51
51
#
52
52
##############################################################################
53
53
54
- from sage .symbolic .function import BuiltinFunction
54
+ from sage .symbolic .function import ( BuiltinFunction , GinacFunction )
55
55
from sage .rings .all import ComplexIntervalField , ZZ
56
56
57
57
class FunctionDiracDelta (BuiltinFunction ):
@@ -166,7 +166,7 @@ def _evalf_(self, x, **kwds):
166
166
167
167
dirac_delta = FunctionDiracDelta ()
168
168
169
- class FunctionHeaviside (BuiltinFunction ):
169
+ class FunctionHeaviside (GinacFunction ):
170
170
r"""
171
171
The Heaviside step function, `H(x)` (``heaviside(x)``).
172
172
@@ -180,6 +180,8 @@ class FunctionHeaviside(BuiltinFunction):
180
180
181
181
`H(x) = 0` for `x < 0` and `H(x) = 1` for `x > 0`
182
182
183
+ .. SEEALSO:: :func:`unit_step()<sage.functions.generalized.FunctionUnitStep>`
184
+
183
185
EXAMPLES::
184
186
185
187
sage: heaviside(-1)
@@ -191,10 +193,29 @@ class FunctionHeaviside(BuiltinFunction):
191
193
sage: heaviside(x)
192
194
heaviside(x)
193
195
196
+ sage: heaviside(-1/2)
197
+ 0
198
+ sage: heaviside(exp(-1000000000000000000000))
199
+ 1
200
+
194
201
TESTS::
195
202
196
203
sage: heaviside(x)._sympy_()
197
204
Heaviside(x)
205
+ sage: heaviside(x).subs(x=1)
206
+ 1
207
+ sage: heaviside(x).subs(x=-1)
208
+ 0
209
+
210
+ ::
211
+
212
+ sage: ex = heaviside(x)+1
213
+ sage: t = loads(dumps(ex)); t
214
+ heaviside(x) + 1
215
+ sage: bool(t == ex)
216
+ True
217
+ sage: t.subs(x=1)
218
+ 2
198
219
199
220
REFERENCES:
200
221
@@ -225,74 +246,16 @@ def __init__(self):
225
246
Heaviside(x)
226
247
sage: heaviside(x)._giac_()
227
248
Heaviside(x)
249
+ sage: h(x) = heaviside(x)
250
+ sage: h(pi).numerical_approx()
251
+ 1.00000000000000
228
252
"""
229
- BuiltinFunction .__init__ (self , "heaviside" , latex_name = "H" ,
253
+ GinacFunction .__init__ (self , "heaviside" , latex_name = "H" ,
230
254
conversions = dict (maxima = 'hstep' ,
231
255
mathematica = 'HeavisideTheta' ,
232
256
sympy = 'Heaviside' ,
233
257
giac = 'Heaviside' ))
234
258
235
- def _eval_ (self , x ):
236
- """
237
- INPUT:
238
-
239
- - ``x`` - a real number or a symbolic expression
240
-
241
- EXAMPLES::
242
-
243
- sage: heaviside(-1/2)
244
- 0
245
- sage: heaviside(1)
246
- 1
247
- sage: heaviside(0)
248
- heaviside(0)
249
- sage: heaviside(x)
250
- heaviside(x)
251
- sage: heaviside(exp(-1000000000000000000000))
252
- 1
253
-
254
- Evaluation test::
255
-
256
- sage: heaviside(x).subs(x=1)
257
- 1
258
- sage: heaviside(x).subs(x=-1)
259
- 0
260
-
261
- ::
262
-
263
- sage: ex = heaviside(x)+1
264
- sage: t = loads(dumps(ex)); t
265
- heaviside(x) + 1
266
- sage: bool(t == ex)
267
- True
268
- sage: t.subs(x=1)
269
- 2
270
- """
271
- try :
272
- return self ._evalf_ (x )
273
- except (TypeError ,ValueError ): # x is symbolic
274
- pass
275
- return None
276
-
277
- def _evalf_ (self , x , ** kwds ):
278
- """
279
- TESTS::
280
-
281
- sage: h(x) = heaviside(x)
282
- sage: h(pi).numerical_approx()
283
- 1.00000000000000
284
- """
285
- approx_x = ComplexIntervalField ()(x )
286
- if bool (approx_x .imag () == 0 ): # x is real
287
- if bool (approx_x .real () == 0 ): # x is zero
288
- return None
289
- # Now we have a non-zero real
290
- if bool ((approx_x ** (0.5 )).imag () == 0 ): # Check: x > 0
291
- return 1
292
- else :
293
- return 0
294
- raise ValueError ("Numeric evaluation of symbolic expression" )
295
-
296
259
def _derivative_ (self , x , diff_param = None ):
297
260
"""
298
261
Derivative of Heaviside step function
@@ -306,7 +269,7 @@ def _derivative_(self, x, diff_param=None):
306
269
307
270
heaviside = FunctionHeaviside ()
308
271
309
- class FunctionUnitStep (BuiltinFunction ):
272
+ class FunctionUnitStep (GinacFunction ):
310
273
r"""
311
274
The unit step function, `\mathrm{u}(x)` (``unit_step(x)``).
312
275
@@ -320,6 +283,8 @@ class FunctionUnitStep(BuiltinFunction):
320
283
321
284
`\mathrm{u}(x) = 0` for `x < 0` and `\mathrm{u}(x) = 1` for `x \geq 0`
322
285
286
+ .. SEEALSO:: :func:`heaviside()<sage.functions.generalized.FunctionHeaviside>`
287
+
323
288
EXAMPLES::
324
289
325
290
sage: unit_step(-1)
@@ -330,6 +295,18 @@ class FunctionUnitStep(BuiltinFunction):
330
295
1
331
296
sage: unit_step(x)
332
297
unit_step(x)
298
+ sage: unit_step(-exp(-10000000000000000000))
299
+ 0
300
+
301
+ TESTS::
302
+
303
+ sage: unit_step(x).subs(x=1)
304
+ 1
305
+ sage: unit_step(x).subs(x=0)
306
+ 1
307
+ sage: h(x) = unit_step(x)
308
+ sage: h(pi).numerical_approx()
309
+ 1.00000000000000
333
310
"""
334
311
def __init__ (self ):
335
312
r"""
@@ -359,60 +336,9 @@ def __init__(self):
359
336
sage: t.subs(x=0)
360
337
2
361
338
"""
362
- BuiltinFunction .__init__ (self , "unit_step" , latex_name = r"\mathrm{u}" ,
339
+ GinacFunction .__init__ (self , "unit_step" , latex_name = r"\mathrm{u}" ,
363
340
conversions = dict (mathematica = 'UnitStep' ))
364
341
365
- def _eval_ (self , x ):
366
- """
367
- INPUT:
368
-
369
- - ``x`` - a real number or a symbolic expression
370
-
371
- EXAMPLES::
372
-
373
- sage: unit_step(-1)
374
- 0
375
- sage: unit_step(1)
376
- 1
377
- sage: unit_step(0)
378
- 1
379
- sage: unit_step(x)
380
- unit_step(x)
381
- sage: unit_step(-exp(-10000000000000000000))
382
- 0
383
-
384
- Evaluation test::
385
-
386
- sage: unit_step(x).subs(x=1)
387
- 1
388
- sage: unit_step(x).subs(x=0)
389
- 1
390
- """
391
- try :
392
- return self ._evalf_ (x )
393
- except (TypeError ,ValueError ): # x is symbolic
394
- pass
395
- return None
396
-
397
- def _evalf_ (self , x , ** kwds ):
398
- """
399
- TESTS::
400
-
401
- sage: h(x) = unit_step(x)
402
- sage: h(pi).numerical_approx()
403
- 1.00000000000000
404
- """
405
- approx_x = ComplexIntervalField ()(x )
406
- if bool (approx_x .imag () == 0 ): # x is real
407
- if bool (approx_x .real () == 0 ): # x is zero
408
- return 1
409
- # Now we have a non-zero real
410
- if bool ((approx_x ** (0.5 )).imag () == 0 ): # Check: x > 0
411
- return 1
412
- else :
413
- return 0
414
- raise ValueError ("Numeric evaluation of symbolic expression" )
415
-
416
342
def _derivative_ (self , x , diff_param = None ):
417
343
"""
418
344
Derivative of unit step function
0 commit comments