Skip to content

Commit 7ab174a

Browse files
author
Release Manager
committed
Trac #32340: document behavior of .is_prime() for number fields
This patch addresses the issue raised in comment:15:ticket:7596. (I am creating a new ticket for this because #7596 is about something much more general.) URL: https://trac.sagemath.org/32340 Reported by: lorenz Ticket author(s): Lorenz Panny Reviewer(s): Travis Scrimshaw
2 parents c69f4af + 5c0a348 commit 7ab174a

File tree

1 file changed

+26
-2
lines changed

1 file changed

+26
-2
lines changed

src/sage/structure/element.pyx

+26-2
Original file line numberDiff line numberDiff line change
@@ -2913,11 +2913,35 @@ cdef class RingElement(ModuleElement):
29132913
sage: RR(2).is_prime()
29142914
False
29152915
2916-
For integers, prime numbers are redefined to be positive::
2916+
For integers, :meth:`is_prime` redefines prime numbers to be
2917+
positive::
29172918
2919+
sage: (-2).is_prime()
2920+
False
29182921
sage: RingElement.is_prime(-2)
29192922
True
2920-
sage: Integer.is_prime(-2)
2923+
2924+
Similarly,
2925+
:class:`~sage.rings.number_field.number_field_base.NumberField`
2926+
redefines :meth:`is_prime` to determine primality in the ring
2927+
of integers::
2928+
2929+
sage: (1+i).is_prime()
2930+
True
2931+
sage: K(5).is_prime()
2932+
False
2933+
sage: K(7).is_prime()
2934+
True
2935+
sage: K(7/13).is_prime()
2936+
False
2937+
2938+
However, for rationals, :meth:`is_prime` *does* follow the
2939+
general definition of prime elements in a ring (i.e., always
2940+
returns ``False``) since the rationals are not a
2941+
:class:`~sage.rings.number_field.number_field_base.NumberField`
2942+
in Sage::
2943+
2944+
sage: QQ(7).is_prime()
29212945
False
29222946
"""
29232947
if not self: # We exclude the 0 element

0 commit comments

Comments
 (0)