We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
1 parent 7d83063 commit 6881819Copy full SHA for 6881819
src/sage/modular/quasimodform/ring.py
@@ -5,7 +5,7 @@
5
6
.. MATH::
7
8
- E_2(z) = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma(n) q^n
+ E_2(z) = 1 - 24 \sum_{n=1}^{\infty} \sigma(n) q^n
9
10
where `\sigma` is the sum of divisors function and `q = \mathrm{exp}(2\pi i z)`
11
is the classical parameter at infinity, with `\mathrm{im}(z)>0`. This weight 2
@@ -14,7 +14,7 @@
14
15
16
17
- z^2 E_2(-1/z) = E_2(z) + \frac{2k}{4\pi i B_k z}.
+ z^2 E_2(-1/z) = E_2(z) + \frac{6}{\pi i z}.
18
19
`E_2` is a quasimodular form of weight 2. General quasimodular forms of given
20
weight can also be defined. We denote by `QM` the graded ring of quasimodular
0 commit comments