Skip to content

Commit 98e4173

Browse files
Release Managervbraun
Release Manager
authored andcommitted
Trac #21329: add documentation to exhibit colored revolution plot3d
This works, and nobody knows.. Let us give a simple example. I have also cleaned up the code (just some pep8 changes) URL: https://trac.sagemath.org/21329 Reported by: chapoton Ticket author(s): Frédéric Chapoton Reviewer(s): Paul Masson
2 parents 9926132 + 29ef788 commit 98e4173

File tree

1 file changed

+67
-52
lines changed

1 file changed

+67
-52
lines changed

src/sage/plot/plot3d/revolution_plot3d.py

+67-52
Original file line numberDiff line numberDiff line change
@@ -104,6 +104,23 @@ def revolution_plot3d(curve,trange,phirange=None,parallel_axis='z',axis=(0,0),pr
104104
sage: u = var('u')
105105
sage: curve=(sin(3*u),.8*cos(4*u),cos(u))
106106
sage: revolution_plot3d(curve,(u,0,pi),(0,pi/2),show_curve=True,parallel_axis='z',opacity=0.5).show(aspect_ratio=(1,1,1),frame=False)
107+
108+
One can also color the surface using a coloring function of two
109+
parameters and a colormap as follows::
110+
111+
sage: u, phi = var('u,phi')
112+
sage: def cf(u,phi): return sin(phi+u) ** 2
113+
sage: curve = (1+u**2/4, 0, u)
114+
sage: revolution_plot3d(curve,(u,-2,2),(0,2*pi),parallel_axis='z',color=(cf, colormaps.PiYG)).show(aspect_ratio=(1,1,1))
115+
116+
The first parameter of the coloring function will be identified with the
117+
parameter of the curve, and the second with the angle parameter.
118+
119+
.. WARNING::
120+
121+
This kind of coloring using a colormap can be visualized using
122+
Jmol, Tachyon (option ``viewer='tachyon'``) and Canvas3D
123+
(option ``viewer='canvas3d'`` in the notebook).
107124
"""
108125
from sage.symbolic.ring import SR
109126
from sage.symbolic.constants import pi
@@ -112,77 +129,75 @@ def revolution_plot3d(curve,trange,phirange=None,parallel_axis='z',axis=(0,0),pr
112129
from sage.functions.trig import cos
113130
from sage.functions.trig import atan2
114131

115-
116-
if parallel_axis not in ['x','y','z']:
132+
if parallel_axis not in ['x', 'y', 'z']:
117133
raise ValueError("parallel_axis must be either 'x', 'y', or 'z'.")
118134

119-
vart=trange[0]
135+
vart = trange[0]
120136

121-
122-
if str(vart)=='phi':
137+
if str(vart) == 'phi':
123138
phi = SR.var('fi')
124139
else:
125140
phi = SR.var('phi')
126141

127-
128-
if phirange is None:#this if-else provides a phirange
129-
phirange=(phi,0,2*pi)
130-
elif len(phirange)==3:
131-
phi=phirange[0]
142+
if phirange is None: # this if-else provides a phirange
143+
phirange = (phi, 0, 2 * pi)
144+
elif len(phirange) == 3:
145+
phi = phirange[0]
132146
pass
133147
else:
134-
phirange=(phi,phirange[0],phirange[1])
135-
136-
if isinstance(curve,tuple) or isinstance(curve,list):
148+
phirange = (phi, phirange[0], phirange[1])
149+
150+
if isinstance(curve, (tuple, list)):
137151
#this if-else provides a vector v to be plotted
138152
#if curve is a tuple or a list of length 2, it is interpreted as a parametric curve
139153
#in the x-z plane.
140154
#if it is of length 3 it is interpreted as a parametric curve in 3d space
141155

142-
if len(curve) ==2:
143-
x=curve[0]
144-
y=0
145-
z=curve[1]
146-
elif len(curve)==3:
147-
x=curve[0]
148-
y=curve[1]
149-
z=curve[2]
156+
if len(curve) == 2:
157+
x = curve[0]
158+
y = 0
159+
z = curve[1]
160+
elif len(curve) == 3:
161+
x = curve[0]
162+
y = curve[1]
163+
z = curve[2]
150164
else:
151-
x=vart
152-
y=0
153-
z=curve
154-
155-
if parallel_axis=='z':
156-
x0=axis[0]
157-
y0=axis[1]
165+
x = vart
166+
y = 0
167+
z = curve
168+
169+
phase = 0
170+
if parallel_axis == 'z':
171+
x0 = axis[0]
172+
y0 = axis[1]
158173
# (0,0) must be handled separately for the phase value
159-
phase=0
160-
if x0!=0 or y0!=0:
161-
phase=atan2((y-y0),(x-x0))
162-
R=sqrt((x-x0)**2+(y-y0)**2)
163-
v=(R*cos(phi+phase)+x0,R*sin(phi+phase)+y0,z)
164-
elif parallel_axis=='x':
165-
y0=axis[0]
166-
z0=axis[1]
174+
if x0 != 0 or y0 != 0:
175+
phase = atan2(y - y0, x - x0)
176+
R = sqrt((x-x0)**2 + (y-y0)**2)
177+
v = (R*cos(phi+phase)+x0, R*sin(phi+phase)+y0, z)
178+
elif parallel_axis == 'x':
179+
y0 = axis[0]
180+
z0 = axis[1]
167181
# (0,0) must be handled separately for the phase value
168-
phase=0
169-
if z0!=0 or y0!=0:
170-
phase=atan2((z-z0),(y-y0))
171-
R=sqrt((y-y0)**2+(z-z0)**2)
172-
v=(x,R*cos(phi+phase)+y0,R*sin(phi+phase)+z0)
173-
elif parallel_axis=='y':
174-
x0=axis[0]
175-
z0=axis[1]
182+
if z0 != 0 or y0 != 0:
183+
phase = atan2(z - z0, y - y0)
184+
R = sqrt((y-y0)**2 + (z-z0)**2)
185+
v = (x, R*cos(phi+phase)+y0, R*sin(phi+phase)+z0)
186+
elif parallel_axis == 'y':
187+
x0 = axis[0]
188+
z0 = axis[1]
176189
# (0,0) must be handled separately for the phase value
177-
phase=0
178-
if z0!=0 or x0!=0:
179-
phase=atan2((z-z0),(x-x0))
180-
R=sqrt((x-x0)**2+(z-z0)**2)
181-
v=(R*cos(phi+phase)+x0,y,R*sin(phi+phase)+z0)
190+
if z0 != 0 or x0 != 0:
191+
phase = atan2(z - z0, x - x0)
192+
R = sqrt((x-x0)**2 + (z-z0)**2)
193+
v = (R*cos(phi+phase)+x0, y, R*sin(phi+phase)+z0)
182194

183195
if print_vector:
184196
print(v)
197+
185198
if show_curve:
186-
curveplot=parametric_plot3d((x,y,z),trange,thickness=2,rgbcolor=(1,0,0))
187-
return parametric_plot3d(v,trange,phirange,**kwds)+curveplot
188-
return parametric_plot3d(v,trange,phirange,**kwds)
199+
curveplot = parametric_plot3d((x, y, z), trange, thickness=2,
200+
rgbcolor=(1, 0, 0))
201+
return parametric_plot3d(v, trange, phirange, **kwds) + curveplot
202+
203+
return parametric_plot3d(v, trange, phirange, **kwds)

0 commit comments

Comments
 (0)