@@ -951,7 +951,7 @@ def is_directed_acyclic(self, certificate=False):
951
951
At first, the following graph is acyclic::
952
952
953
953
sage: D = DiGraph({0:[1, 2, 3], 4:[2, 5], 1:[8], 2:[7], 3:[7], 5:[6,7], 7:[8], 6:[9], 8:[10], 9:[10]})
954
- sage: D.plot(layout='circular').show()
954
+ sage: D.plot(layout='circular').show() # optional - sage.plot
955
955
sage: D.is_directed_acyclic()
956
956
True
957
957
@@ -3140,7 +3140,7 @@ def topological_sort(self, implementation="default"):
3140
3140
3141
3141
sage: D = DiGraph({0: [1, 2, 3], 4: [2, 5], 1: [8], 2: [7], 3: [7],
3142
3142
....: 5: [6, 7], 7: [8], 6: [9], 8: [10], 9: [10]})
3143
- sage: D.plot(layout='circular').show()
3143
+ sage: D.plot(layout='circular').show() # optional - sage.plot
3144
3144
sage: D.topological_sort()
3145
3145
[4, 5, 6, 9, 0, 1, 2, 3, 7, 8, 10]
3146
3146
@@ -3220,7 +3220,7 @@ def topological_sort_generator(self):
3220
3220
EXAMPLES::
3221
3221
3222
3222
sage: D = DiGraph({0: [1, 2], 1: [3], 2: [3, 4]})
3223
- sage: D.plot(layout='circular').show()
3223
+ sage: D.plot(layout='circular').show() # optional - sage.plot
3224
3224
sage: list(D.topological_sort_generator())
3225
3225
[[0, 1, 2, 3, 4], [0, 2, 1, 3, 4], [0, 2, 1, 4, 3], [0, 2, 4, 1, 3], [0, 1, 2, 4, 3]]
3226
3226
0 commit comments