Skip to content

Commit cffd8ca

Browse files
Release Managervbraun
Release Manager
authored andcommitted
Trac #10070: make heaviside and step play nicely together.
The heaviside built-in function and the step symbolic method are not the same at zero. {{{ sage: heaviside(0) heaviside(0) sage: SR(0).step() 1/2 }}} And the documentation seems to indicate that `heaviside` should be undefined (?) at zero, though it's not definitive. In addition to reconciling these, we should probably unify notation or something. URL: https://trac.sagemath.org/10070 Reported by: kcrisman Ticket author(s): Ralf Stephan Reviewer(s): Travis Scrimshaw, Marcelo Forets
2 parents 0aaa0fd + bbc921e commit cffd8ca

File tree

2 files changed

+48
-118
lines changed

2 files changed

+48
-118
lines changed

src/sage/functions/generalized.py

+43-117
Original file line numberDiff line numberDiff line change
@@ -51,7 +51,7 @@
5151
#
5252
##############################################################################
5353

54-
from sage.symbolic.function import BuiltinFunction
54+
from sage.symbolic.function import (BuiltinFunction, GinacFunction)
5555
from sage.rings.all import ComplexIntervalField, ZZ
5656

5757
class FunctionDiracDelta(BuiltinFunction):
@@ -166,7 +166,7 @@ def _evalf_(self, x, **kwds):
166166

167167
dirac_delta = FunctionDiracDelta()
168168

169-
class FunctionHeaviside(BuiltinFunction):
169+
class FunctionHeaviside(GinacFunction):
170170
r"""
171171
The Heaviside step function, `H(x)` (``heaviside(x)``).
172172
@@ -180,6 +180,8 @@ class FunctionHeaviside(BuiltinFunction):
180180
181181
`H(x) = 0` for `x < 0` and `H(x) = 1` for `x > 0`
182182
183+
.. SEEALSO:: :func:`unit_step()<sage.functions.generalized.FunctionUnitStep>`
184+
183185
EXAMPLES::
184186
185187
sage: heaviside(-1)
@@ -191,10 +193,29 @@ class FunctionHeaviside(BuiltinFunction):
191193
sage: heaviside(x)
192194
heaviside(x)
193195
196+
sage: heaviside(-1/2)
197+
0
198+
sage: heaviside(exp(-1000000000000000000000))
199+
1
200+
194201
TESTS::
195202
196203
sage: heaviside(x)._sympy_()
197204
Heaviside(x)
205+
sage: heaviside(x).subs(x=1)
206+
1
207+
sage: heaviside(x).subs(x=-1)
208+
0
209+
210+
::
211+
212+
sage: ex = heaviside(x)+1
213+
sage: t = loads(dumps(ex)); t
214+
heaviside(x) + 1
215+
sage: bool(t == ex)
216+
True
217+
sage: t.subs(x=1)
218+
2
198219
199220
REFERENCES:
200221
@@ -225,74 +246,16 @@ def __init__(self):
225246
Heaviside(x)
226247
sage: heaviside(x)._giac_()
227248
Heaviside(x)
249+
sage: h(x) = heaviside(x)
250+
sage: h(pi).numerical_approx()
251+
1.00000000000000
228252
"""
229-
BuiltinFunction.__init__(self, "heaviside", latex_name="H",
253+
GinacFunction.__init__(self, "heaviside", latex_name="H",
230254
conversions=dict(maxima='hstep',
231255
mathematica='HeavisideTheta',
232256
sympy='Heaviside',
233257
giac='Heaviside'))
234258

235-
def _eval_(self, x):
236-
"""
237-
INPUT:
238-
239-
- ``x`` - a real number or a symbolic expression
240-
241-
EXAMPLES::
242-
243-
sage: heaviside(-1/2)
244-
0
245-
sage: heaviside(1)
246-
1
247-
sage: heaviside(0)
248-
heaviside(0)
249-
sage: heaviside(x)
250-
heaviside(x)
251-
sage: heaviside(exp(-1000000000000000000000))
252-
1
253-
254-
Evaluation test::
255-
256-
sage: heaviside(x).subs(x=1)
257-
1
258-
sage: heaviside(x).subs(x=-1)
259-
0
260-
261-
::
262-
263-
sage: ex = heaviside(x)+1
264-
sage: t = loads(dumps(ex)); t
265-
heaviside(x) + 1
266-
sage: bool(t == ex)
267-
True
268-
sage: t.subs(x=1)
269-
2
270-
"""
271-
try:
272-
return self._evalf_(x)
273-
except (TypeError,ValueError): # x is symbolic
274-
pass
275-
return None
276-
277-
def _evalf_(self, x, **kwds):
278-
"""
279-
TESTS::
280-
281-
sage: h(x) = heaviside(x)
282-
sage: h(pi).numerical_approx()
283-
1.00000000000000
284-
"""
285-
approx_x = ComplexIntervalField()(x)
286-
if bool(approx_x.imag() == 0): # x is real
287-
if bool(approx_x.real() == 0): # x is zero
288-
return None
289-
# Now we have a non-zero real
290-
if bool((approx_x**(0.5)).imag() == 0): # Check: x > 0
291-
return 1
292-
else:
293-
return 0
294-
raise ValueError("Numeric evaluation of symbolic expression")
295-
296259
def _derivative_(self, x, diff_param=None):
297260
"""
298261
Derivative of Heaviside step function
@@ -306,7 +269,7 @@ def _derivative_(self, x, diff_param=None):
306269

307270
heaviside = FunctionHeaviside()
308271

309-
class FunctionUnitStep(BuiltinFunction):
272+
class FunctionUnitStep(GinacFunction):
310273
r"""
311274
The unit step function, `\mathrm{u}(x)` (``unit_step(x)``).
312275
@@ -320,6 +283,8 @@ class FunctionUnitStep(BuiltinFunction):
320283
321284
`\mathrm{u}(x) = 0` for `x < 0` and `\mathrm{u}(x) = 1` for `x \geq 0`
322285
286+
.. SEEALSO:: :func:`heaviside()<sage.functions.generalized.FunctionHeaviside>`
287+
323288
EXAMPLES::
324289
325290
sage: unit_step(-1)
@@ -330,6 +295,18 @@ class FunctionUnitStep(BuiltinFunction):
330295
1
331296
sage: unit_step(x)
332297
unit_step(x)
298+
sage: unit_step(-exp(-10000000000000000000))
299+
0
300+
301+
TESTS::
302+
303+
sage: unit_step(x).subs(x=1)
304+
1
305+
sage: unit_step(x).subs(x=0)
306+
1
307+
sage: h(x) = unit_step(x)
308+
sage: h(pi).numerical_approx()
309+
1.00000000000000
333310
"""
334311
def __init__(self):
335312
r"""
@@ -359,60 +336,9 @@ def __init__(self):
359336
sage: t.subs(x=0)
360337
2
361338
"""
362-
BuiltinFunction.__init__(self, "unit_step", latex_name=r"\mathrm{u}",
339+
GinacFunction.__init__(self, "unit_step", latex_name=r"\mathrm{u}",
363340
conversions=dict(mathematica='UnitStep'))
364341

365-
def _eval_(self, x):
366-
"""
367-
INPUT:
368-
369-
- ``x`` - a real number or a symbolic expression
370-
371-
EXAMPLES::
372-
373-
sage: unit_step(-1)
374-
0
375-
sage: unit_step(1)
376-
1
377-
sage: unit_step(0)
378-
1
379-
sage: unit_step(x)
380-
unit_step(x)
381-
sage: unit_step(-exp(-10000000000000000000))
382-
0
383-
384-
Evaluation test::
385-
386-
sage: unit_step(x).subs(x=1)
387-
1
388-
sage: unit_step(x).subs(x=0)
389-
1
390-
"""
391-
try:
392-
return self._evalf_(x)
393-
except (TypeError,ValueError): # x is symbolic
394-
pass
395-
return None
396-
397-
def _evalf_(self, x, **kwds):
398-
"""
399-
TESTS::
400-
401-
sage: h(x) = unit_step(x)
402-
sage: h(pi).numerical_approx()
403-
1.00000000000000
404-
"""
405-
approx_x = ComplexIntervalField()(x)
406-
if bool(approx_x.imag() == 0): # x is real
407-
if bool(approx_x.real() == 0): # x is zero
408-
return 1
409-
# Now we have a non-zero real
410-
if bool((approx_x**(0.5)).imag() == 0): # Check: x > 0
411-
return 1
412-
else:
413-
return 0
414-
raise ValueError("Numeric evaluation of symbolic expression")
415-
416342
def _derivative_(self, x, diff_param=None):
417343
"""
418344
Derivative of unit step function

src/sage/symbolic/expression.pyx

+5-1
Original file line numberDiff line numberDiff line change
@@ -7165,9 +7165,13 @@ cdef class Expression(CommutativeRingElement):
71657165

71667166
def step(self, hold=False):
71677167
"""
7168-
Return the value of the Heaviside step function, which is 0 for
7168+
Return the value of the unit step function, which is 0 for
71697169
negative x, 1 for 0, and 1 for positive x.
71707170
7171+
.. SEEALSO::
7172+
7173+
:class:`sage.functions.generalized.FunctionUnitStep`
7174+
71717175
EXAMPLES::
71727176
71737177
sage: x = var('x')

0 commit comments

Comments
 (0)