@@ -970,7 +970,7 @@ cdef class ModularSymbolNumerical:
970
970
ans = self ._evaluate_approx(ra, eps)
971
971
972
972
if prec > self ._om1.parent().prec():
973
- L = self ._E.period_lattice().basis(prec = prec)
973
+ L = self ._E.period_lattice().basis(prec = prec)
974
974
self ._om1 = L[0 ]
975
975
self ._om2 = L[1 ].imag()
976
976
cinf = self ._E.real_components()
@@ -2156,10 +2156,8 @@ cdef class ModularSymbolNumerical:
2156
2156
ans = su
2157
2157
return CC(ans)
2158
2158
2159
-
2160
-
2161
2159
def _from_r_to_rr_approx (self , Rational r , Rational rr , double eps ,
2162
- method = None , int use_partials = 2 ):
2160
+ method = None , int use_partials = 2 ):
2163
2161
r """
2164
2162
Given a cusp `r` this computes the integral `\l ambda( r\t o r') `
2165
2163
from `r` to `r'` to the given precision ``eps``.
@@ -2313,7 +2311,7 @@ cdef class ModularSymbolNumerical:
2313
2311
2314
2312
if method == " indirect" or method == " both" :
2315
2313
verbose(" using the indirect integration from %s to %s "
2316
- " with %s terms to sum" % (r, rr, T1+ T2), level = 2 )
2314
+ " with %s terms to sum" % (r, rr, T1+ T2), level = 2 )
2317
2315
# self.nc_indirect += 1
2318
2316
ans2 = ( self ._from_ioo_to_r_approx(r, eps/ 2 ,
2319
2317
use_partials = use_partials)
@@ -2474,7 +2472,7 @@ cdef class ModularSymbolNumerical:
2474
2472
2475
2473
# (key=lambda r,sign,use_partials:(r,sign)) lead to a compiler crash
2476
2474
@cached_method
2477
- def _value_ioo_to_r (self , Rational r , int sign = 0 ,
2475
+ def _value_ioo_to_r (self , Rational r , int sign = 0 ,
2478
2476
int use_partials = 2 ):
2479
2477
r """
2480
2478
Return `[r ]^ + ` or `[r ]^ -` for a rational `r`.
@@ -2532,7 +2530,7 @@ cdef class ModularSymbolNumerical:
2532
2530
return self ._round(lap, sign, True )
2533
2531
2534
2532
@cached_method
2535
- def _value_r_to_rr (self , Rational r , Rational rr , int sign = 0 ,
2533
+ def _value_r_to_rr (self , Rational r , Rational rr , int sign = 0 ,
2536
2534
int use_partials = 2 ):
2537
2535
r """
2538
2536
Return the rational number `[r' ]^ + - [r ]^ + `. However the
@@ -2603,7 +2601,7 @@ cdef class ModularSymbolNumerical:
2603
2601
return self ._round(lap, sign, True )
2604
2602
2605
2603
@cached_method
2606
- def transportable_symbol (self , Rational r , Rational rr , int sign = 0 ):
2604
+ def transportable_symbol (self , Rational r , Rational rr , int sign = 0 ):
2607
2605
r """
2608
2606
Return the symbol `[r' ]^ + - [r ]^ + ` where `r'=\g amma( r) ` for some
2609
2607
`\g amma\i n\G amma_0( N) `. These symbols can be computed by transporting
@@ -2860,8 +2858,7 @@ cdef class ModularSymbolNumerical:
2860
2858
res -= self ._value_ioo_to_r(rr,sign, use_partials = 2 )
2861
2859
return res
2862
2860
2863
-
2864
- def manin_symbol (self , llong u , llong v , int sign = 0 ):
2861
+ def manin_symbol (self , llong u , llong v , int sign = 0 ):
2865
2862
r """
2866
2863
Given a pair `( u,v) ` presenting a point in
2867
2864
`\m athbb{P}^ 1( \m athbb{Z}/N\m athbb{Z}) ` and hence a coset of
@@ -3755,7 +3752,7 @@ def _test_against_table(range_of_conductors, other_implementation="sage", list_o
3755
3752
Mr = M(r)
3756
3753
M2r = M(r, sign = - 1 )
3757
3754
if verb:
3758
- print (" r={} : ({},{}),({}, {})" .format(r,mr,m2r,Mr,M2r), end= " " , flush= True )
3755
+ print (" r={} : ({},{}),({}, {})" .format(r,mr,m2r,Mr,M2r), end= " " , flush= True )
3759
3756
if mr != Mr or m2r != M2r:
3760
3757
print ((" B u g : curve = {}, cusp = {}, sage's symbols"
3761
3758
+ " ({},{}), our symbols ({}, {})" ).format(C.label(), r,
0 commit comments