@@ -104,6 +104,23 @@ def revolution_plot3d(curve,trange,phirange=None,parallel_axis='z',axis=(0,0),pr
104
104
sage: u = var('u')
105
105
sage: curve=(sin(3*u),.8*cos(4*u),cos(u))
106
106
sage: revolution_plot3d(curve,(u,0,pi),(0,pi/2),show_curve=True,parallel_axis='z',opacity=0.5).show(aspect_ratio=(1,1,1),frame=False)
107
+
108
+ One can also color the surface using a coloring function of two
109
+ parameters and a colormap as follows::
110
+
111
+ sage: u, phi = var('u,phi')
112
+ sage: def cf(u,phi): return sin(phi+u) ** 2
113
+ sage: curve = (1+u**2/4, 0, u)
114
+ sage: revolution_plot3d(curve,(u,-2,2),(0,2*pi),parallel_axis='z',color=(cf, colormaps.PiYG)).show(aspect_ratio=(1,1,1))
115
+
116
+ The first parameter of the coloring function will be identified with the
117
+ parameter of the curve, and the second with the angle parameter.
118
+
119
+ .. WARNING::
120
+
121
+ This kind of coloring using a colormap can be visualized using
122
+ Jmol, Tachyon (option ``viewer='tachyon'``) and Canvas3D
123
+ (option ``viewer='canvas3d'`` in the notebook).
107
124
"""
108
125
from sage .symbolic .ring import SR
109
126
from sage .symbolic .constants import pi
@@ -112,77 +129,75 @@ def revolution_plot3d(curve,trange,phirange=None,parallel_axis='z',axis=(0,0),pr
112
129
from sage .functions .trig import cos
113
130
from sage .functions .trig import atan2
114
131
115
-
116
- if parallel_axis not in ['x' ,'y' ,'z' ]:
132
+ if parallel_axis not in ['x' , 'y' , 'z' ]:
117
133
raise ValueError ("parallel_axis must be either 'x', 'y', or 'z'." )
118
134
119
- vart = trange [0 ]
135
+ vart = trange [0 ]
120
136
121
-
122
- if str (vart )== 'phi' :
137
+ if str (vart ) == 'phi' :
123
138
phi = SR .var ('fi' )
124
139
else :
125
140
phi = SR .var ('phi' )
126
141
127
-
128
- if phirange is None :#this if-else provides a phirange
129
- phirange = (phi ,0 ,2 * pi )
130
- elif len (phirange )== 3 :
131
- phi = phirange [0 ]
142
+ if phirange is None : # this if-else provides a phirange
143
+ phirange = (phi , 0 , 2 * pi )
144
+ elif len (phirange ) == 3 :
145
+ phi = phirange [0 ]
132
146
pass
133
147
else :
134
- phirange = (phi ,phirange [0 ],phirange [1 ])
135
-
136
- if isinstance (curve ,tuple ) or isinstance ( curve , list ):
148
+ phirange = (phi , phirange [0 ], phirange [1 ])
149
+
150
+ if isinstance (curve , ( tuple , list ) ):
137
151
#this if-else provides a vector v to be plotted
138
152
#if curve is a tuple or a list of length 2, it is interpreted as a parametric curve
139
153
#in the x-z plane.
140
154
#if it is of length 3 it is interpreted as a parametric curve in 3d space
141
155
142
- if len (curve ) == 2 :
143
- x = curve [0 ]
144
- y = 0
145
- z = curve [1 ]
146
- elif len (curve )== 3 :
147
- x = curve [0 ]
148
- y = curve [1 ]
149
- z = curve [2 ]
156
+ if len (curve ) == 2 :
157
+ x = curve [0 ]
158
+ y = 0
159
+ z = curve [1 ]
160
+ elif len (curve ) == 3 :
161
+ x = curve [0 ]
162
+ y = curve [1 ]
163
+ z = curve [2 ]
150
164
else :
151
- x = vart
152
- y = 0
153
- z = curve
154
-
155
- if parallel_axis == 'z' :
156
- x0 = axis [0 ]
157
- y0 = axis [1 ]
165
+ x = vart
166
+ y = 0
167
+ z = curve
168
+
169
+ phase = 0
170
+ if parallel_axis == 'z' :
171
+ x0 = axis [0 ]
172
+ y0 = axis [1 ]
158
173
# (0,0) must be handled separately for the phase value
159
- phase = 0
160
- if x0 != 0 or y0 != 0 :
161
- phase = atan2 ((y - y0 ),(x - x0 ))
162
- R = sqrt ((x - x0 )** 2 + (y - y0 )** 2 )
163
- v = (R * cos (phi + phase )+ x0 ,R * sin (phi + phase )+ y0 ,z )
164
- elif parallel_axis == 'x' :
165
- y0 = axis [0 ]
166
- z0 = axis [1 ]
174
+ if x0 != 0 or y0 != 0 :
175
+ phase = atan2 (y - y0 , x - x0 )
176
+ R = sqrt ((x - x0 )** 2 + (y - y0 )** 2 )
177
+ v = (R * cos (phi + phase )+ x0 , R * sin (phi + phase )+ y0 , z )
178
+ elif parallel_axis == 'x' :
179
+ y0 = axis [0 ]
180
+ z0 = axis [1 ]
167
181
# (0,0) must be handled separately for the phase value
168
- phase = 0
169
- if z0 != 0 or y0 != 0 :
170
- phase = atan2 ((z - z0 ),(y - y0 ))
171
- R = sqrt ((y - y0 )** 2 + (z - z0 )** 2 )
172
- v = (x ,R * cos (phi + phase )+ y0 ,R * sin (phi + phase )+ z0 )
173
- elif parallel_axis == 'y' :
174
- x0 = axis [0 ]
175
- z0 = axis [1 ]
182
+ if z0 != 0 or y0 != 0 :
183
+ phase = atan2 (z - z0 , y - y0 )
184
+ R = sqrt ((y - y0 )** 2 + (z - z0 )** 2 )
185
+ v = (x , R * cos (phi + phase )+ y0 , R * sin (phi + phase )+ z0 )
186
+ elif parallel_axis == 'y' :
187
+ x0 = axis [0 ]
188
+ z0 = axis [1 ]
176
189
# (0,0) must be handled separately for the phase value
177
- phase = 0
178
- if z0 != 0 or x0 != 0 :
179
- phase = atan2 ((z - z0 ),(x - x0 ))
180
- R = sqrt ((x - x0 )** 2 + (z - z0 )** 2 )
181
- v = (R * cos (phi + phase )+ x0 ,y ,R * sin (phi + phase )+ z0 )
190
+ if z0 != 0 or x0 != 0 :
191
+ phase = atan2 (z - z0 , x - x0 )
192
+ R = sqrt ((x - x0 )** 2 + (z - z0 )** 2 )
193
+ v = (R * cos (phi + phase )+ x0 , y , R * sin (phi + phase )+ z0 )
182
194
183
195
if print_vector :
184
196
print (v )
197
+
185
198
if show_curve :
186
- curveplot = parametric_plot3d ((x ,y ,z ),trange ,thickness = 2 ,rgbcolor = (1 ,0 ,0 ))
187
- return parametric_plot3d (v ,trange ,phirange ,** kwds )+ curveplot
188
- return parametric_plot3d (v ,trange ,phirange ,** kwds )
199
+ curveplot = parametric_plot3d ((x , y , z ), trange , thickness = 2 ,
200
+ rgbcolor = (1 , 0 , 0 ))
201
+ return parametric_plot3d (v , trange , phirange , ** kwds ) + curveplot
202
+
203
+ return parametric_plot3d (v , trange , phirange , ** kwds )
0 commit comments