|
11 | 11 | # http://www.gnu.org/licenses/
|
12 | 12 | #******************************************************************************
|
13 | 13 |
|
| 14 | +import re |
14 | 15 | from sage.categories.rngs import Rngs
|
15 | 16 | from sage.categories.semirings import Semirings
|
16 | 17 | from sage.categories.category import Category
|
@@ -66,6 +67,29 @@ def is_ring(self):
|
66 | 67 | """
|
67 | 68 | return True
|
68 | 69 |
|
| 70 | + def is_zero(self): |
| 71 | + """ |
| 72 | + Return ``True`` if this is the zero ring. |
| 73 | +
|
| 74 | + EXAMPLES:: |
| 75 | +
|
| 76 | + sage: Integers(1).is_zero() |
| 77 | + True |
| 78 | + sage: Integers(2).is_zero() |
| 79 | + False |
| 80 | + sage: QQ.is_zero() |
| 81 | + False |
| 82 | + sage: R.<x> = ZZ[] |
| 83 | + sage: R.quo(1).is_zero() |
| 84 | + True |
| 85 | + sage: R.<x> = GF(101)[] |
| 86 | + sage: R.quo(77).is_zero() |
| 87 | + True |
| 88 | + sage: R.quo(x^2+1).is_zero() |
| 89 | + False |
| 90 | + """ |
| 91 | + return self.one_element() == self.zero_element() |
| 92 | + |
69 | 93 | def bracket(self, x, y):
|
70 | 94 | """
|
71 | 95 | Returns the Lie bracket `[x, y] = x y - y x` of `x` and `y`.
|
@@ -615,6 +639,176 @@ def __div__(self, I):
|
615 | 639 | """
|
616 | 640 | raise TypeError, "Use self.quo(I) or self.quotient(I) to construct the quotient ring."
|
617 | 641 |
|
| 642 | + def __getitem__(self, arg): |
| 643 | + """ |
| 644 | + Extend this ring by one or several elements to create a polynomial |
| 645 | + ring, a power series ring, or an algebraic extension. |
| 646 | +
|
| 647 | + This is a convenience method intended primarily for interactive |
| 648 | + use. |
| 649 | +
|
| 650 | + .. SEEALSO:: |
| 651 | +
|
| 652 | + :func:`~sage.rings.polynomial.polynomial_ring_constructor.PolynomialRing`, |
| 653 | + :func:`~sage.rings.power_series_ring.PowerSeriesRing`, |
| 654 | + :meth:`~sage.rings.ring.Ring.extension`, |
| 655 | + :meth:`sage.rings.integer_ring.IntegerRing_class.__getitem__`, |
| 656 | + :meth:`sage.rings.matrix_space.MatrixSpace.__getitem__`, |
| 657 | + :meth:`sage.structure.parent.Parent.__getitem__` |
| 658 | +
|
| 659 | + EXAMPLES: |
| 660 | +
|
| 661 | + We create several polynomial rings:: |
| 662 | +
|
| 663 | + sage: ZZ['x'] |
| 664 | + Univariate Polynomial Ring in x over Integer Ring |
| 665 | + sage: QQ['x'] |
| 666 | + Univariate Polynomial Ring in x over Rational Field |
| 667 | + sage: GF(17)['abc'] |
| 668 | + Univariate Polynomial Ring in abc over Finite Field of size 17 |
| 669 | + sage: GF(17)['a,b,c'] |
| 670 | + Multivariate Polynomial Ring in a, b, c over Finite Field of size 17 |
| 671 | + sage: GF(17)['a']['b'] |
| 672 | + Univariate Polynomial Ring in b over Univariate Polynomial Ring in a over Finite Field of size 17 |
| 673 | +
|
| 674 | + We can also create power series rings by using double brackets:: |
| 675 | +
|
| 676 | + sage: QQ[['t']] |
| 677 | + Power Series Ring in t over Rational Field |
| 678 | + sage: ZZ[['W']] |
| 679 | + Power Series Ring in W over Integer Ring |
| 680 | +
|
| 681 | + sage: ZZ[['x,y,z']] |
| 682 | + Multivariate Power Series Ring in x, y, z over Integer Ring |
| 683 | + sage: ZZ[['x','T']] |
| 684 | + Multivariate Power Series Ring in x, T over Integer Ring |
| 685 | +
|
| 686 | + Use :func:`~sage.rings.fraction_field.Frac` or |
| 687 | + :meth:`~sage.rings.ring.CommutativeRing.fraction_field` to obtain |
| 688 | + the fields of rational functions and Laurent series:: |
| 689 | +
|
| 690 | + sage: Frac(QQ['t']) |
| 691 | + Fraction Field of Univariate Polynomial Ring in t over Rational Field |
| 692 | + sage: Frac(QQ[['t']]) |
| 693 | + Laurent Series Ring in t over Rational Field |
| 694 | + sage: QQ[['t']].fraction_field() |
| 695 | + Laurent Series Ring in t over Rational Field |
| 696 | +
|
| 697 | + Note that the same syntax can be used to create number fields:: |
| 698 | +
|
| 699 | + sage: QQ[I] |
| 700 | + Number Field in I with defining polynomial x^2 + 1 |
| 701 | + sage: QQ[sqrt(2)] |
| 702 | + Number Field in sqrt2 with defining polynomial x^2 - 2 |
| 703 | + sage: QQ[sqrt(2),sqrt(3)] |
| 704 | + Number Field in sqrt2 with defining polynomial x^2 - 2 over its base field |
| 705 | +
|
| 706 | + and orders in number fields:: |
| 707 | +
|
| 708 | + sage: ZZ[I] |
| 709 | + Order in Number Field in I with defining polynomial x^2 + 1 |
| 710 | + sage: ZZ[sqrt(5)] |
| 711 | + Order in Number Field in sqrt5 with defining polynomial x^2 - 5 |
| 712 | + sage: ZZ[sqrt(2)+sqrt(3)] |
| 713 | + Order in Number Field in a with defining polynomial x^4 - 10*x^2 + 1 |
| 714 | +
|
| 715 | + TESTS: |
| 716 | +
|
| 717 | + A few corner cases:: |
| 718 | +
|
| 719 | + sage: QQ[()] |
| 720 | + Multivariate Polynomial Ring in no variables over Rational Field |
| 721 | +
|
| 722 | + sage: QQ[[]] |
| 723 | + Traceback (most recent call last): |
| 724 | + ... |
| 725 | + TypeError: power series rings must have at least one variable |
| 726 | +
|
| 727 | + Some flexibility is allowed when specifying variables:: |
| 728 | +
|
| 729 | + sage: QQ["x", SR.var('y'), polygen(CC, 'z')] |
| 730 | + Multivariate Polynomial Ring in x, y, z over Rational Field |
| 731 | + sage: QQ[["x", SR.var('y'), polygen(CC, 'z')]] |
| 732 | + Multivariate Power Series Ring in x, y, z over Rational Field |
| 733 | +
|
| 734 | + but more baroque expressions do not work:: |
| 735 | +
|
| 736 | + sage: QQ['a,b','c'] |
| 737 | + Traceback (most recent call last): |
| 738 | + ... |
| 739 | + ValueError: variable names must be alphanumeric, but one is 'a,b' which is not. |
| 740 | + sage: QQ[['a,b','c']] |
| 741 | + Traceback (most recent call last): |
| 742 | + ... |
| 743 | + ValueError: variable names must be alphanumeric, but one is 'a,b' which is not. |
| 744 | +
|
| 745 | + sage: QQ[[['x']]] |
| 746 | + Traceback (most recent call last): |
| 747 | + ... |
| 748 | + TypeError: expected R[...] or R[[...]], not R[[[...]]] |
| 749 | +
|
| 750 | + Extension towers are built as follows and use distinct generator names:: |
| 751 | +
|
| 752 | + sage: K = QQ[2^(1/3), 2^(1/2), 3^(1/3)] |
| 753 | + sage: K |
| 754 | + Number Field in a with defining polynomial x^3 - 2 over its base field |
| 755 | + sage: K.base_field() |
| 756 | + Number Field in sqrt2 with defining polynomial x^2 - 2 over its base field |
| 757 | + sage: K.base_field().base_field() |
| 758 | + Number Field in b with defining polynomial x^3 - 3 |
| 759 | +
|
| 760 | + """ |
| 761 | + def normalize_arg(arg): |
| 762 | + if isinstance(arg, (tuple, list)): |
| 763 | + # Allowing arbitrary iterables would create confusion, but we |
| 764 | + # may want to support a few more. |
| 765 | + return tuple(arg) |
| 766 | + elif isinstance(arg, str): |
| 767 | + return tuple(arg.split(',')) |
| 768 | + else: |
| 769 | + return (arg,) |
| 770 | + |
| 771 | + # 1. If arg is a list, try to return a power series ring. |
| 772 | + |
| 773 | + if isinstance(arg, list): |
| 774 | + if arg == []: |
| 775 | + raise TypeError("power series rings must have at least one variable") |
| 776 | + elif len(arg) == 1: |
| 777 | + # R[["a,b"]], R[[(a,b)]]... |
| 778 | + if isinstance(arg[0], list): |
| 779 | + raise TypeError("expected R[...] or R[[...]], not R[[[...]]]") |
| 780 | + elts = normalize_arg(arg[0]) |
| 781 | + else: |
| 782 | + elts = normalize_arg(arg) |
| 783 | + from sage.rings.power_series_ring import PowerSeriesRing |
| 784 | + return PowerSeriesRing(self, elts) |
| 785 | + |
| 786 | + # 2. Otherwise, if all specified elements are algebraic, try to |
| 787 | + # return an algebraic extension |
| 788 | + |
| 789 | + elts = normalize_arg(arg) |
| 790 | + |
| 791 | + try: |
| 792 | + minpolys = [a.minpoly() for a in elts] |
| 793 | + except (AttributeError, NotImplementedError, ValueError, TypeError): |
| 794 | + minpolys = None |
| 795 | + |
| 796 | + if minpolys: |
| 797 | + # how to pass in names? |
| 798 | + # TODO: set up embeddings |
| 799 | + names = tuple(_gen_names(elts)) |
| 800 | + try: |
| 801 | + # Doing the extension all at once is best, if possible... |
| 802 | + return self.extension(minpolys, names) |
| 803 | + except (TypeError, ValueError): |
| 804 | + # ...but we can also construct it iteratively |
| 805 | + return reduce(lambda R, ext: R.extension(*ext), zip(minpolys, names), self) |
| 806 | + |
| 807 | + # 2. Otherwise, try to return a polynomial ring |
| 808 | + |
| 809 | + from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing |
| 810 | + return PolynomialRing(self, elts) |
| 811 | + |
618 | 812 | class ElementMethods:
|
619 | 813 | def is_unit(self):
|
620 | 814 | r"""
|
@@ -648,3 +842,35 @@ def is_unit(self):
|
648 | 842 |
|
649 | 843 | class HomCategory(HomCategory):
|
650 | 844 | pass
|
| 845 | + |
| 846 | +from sage.structure.parent_gens import _certify_names |
| 847 | + |
| 848 | +def _gen_names(elts): |
| 849 | + r""" |
| 850 | + Used to find a name for a generator when rings are created using the |
| 851 | + ``__getitem__`` syntax, e.g. ``ZZ['x']``, ``ZZ[sqrt(2)]``. |
| 852 | +
|
| 853 | + EXAMPLES:: |
| 854 | +
|
| 855 | + sage: from sage.categories.rings import _gen_names |
| 856 | + sage: list(_gen_names([sqrt(5)])) |
| 857 | + ['sqrt5'] |
| 858 | + sage: list(_gen_names([sqrt(-17), 2^(1/3)])) |
| 859 | + ['a', 'b'] |
| 860 | + sage: list(_gen_names((1..27)))[-1] |
| 861 | + 'aa' |
| 862 | + """ |
| 863 | + from sage.symbolic.ring import is_SymbolicVariable |
| 864 | + from sage.combinat.words.words import Words |
| 865 | + it = iter(Words("abcdefghijklmnopqrstuvwxyz")) |
| 866 | + it.next() # skip empty word |
| 867 | + for x in elts: |
| 868 | + name = str(x) |
| 869 | + m = re.match('^sqrt\((\d+)\)$', name) |
| 870 | + if m: |
| 871 | + name = "sqrt%s" % m.groups()[0] |
| 872 | + try: |
| 873 | + _certify_names([name]) |
| 874 | + except ValueError, msg: |
| 875 | + name = it.next().string_rep() |
| 876 | + yield name |
0 commit comments