+
sage: empty = Polyhedron(backend='field', base_ring=AA); empty # optional - sage.rings.number_field
324324
The empty polyhedron in AA^0
325-
sage: empty.Vrepresentation()
325+
sage: empty.Vrepresentation() # optional - sage.rings.number_field
326326
()
327-
sage: empty.Hrepresentation()
327+
sage: empty.Hrepresentation() # optional - sage.rings.number_field
328328
(An equation -1 == 0,)
329-
sage: Polyhedron(vertices = [], backend='field')
329+
sage: Polyhedron(vertices=[], backend='field')
330330
The empty polyhedron in QQ^0
331331
sage: Polyhedron(backend='field')._init_empty_polyhedron()
332332
"""

0 commit comments

Comments
 (0)