Skip to content

Commit 59e556e

Browse files
author
Matthias Koeppe
committed
src/sage/rings/localization.py: Change # needs sage.rings.finite_rings to more precise sage.libs.pari; use more block tags
1 parent 182b9bc commit 59e556e

File tree

1 file changed

+29
-23
lines changed

1 file changed

+29
-23
lines changed

src/sage/rings/localization.py

+29-23
Original file line numberDiff line numberDiff line change
@@ -77,8 +77,9 @@
7777
7878
Obtain specializations in positive characteristic::
7979
80+
sage: # needs sage.libs.pari sage.modules
8081
sage: Fp = GF(17)
81-
sage: f = L.hom((3,5,7,11), codomain=Fp); f # needs sage.libs.pari
82+
sage: f = L.hom((3,5,7,11), codomain=Fp); f
8283
Ring morphism:
8384
From: Multivariate Polynomial Ring in u0, u1, u2, q over Integer Ring localized at
8485
(q, q + 1, u2, u1, u1 - u2, u0, u0 - u2, u0 - u1, u2*q - u1, u2*q - u0,
@@ -88,17 +89,17 @@
8889
u1 |--> 5
8990
u2 |--> 7
9091
q |--> 11
91-
sage: mFp1 = matrix({k: f(v) for k, v in m1.dict().items()}); mFp1 # needs sage.libs.pari sage.modules
92+
sage: mFp1 = matrix({k: f(v) for k, v in m1.dict().items()}); mFp1
9293
[5 0 0]
9394
[0 3 0]
9495
[0 0 3]
95-
sage: mFp1.base_ring() # needs sage.libs.pari sage.modules
96+
sage: mFp1.base_ring()
9697
Finite Field of size 17
97-
sage: mFp2 = matrix({k: f(v) for k, v in m2.dict().items()}); mFp2 # needs sage.libs.pari sage.modules
98+
sage: mFp2 = matrix({k: f(v) for k, v in m2.dict().items()}); mFp2
9899
[ 2 3 0]
99100
[ 9 8 0]
100101
[ 0 0 16]
101-
sage: mFp3 = matrix({k: f(v) for k, v in m3.dict().items()}); mFp3 # needs sage.libs.pari sage.modules
102+
sage: mFp3 = matrix({k: f(v) for k, v in m3.dict().items()}); mFp3
102103
[16 0 0]
103104
[ 0 4 5]
104105
[ 0 7 6]
@@ -116,25 +117,28 @@
116117
u1 |--> 5
117118
u2 |--> 7
118119
q |--> 11
119-
sage: mQ1 = matrix({k: fQ(v) for k, v in m1.dict().items()}); mQ1 # needs sage.modules sage.rings.finite_rings
120+
121+
sage: # needs sage.libs.pari sage.modules sage.rings.finite_rings
122+
sage: mQ1 = matrix({k: fQ(v) for k, v in m1.dict().items()}); mQ1
120123
[5 0 0]
121124
[0 3 0]
122125
[0 0 3]
123-
sage: mQ1.base_ring() # needs sage.modules sage.rings.finite_rings
126+
sage: mQ1.base_ring()
124127
Rational Field
125-
sage: mQ2 = matrix({k: fQ(v) for k, v in m2.dict().items()}); mQ2 # needs sage.modules sage.rings.finite_rings
128+
sage: mQ2 = matrix({k: fQ(v) for k, v in m2.dict().items()}); mQ2
126129
[-15 -14 0]
127130
[ 26 25 0]
128131
[ 0 0 -1]
129-
sage: mQ3 = matrix({k: fQ(v) for k, v in m3.dict().items()}); mQ3 # needs sage.modules sage.rings.finite_rings
132+
sage: mQ3 = matrix({k: fQ(v) for k, v in m3.dict().items()}); mQ3
130133
[ -1 0 0]
131134
[ 0 -15/26 11/26]
132135
[ 0 301/26 275/26]
133136
137+
sage: # needs sage.libs.pari sage.libs.singular
134138
sage: S.<x, y, z, t> = QQ[]
135139
sage: T = S.quo(x + y + z)
136-
sage: F = T.fraction_field() # needs sage.libs.pari sage.libs.singular
137-
sage: fF = L.hom((x, y, z, t), codomain=F); fF # needs sage.libs.pari sage.libs.singular
140+
sage: F = T.fraction_field()
141+
sage: fF = L.hom((x, y, z, t), codomain=F); fF
138142
Ring morphism:
139143
From: Multivariate Polynomial Ring in u0, u1, u2, q over Integer Ring
140144
localized at (q, q + 1, u2, u1, u1 - u2, u0, u0 - u2, u0 - u1,
@@ -145,11 +149,11 @@
145149
u1 |--> ybar
146150
u2 |--> zbar
147151
q |--> tbar
148-
sage: mF1 = matrix({k: fF(v) for k, v in m1.dict().items()}); mF1 # needs sage.libs.pari sage.libs.singular sage.modules
152+
sage: mF1 = matrix({k: fF(v) for k, v in m1.dict().items()}); mF1 # needs sage.modules
149153
[ ybar 0 0]
150154
[ 0 -ybar - zbar 0]
151155
[ 0 0 -ybar - zbar]
152-
sage: mF1.base_ring() == F # needs sage.libs.pari sage.libs.singular sage.modules
156+
sage: mF1.base_ring() == F # needs sage.modules
153157
True
154158
155159
TESTS::
@@ -211,15 +215,16 @@ def normalize_extra_units(base_ring, add_units, warning=True):
211215
....: [3*x, z*y**2, 2*z, 18*(x*y*z)**2, x*z, 6*x*z, 5])
212216
[z, y, x]
213217
218+
sage: # needs sage.libs.singular
214219
sage: R.<x, y> = ZZ[]
215-
sage: Q.<a, b> = R.quo(x**2 - 5) # needs sage.libs.singular
216-
sage: p = b**2 - 5 # needs sage.libs.singular
217-
sage: p == (b-a)*(b+a) # needs sage.libs.singular
220+
sage: Q.<a, b> = R.quo(x**2 - 5)
221+
sage: p = b**2 - 5
222+
sage: p == (b-a)*(b+a)
218223
True
219-
sage: normalize_extra_units(Q, [p]) # needs sage.libs.pari sage.libs.singular
224+
sage: normalize_extra_units(Q, [p]) # needs sage.libs.pari
220225
doctest:...: UserWarning: Localization may not be represented uniquely
221226
[b^2 - 5]
222-
sage: normalize_extra_units(Q, [p], warning=False) # needs sage.libs.pari sage.libs.singular
227+
sage: normalize_extra_units(Q, [p], warning=False) # needs sage.libs.pari
223228
[b^2 - 5]
224229
"""
225230
# convert to base ring
@@ -256,7 +261,7 @@ class LocalizationElement(IntegralDomainElement):
256261
257262
EXAMPLES::
258263
259-
sage: # needs sage.rings.finite_rings
264+
sage: # needs sage.libs.pari
260265
sage: from sage.rings.localization import LocalizationElement
261266
sage: P.<x,y,z> = GF(5)[]
262267
sage: L = P.localization((x, y*z - x))
@@ -716,7 +721,7 @@ def _repr_(self):
716721
EXAMPLES::
717722
718723
sage: R.<a> = GF(3)[]
719-
sage: Localization(R, a**2 - 1) # needs sage.rings.finite_rings
724+
sage: Localization(R, a**2 - 1) # needs sage.libs.pari
720725
Univariate Polynomial Ring in a over Finite Field of size 3
721726
localized at (a + 1, a + 2)
722727
"""
@@ -967,7 +972,7 @@ def fraction_field(self):
967972
968973
EXAMPLES::
969974
970-
sage: # needs sage.rings.finite_rings
975+
sage: # needs sage.libs.pari
971976
sage: R.<a> = GF(5)[]
972977
sage: L = Localization(R, (a**2 - 3, a))
973978
sage: L.fraction_field()
@@ -983,9 +988,10 @@ def characteristic(self):
983988
984989
EXAMPLES::
985990
991+
sage: # needs sage.libs.pari
986992
sage: R.<a> = GF(5)[]
987-
sage: L = R.localization((a**2 - 3, a)) # needs sage.rings.finite_rings
988-
sage: L.characteristic() # needs sage.rings.finite_rings
993+
sage: L = R.localization((a**2 - 3, a))
994+
sage: L.characteristic()
989995
5
990996
"""
991997
return self.base_ring().characteristic()

0 commit comments

Comments
 (0)