Skip to content

Commit 8f5e7fd

Browse files
Release Managervbraun
Release Manager
authored andcommitted
Trac #8389: Implement MatrixSpace(...)['x']
...and rationalize the implementation of `__getitem__` for rings. URL: http://trac.sagemath.org/8389 Reported by: mmezzarobba Ticket author(s): Marc Mezzarobba Reviewer(s): Nicolas M. Thiéry
2 parents ccab985 + f4abe5d commit 8f5e7fd

File tree

7 files changed

+300
-247
lines changed

7 files changed

+300
-247
lines changed

src/doc/en/thematic_tutorials/coercion_and_categories.rst

+20-23
Original file line numberDiff line numberDiff line change
@@ -105,27 +105,24 @@ it makes sense to build on top of the base class
105105
This base class provides a lot more methods than a general parent::
106106

107107
sage: [p for p in dir(Field) if p not in dir(Parent)]
108-
['__div__', '__fraction_field', '__ideal_monoid', '__iter__',
109-
'__pow__', '__rdiv__', '__rpow__', '__rxor__', '__xor__',
110-
'_an_element', '_an_element_c', '_an_element_impl', '_coerce_',
111-
'_coerce_c', '_coerce_impl', '_coerce_self', '_coerce_try',
112-
'_default_category', '_gens', '_gens_dict',
113-
'_has_coerce_map_from', '_ideal_class_', '_latex_names', '_list',
114-
'_one_element', '_pseudo_fraction_field',
115-
'_random_nonzero_element', '_richcmp', '_unit_ideal',
116-
'_zero_element', '_zero_ideal', 'algebraic_closure',
117-
'base_extend', 'cardinality', 'class_group', 'coerce_map_from_c',
118-
'coerce_map_from_impl', 'content', 'divides', 'extension',
119-
'fraction_field', 'frobenius_endomorphism', 'gcd', 'gen', 'gens',
120-
'get_action_c', 'get_action_impl', 'has_coerce_map_from_c',
121-
'has_coerce_map_from_impl', 'ideal', 'ideal_monoid',
122-
'integral_closure', 'is_commutative', 'is_field', 'is_finite',
123-
'is_integral_domain', 'is_integrally_closed', 'is_noetherian',
124-
'is_prime_field', 'is_ring', 'is_subring', 'is_zero',
125-
'krull_dimension', 'list', 'ngens', 'one', 'one_element',
126-
'order', 'prime_subfield', 'principal_ideal', 'quo', 'quotient',
127-
'quotient_ring', 'random_element', 'unit_ideal', 'zero',
128-
'zero_element', 'zero_ideal', 'zeta', 'zeta_order']
108+
['__div__', '__fraction_field', '__ideal_monoid', '__iter__', '__pow__',
109+
'__rdiv__', '__rpow__', '__rxor__', '__xor__', '_an_element',
110+
'_an_element_c', '_an_element_impl', '_coerce_', '_coerce_c',
111+
'_coerce_impl', '_coerce_self', '_coerce_try', '_default_category', '_gens',
112+
'_gens_dict', '_has_coerce_map_from', '_ideal_class_', '_latex_names',
113+
'_list', '_one_element', '_pseudo_fraction_field',
114+
'_random_nonzero_element', '_richcmp', '_unit_ideal', '_zero_element',
115+
'_zero_ideal', 'algebraic_closure', 'base_extend', 'cardinality',
116+
'class_group', 'coerce_map_from_c', 'coerce_map_from_impl', 'content',
117+
'divides', 'extension', 'fraction_field', 'frobenius_endomorphism', 'gcd',
118+
'gen', 'gens', 'get_action_c', 'get_action_impl', 'has_coerce_map_from_c',
119+
'has_coerce_map_from_impl', 'ideal', 'ideal_monoid', 'integral_closure',
120+
'is_commutative', 'is_field', 'is_finite', 'is_integral_domain',
121+
'is_integrally_closed', 'is_noetherian', 'is_prime_field', 'is_ring',
122+
'is_subring', 'krull_dimension', 'list', 'ngens', 'one', 'one_element',
123+
'order', 'prime_subfield', 'principal_ideal', 'quo', 'quotient',
124+
'quotient_ring', 'random_element', 'unit_ideal', 'zero', 'zero_element',
125+
'zero_ideal', 'zeta', 'zeta_order']
129126

130127
The following is a very basic implementation of fraction fields, that needs to
131128
be complemented later.
@@ -404,9 +401,9 @@ coincide::
404401

405402
sage: import inspect
406403
sage: len([s for s in dir(MS1) if inspect.ismethod(getattr(MS1,s,None))])
407-
55
404+
56
408405
sage: len([s for s in dir(MS2) if inspect.ismethod(getattr(MS2,s,None))])
409-
78
406+
80
410407
sage: MS1.__class__ is MS2.__class__
411408
True
412409

src/sage/categories/rings.py

+226
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,7 @@
1111
# http://www.gnu.org/licenses/
1212
#******************************************************************************
1313

14+
import re
1415
from sage.categories.rngs import Rngs
1516
from sage.categories.semirings import Semirings
1617
from sage.categories.category import Category
@@ -66,6 +67,29 @@ def is_ring(self):
6667
"""
6768
return True
6869

70+
def is_zero(self):
71+
"""
72+
Return ``True`` if this is the zero ring.
73+
74+
EXAMPLES::
75+
76+
sage: Integers(1).is_zero()
77+
True
78+
sage: Integers(2).is_zero()
79+
False
80+
sage: QQ.is_zero()
81+
False
82+
sage: R.<x> = ZZ[]
83+
sage: R.quo(1).is_zero()
84+
True
85+
sage: R.<x> = GF(101)[]
86+
sage: R.quo(77).is_zero()
87+
True
88+
sage: R.quo(x^2+1).is_zero()
89+
False
90+
"""
91+
return self.one_element() == self.zero_element()
92+
6993
def bracket(self, x, y):
7094
"""
7195
Returns the Lie bracket `[x, y] = x y - y x` of `x` and `y`.
@@ -615,6 +639,176 @@ def __div__(self, I):
615639
"""
616640
raise TypeError, "Use self.quo(I) or self.quotient(I) to construct the quotient ring."
617641

642+
def __getitem__(self, arg):
643+
"""
644+
Extend this ring by one or several elements to create a polynomial
645+
ring, a power series ring, or an algebraic extension.
646+
647+
This is a convenience method intended primarily for interactive
648+
use.
649+
650+
.. SEEALSO::
651+
652+
:func:`~sage.rings.polynomial.polynomial_ring_constructor.PolynomialRing`,
653+
:func:`~sage.rings.power_series_ring.PowerSeriesRing`,
654+
:meth:`~sage.rings.ring.Ring.extension`,
655+
:meth:`sage.rings.integer_ring.IntegerRing_class.__getitem__`,
656+
:meth:`sage.rings.matrix_space.MatrixSpace.__getitem__`,
657+
:meth:`sage.structure.parent.Parent.__getitem__`
658+
659+
EXAMPLES:
660+
661+
We create several polynomial rings::
662+
663+
sage: ZZ['x']
664+
Univariate Polynomial Ring in x over Integer Ring
665+
sage: QQ['x']
666+
Univariate Polynomial Ring in x over Rational Field
667+
sage: GF(17)['abc']
668+
Univariate Polynomial Ring in abc over Finite Field of size 17
669+
sage: GF(17)['a,b,c']
670+
Multivariate Polynomial Ring in a, b, c over Finite Field of size 17
671+
sage: GF(17)['a']['b']
672+
Univariate Polynomial Ring in b over Univariate Polynomial Ring in a over Finite Field of size 17
673+
674+
We can also create power series rings by using double brackets::
675+
676+
sage: QQ[['t']]
677+
Power Series Ring in t over Rational Field
678+
sage: ZZ[['W']]
679+
Power Series Ring in W over Integer Ring
680+
681+
sage: ZZ[['x,y,z']]
682+
Multivariate Power Series Ring in x, y, z over Integer Ring
683+
sage: ZZ[['x','T']]
684+
Multivariate Power Series Ring in x, T over Integer Ring
685+
686+
Use :func:`~sage.rings.fraction_field.Frac` or
687+
:meth:`~sage.rings.ring.CommutativeRing.fraction_field` to obtain
688+
the fields of rational functions and Laurent series::
689+
690+
sage: Frac(QQ['t'])
691+
Fraction Field of Univariate Polynomial Ring in t over Rational Field
692+
sage: Frac(QQ[['t']])
693+
Laurent Series Ring in t over Rational Field
694+
sage: QQ[['t']].fraction_field()
695+
Laurent Series Ring in t over Rational Field
696+
697+
Note that the same syntax can be used to create number fields::
698+
699+
sage: QQ[I]
700+
Number Field in I with defining polynomial x^2 + 1
701+
sage: QQ[sqrt(2)]
702+
Number Field in sqrt2 with defining polynomial x^2 - 2
703+
sage: QQ[sqrt(2),sqrt(3)]
704+
Number Field in sqrt2 with defining polynomial x^2 - 2 over its base field
705+
706+
and orders in number fields::
707+
708+
sage: ZZ[I]
709+
Order in Number Field in I with defining polynomial x^2 + 1
710+
sage: ZZ[sqrt(5)]
711+
Order in Number Field in sqrt5 with defining polynomial x^2 - 5
712+
sage: ZZ[sqrt(2)+sqrt(3)]
713+
Order in Number Field in a with defining polynomial x^4 - 10*x^2 + 1
714+
715+
TESTS:
716+
717+
A few corner cases::
718+
719+
sage: QQ[()]
720+
Multivariate Polynomial Ring in no variables over Rational Field
721+
722+
sage: QQ[[]]
723+
Traceback (most recent call last):
724+
...
725+
TypeError: power series rings must have at least one variable
726+
727+
Some flexibility is allowed when specifying variables::
728+
729+
sage: QQ["x", SR.var('y'), polygen(CC, 'z')]
730+
Multivariate Polynomial Ring in x, y, z over Rational Field
731+
sage: QQ[["x", SR.var('y'), polygen(CC, 'z')]]
732+
Multivariate Power Series Ring in x, y, z over Rational Field
733+
734+
but more baroque expressions do not work::
735+
736+
sage: QQ['a,b','c']
737+
Traceback (most recent call last):
738+
...
739+
ValueError: variable names must be alphanumeric, but one is 'a,b' which is not.
740+
sage: QQ[['a,b','c']]
741+
Traceback (most recent call last):
742+
...
743+
ValueError: variable names must be alphanumeric, but one is 'a,b' which is not.
744+
745+
sage: QQ[[['x']]]
746+
Traceback (most recent call last):
747+
...
748+
TypeError: expected R[...] or R[[...]], not R[[[...]]]
749+
750+
Extension towers are built as follows and use distinct generator names::
751+
752+
sage: K = QQ[2^(1/3), 2^(1/2), 3^(1/3)]
753+
sage: K
754+
Number Field in a with defining polynomial x^3 - 2 over its base field
755+
sage: K.base_field()
756+
Number Field in sqrt2 with defining polynomial x^2 - 2 over its base field
757+
sage: K.base_field().base_field()
758+
Number Field in b with defining polynomial x^3 - 3
759+
760+
"""
761+
def normalize_arg(arg):
762+
if isinstance(arg, (tuple, list)):
763+
# Allowing arbitrary iterables would create confusion, but we
764+
# may want to support a few more.
765+
return tuple(arg)
766+
elif isinstance(arg, str):
767+
return tuple(arg.split(','))
768+
else:
769+
return (arg,)
770+
771+
# 1. If arg is a list, try to return a power series ring.
772+
773+
if isinstance(arg, list):
774+
if arg == []:
775+
raise TypeError("power series rings must have at least one variable")
776+
elif len(arg) == 1:
777+
# R[["a,b"]], R[[(a,b)]]...
778+
if isinstance(arg[0], list):
779+
raise TypeError("expected R[...] or R[[...]], not R[[[...]]]")
780+
elts = normalize_arg(arg[0])
781+
else:
782+
elts = normalize_arg(arg)
783+
from sage.rings.power_series_ring import PowerSeriesRing
784+
return PowerSeriesRing(self, elts)
785+
786+
# 2. Otherwise, if all specified elements are algebraic, try to
787+
# return an algebraic extension
788+
789+
elts = normalize_arg(arg)
790+
791+
try:
792+
minpolys = [a.minpoly() for a in elts]
793+
except (AttributeError, NotImplementedError, ValueError, TypeError):
794+
minpolys = None
795+
796+
if minpolys:
797+
# how to pass in names?
798+
# TODO: set up embeddings
799+
names = tuple(_gen_names(elts))
800+
try:
801+
# Doing the extension all at once is best, if possible...
802+
return self.extension(minpolys, names)
803+
except (TypeError, ValueError):
804+
# ...but we can also construct it iteratively
805+
return reduce(lambda R, ext: R.extension(*ext), zip(minpolys, names), self)
806+
807+
# 2. Otherwise, try to return a polynomial ring
808+
809+
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
810+
return PolynomialRing(self, elts)
811+
618812
class ElementMethods:
619813
def is_unit(self):
620814
r"""
@@ -648,3 +842,35 @@ def is_unit(self):
648842

649843
class HomCategory(HomCategory):
650844
pass
845+
846+
from sage.structure.parent_gens import _certify_names
847+
848+
def _gen_names(elts):
849+
r"""
850+
Used to find a name for a generator when rings are created using the
851+
``__getitem__`` syntax, e.g. ``ZZ['x']``, ``ZZ[sqrt(2)]``.
852+
853+
EXAMPLES::
854+
855+
sage: from sage.categories.rings import _gen_names
856+
sage: list(_gen_names([sqrt(5)]))
857+
['sqrt5']
858+
sage: list(_gen_names([sqrt(-17), 2^(1/3)]))
859+
['a', 'b']
860+
sage: list(_gen_names((1..27)))[-1]
861+
'aa'
862+
"""
863+
from sage.symbolic.ring import is_SymbolicVariable
864+
from sage.combinat.words.words import Words
865+
it = iter(Words("abcdefghijklmnopqrstuvwxyz"))
866+
it.next() # skip empty word
867+
for x in elts:
868+
name = str(x)
869+
m = re.match('^sqrt\((\d+)\)$', name)
870+
if m:
871+
name = "sqrt%s" % m.groups()[0]
872+
try:
873+
_certify_names([name])
874+
except ValueError, msg:
875+
name = it.next().string_rep()
876+
yield name

src/sage/matrix/matrix_space.py

+41
Original file line numberDiff line numberDiff line change
@@ -923,6 +923,47 @@ def __iter__(self):
923923
for iv in sage.combinat.integer_vector.IntegerVectors(weight, number_of_entries, max_part=(order-1)):
924924
yield self(entries=[base_elements[i] for i in iv])
925925

926+
def __getitem__(self, x):
927+
"""
928+
Return a polynomial ring over this ring or the `n`-th element of this ring.
929+
930+
This method implements the syntax ``R['x']`` to define polynomial rings
931+
over matrix rings, while still allowing to get the `n`-th element of a
932+
finite matrix ring with ``R[n]`` for backward compatibility.
933+
934+
(If this behaviour proves desirable for all finite enumerated rings, it
935+
should eventually be implemented in the corresponding category rather
936+
than here.)
937+
938+
..SEEALSO::
939+
940+
:meth:`sage.categories.rings.Rings.ParentMethod.__getitem__`,
941+
:meth:`sage.structure.parent.Parent.__getitem__`
942+
943+
EXAMPLES::
944+
945+
sage: MS = MatrixSpace(GF(3), 2, 2)
946+
sage: MS['x']
947+
Univariate Polynomial Ring in x over Full MatrixSpace of 2 by 2 dense matrices over Finite Field of size 3
948+
sage: MS[0]
949+
[0 0]
950+
[0 0]
951+
sage: MS[9]
952+
[0 2]
953+
[0 0]
954+
955+
sage: MS = MatrixSpace(QQ, 7)
956+
sage: MS['x']
957+
Univariate Polynomial Ring in x over Full MatrixSpace of 7 by 7 dense matrices over Rational Field
958+
sage: MS[2]
959+
Traceback (most recent call last):
960+
...
961+
ValueError: since it is infinite, cannot list Full MatrixSpace of 7 by 7 dense matrices over Rational Field
962+
"""
963+
if isinstance(x, (int, long, integer.Integer)):
964+
return self.list()[x]
965+
return Rings.ParentMethods.__getitem__.__func__(self, x)
966+
926967
def _get_matrix_class(self):
927968
r"""
928969
Returns the class of self

src/sage/rings/integer_ring.pyx

+2-9
Original file line numberDiff line numberDiff line change
@@ -435,8 +435,8 @@ cdef class IntegerRing_class(PrincipalIdealDomain):
435435

436436
def __getitem__(self, x):
437437
"""
438-
Return the ring `\ZZ[...]` obtained by adjoining to the integers a list
439-
``x`` of several elements.
438+
Return the ring `\ZZ[...]` obtained by adjoining to the integers one
439+
or several elements.
440440
441441
EXAMPLES::
442442
@@ -457,15 +457,8 @@ cdef class IntegerRing_class(PrincipalIdealDomain):
457457
"""
458458
if x in self:
459459
return self
460-
if isinstance(x, str):
461-
return PrincipalIdealDomain.__getitem__(self, x)
462-
from sage.symbolic.ring import is_SymbolicVariable
463-
464-
if is_SymbolicVariable(x):
465-
return PrincipalIdealDomain.__getitem__(self, repr(x))
466460

467461
from sage.rings.number_field.all import is_NumberFieldElement
468-
469462
if is_NumberFieldElement(x):
470463
K, from_K = x.parent().subfield(x)
471464
return K.order(K.gen())

src/sage/rings/polynomial/polynomial_ring_constructor.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -79,7 +79,7 @@ def PolynomialRing(base_ring, arg1=None, arg2=None,
7979
8080
INPUT:
8181
82-
- ``base_ring`` -- a commutative ring
82+
- ``base_ring`` -- a ring
8383
- ``name`` -- a string
8484
- ``names`` -- a list or tuple of names, or a comma separated string
8585
- ``var_array`` -- a list or tuple of names, or a comma separated string

0 commit comments

Comments
 (0)