9
9
10
10
sage: p0 = (0, 0)
11
11
sage: p1 = (1, 0)
12
- sage: p2 = (1/2, AA(3).sqrt()/2)
13
- sage: equilateral_triangle = Polyhedron([p0, p1, p2])
14
- sage: equilateral_triangle.vertices()
12
+ sage: p2 = (1/2, AA(3).sqrt()/2) # optional - sage.rings.number_field
13
+ sage: equilateral_triangle = Polyhedron([p0, p1, p2]) # optional - sage.rings.number_field
14
+ sage: equilateral_triangle.vertices() # optional - sage.rings.number_field
15
15
(A vertex at (0, 0),
16
16
A vertex at (1, 0),
17
17
A vertex at (0.500000000000000?, 0.866025403784439?))
18
- sage: equilateral_triangle.inequalities()
18
+ sage: equilateral_triangle.inequalities() # optional - sage.rings.number_field
19
19
(An inequality (-1, -0.5773502691896258?) x + 1 >= 0,
20
20
An inequality (1, -0.5773502691896258?) x + 0 >= 0,
21
21
An inequality (0, 1.154700538379252?) x + 0 >= 0)
@@ -46,22 +46,22 @@ class Polyhedron_field(Polyhedron_base):
46
46
47
47
EXAMPLES::
48
48
49
- sage: p = Polyhedron(vertices=[(0,0),(AA(2).sqrt(),0),(0,AA(3).sqrt())],
49
+ sage: p = Polyhedron(vertices=[(0,0),(AA(2).sqrt(),0),(0,AA(3).sqrt())], # optional - sage.rings.number_field
50
50
....: rays=[(1,1)], lines=[], backend='field', base_ring=AA)
51
- sage: TestSuite(p).run()
51
+ sage: TestSuite(p).run() # optional - sage.rings.number_field
52
52
53
53
TESTS::
54
54
55
- sage: K.<sqrt3> = QuadraticField(3)
56
- sage: p = Polyhedron([(0,0), (1,0), (1/2, sqrt3/2)])
57
- sage: TestSuite(p).run()
55
+ sage: K.<sqrt3> = QuadraticField(3) # optional - sage.rings.number_field
56
+ sage: p = Polyhedron([(0,0), (1,0), (1/2, sqrt3/2)]) # optional - sage.rings.number_field
57
+ sage: TestSuite(p).run() # optional - sage.rings.number_field
58
58
59
59
Check that :trac:`19013` is fixed::
60
60
61
- sage: K.<phi> = NumberField(x^2-x-1, embedding=1.618)
62
- sage: P1 = Polyhedron([[0,1],[1,1],[1,-phi+1]])
63
- sage: P2 = Polyhedron(ieqs=[[-1,-phi,0]])
64
- sage: P1.intersection(P2)
61
+ sage: K.<phi> = NumberField(x^2-x-1, embedding=1.618) # optional - sage.rings.number_field
62
+ sage: P1 = Polyhedron([[0,1],[1,1],[1,-phi+1]]) # optional - sage.rings.number_field
63
+ sage: P2 = Polyhedron(ieqs=[[-1,-phi,0]]) # optional - sage.rings.number_field
64
+ sage: P1.intersection(P2) # optional - sage.rings.number_field
65
65
The empty polyhedron in (Number Field in phi with defining polynomial x^2 - x - 1 with phi = 1.618033988749895?)^2
66
66
67
67
Check that :trac:`28654` is fixed::
@@ -83,10 +83,10 @@ def _is_zero(self, x):
83
83
84
84
EXAMPLES::
85
85
86
- sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA)
87
- sage: p._is_zero(0)
86
+ sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA) # optional - sage.rings.number_field
87
+ sage: p._is_zero(0) # optional - sage.rings.number_field
88
88
True
89
- sage: p._is_zero(1/100000)
89
+ sage: p._is_zero(1/100000) # optional - sage.rings.number_field
90
90
False
91
91
"""
92
92
return x == 0
@@ -105,10 +105,10 @@ def _is_nonneg(self, x):
105
105
106
106
EXAMPLES::
107
107
108
- sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA)
109
- sage: p._is_nonneg(1)
108
+ sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA) # optional - sage.rings.number_field
109
+ sage: p._is_nonneg(1) # optional - sage.rings.number_field
110
110
True
111
- sage: p._is_nonneg(-1/100000)
111
+ sage: p._is_nonneg(-1/100000) # optional - sage.rings.number_field
112
112
False
113
113
"""
114
114
return x >= 0
@@ -127,10 +127,10 @@ def _is_positive(self, x):
127
127
128
128
EXAMPLES::
129
129
130
- sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA)
131
- sage: p._is_positive(1)
130
+ sage: p = Polyhedron([(sqrt(3),sqrt(2))], base_ring=AA) # optional - sage.rings.number_field
131
+ sage: p._is_positive(1) # optional - sage.rings.number_field
132
132
True
133
- sage: p._is_positive(0)
133
+ sage: p._is_positive(0) # optional - sage.rings.number_field
134
134
False
135
135
"""
136
136
return x > 0
@@ -150,12 +150,12 @@ def _init_from_Vrepresentation_and_Hrepresentation(self, Vrep, Hrep):
150
150
151
151
sage: from sage.geometry.polyhedron.parent import Polyhedra_field
152
152
sage: from sage.geometry.polyhedron.backend_field import Polyhedron_field
153
- sage: parent = Polyhedra_field(AA, 1, 'field')
153
+ sage: parent = Polyhedra_field(AA, 1, 'field') # optional - sage.rings.number_field
154
154
sage: Vrep = [[[0], [1]], [], []]
155
155
sage: Hrep = [[[0, 1], [1, -1]], []]
156
- sage: p = Polyhedron_field(parent, Vrep, Hrep,
157
- ....: Vrep_minimal=True, Hrep_minimal=True) # indirect doctest
158
- sage: p
156
+ sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest # optional - sage.rings.number_field
157
+ ....: Vrep_minimal=True, Hrep_minimal=True)
158
+ sage: p # optional - sage.rings.number_field
159
159
A 1-dimensional polyhedron in AA^1 defined as the convex hull of 2 vertices
160
160
"""
161
161
self ._init_Vrepresentation (* Vrep )
@@ -234,12 +234,12 @@ def _init_Vrepresentation(self, vertices, rays, lines):
234
234
235
235
sage: from sage.geometry.polyhedron.parent import Polyhedra_field
236
236
sage: from sage.geometry.polyhedron.backend_field import Polyhedron_field
237
- sage: parent = Polyhedra_field(AA, 1, 'field')
237
+ sage: parent = Polyhedra_field(AA, 1, 'field') # optional - sage.rings.number_field
238
238
sage: Vrep = [[[0], [1]], [], []]
239
239
sage: Hrep = [[[0, 1], [1, -1]], []]
240
- sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest
240
+ sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest # optional - sage.rings.number_field
241
241
....: Vrep_minimal=True, Hrep_minimal=True)
242
- sage: p.vertices_list()
242
+ sage: p.vertices_list() # optional - sage.rings.number_field
243
243
[[0], [1]]
244
244
"""
245
245
self ._Vrepresentation = []
@@ -258,13 +258,13 @@ def _init_Vrepresentation_backend(self, Vrep):
258
258
259
259
EXAMPLES::
260
260
261
- sage: p = Polyhedron(vertices=[(0,1/sqrt(2)),(sqrt(2),0),(4,sqrt(5)/6)],
261
+ sage: p = Polyhedron(vertices=[(0,1/sqrt(2)),(sqrt(2),0),(4,sqrt(5)/6)], # optional - sage.rings.number_field
262
262
....: base_ring=AA, backend='field') # indirect doctest
263
- sage: p.Hrepresentation()
263
+ sage: p.Hrepresentation() # optional - sage.rings.number_field
264
264
(An inequality (-0.1582178750233332?, 1.097777812326429?) x + 0.2237538646678492? >= 0,
265
265
An inequality (-0.1419794359520263?, -1.698172434277148?) x + 1.200789243901438? >= 0,
266
266
An inequality (0.3001973109753594?, 0.600394621950719?) x - 0.4245431085692869? >= 0)
267
- sage: p.Vrepresentation()
267
+ sage: p.Vrepresentation() # optional - sage.rings.number_field
268
268
(A vertex at (0.?e-15, 0.707106781186548?),
269
269
A vertex at (1.414213562373095?, 0),
270
270
A vertex at (4.000000000000000?, 0.372677996249965?))
@@ -279,12 +279,12 @@ def _init_Hrepresentation(self, inequalities, equations):
279
279
280
280
sage: from sage.geometry.polyhedron.parent import Polyhedra_field
281
281
sage: from sage.geometry.polyhedron.backend_field import Polyhedron_field
282
- sage: parent = Polyhedra_field(AA, 1, 'field')
282
+ sage: parent = Polyhedra_field(AA, 1, 'field') # optional - sage.rings.number_field
283
283
sage: Vrep = [[[0], [1]], [], []]
284
284
sage: Hrep = [[[0, 1], [1, -1]], []]
285
- sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest
285
+ sage: p = Polyhedron_field(parent, Vrep, Hrep, # indirect doctest # optional - sage.rings.number_field
286
286
....: Vrep_minimal=True, Hrep_minimal=True)
287
- sage: p.inequalities_list()
287
+ sage: p.inequalities_list() # optional - sage.rings.number_field
288
288
[[0, 1], [1, -1]]
289
289
"""
290
290
self ._Hrepresentation = []
@@ -301,13 +301,13 @@ def _init_Hrepresentation_backend(self, Hrep):
301
301
302
302
EXAMPLES::
303
303
304
- sage: p = Polyhedron(vertices=[(0,1/sqrt(2)),(sqrt(2),0),(4,sqrt(5)/6)],
304
+ sage: p = Polyhedron(vertices=[(0,1/sqrt(2)),(sqrt(2),0),(4,sqrt(5)/6)], # optional - sage.rings.number_field
305
305
....: base_ring=AA, backend='field') # indirect doctest
306
- sage: p.Hrepresentation()
306
+ sage: p.Hrepresentation() # optional - sage.rings.number_field
307
307
(An inequality (-0.1582178750233332?, 1.097777812326429?) x + 0.2237538646678492? >= 0,
308
308
An inequality (-0.1419794359520263?, -1.698172434277148?) x + 1.200789243901438? >= 0,
309
309
An inequality (0.3001973109753594?, 0.600394621950719?) x - 0.4245431085692869? >= 0)
310
- sage: p.Vrepresentation()
310
+ sage: p.Vrepresentation() # optional - sage.rings.number_field
311
311
(A vertex at (0.?e-15, 0.707106781186548?),
312
312
A vertex at (1.414213562373095?, 0),
313
313
A vertex at (4.000000000000000?, 0.372677996249965?))
@@ -320,13 +320,13 @@ def _init_empty_polyhedron(self):
320
320
321
321
TESTS::
322
322
323
- sage: empty = Polyhedron(backend='field', base_ring=AA); empty
323
+ sage: empty = Polyhedron(backend='field', base_ring=AA); empty # optional - sage.rings.number_field
324
324
The empty polyhedron in AA^0
325
- sage: empty.Vrepresentation()
325
+ sage: empty.Vrepresentation() # optional - sage.rings.number_field
326
326
()
327
- sage: empty.Hrepresentation()
327
+ sage: empty.Hrepresentation() # optional - sage.rings.number_field
328
328
(An equation -1 == 0,)
329
- sage: Polyhedron(vertices = [], backend='field')
329
+ sage: Polyhedron(vertices= [], backend='field')
330
330
The empty polyhedron in QQ^0
331
331
sage: Polyhedron(backend='field')._init_empty_polyhedron()
332
332
"""
0 commit comments