@@ -83,7 +83,7 @@ mwrank_set_precision(150)
83
83
84
84
def get_precision ():
85
85
"""
86
- Returns the working floating point bit precision of mwrank, which is
86
+ Return the working floating point bit precision of mwrank, which is
87
87
equal to the global NTL real number precision.
88
88
89
89
OUTPUT:
@@ -119,7 +119,7 @@ def set_precision(n):
119
119
This change is global and affects *all* future calls of eclib
120
120
functions by Sage.
121
121
122
- .. note ::
122
+ .. NOTE ::
123
123
124
124
The minimal value to which the precision may be set is 53.
125
125
Lower values will be increased to 53.
@@ -335,7 +335,7 @@ cdef class _Curvedata: # cython class wrapping eclib's Curvedata class
335
335
return string_sigoff(Curvedata_repr(self .x))[:- 1 ]
336
336
337
337
def silverman_bound (self ):
338
- """
338
+ r """
339
339
The Silverman height bound for this elliptic curve.
340
340
341
341
OUTPUT:
@@ -345,7 +345,7 @@ cdef class _Curvedata: # cython class wrapping eclib's Curvedata class
345
345
+ B`, where `h( P) ` is the naive height and `\h at{h}( P) ` the
346
346
canonical height.
347
347
348
- .. note ::
348
+ .. NOTE ::
349
349
350
350
Since eclib can compute this to arbitrary precision, we
351
351
could return a Sage real, but this is only a bound and in
@@ -364,7 +364,7 @@ cdef class _Curvedata: # cython class wrapping eclib's Curvedata class
364
364
return Curvedata_silverman_bound(self .x)
365
365
366
366
def cps_bound (self ):
367
- """
367
+ r """
368
368
The Cremona-Prickett-Siksek height bound for this elliptic curve.
369
369
370
370
OUTPUT:
@@ -374,12 +374,11 @@ cdef class _Curvedata: # cython class wrapping eclib's Curvedata class
374
374
+ B`, where `h( P) ` is the naive height and `\h at{h}( P) ` the
375
375
canonical height.
376
376
377
- .. note ::
377
+ .. NOTE ::
378
378
379
- Since eclib can compute this to arbitrary precision, we
379
+ Since `` eclib`` can compute this to arbitrary precision, we
380
380
could return a Sage real, but this is only a bound and in
381
- the contexts in which it is used extra precision is
382
- irrelevant.
381
+ the contexts in which it is used extra precision is irrelevant.
383
382
384
383
EXAMPLES::
385
384
@@ -399,7 +398,7 @@ cdef class _Curvedata: # cython class wrapping eclib's Curvedata class
399
398
return x
400
399
401
400
def height_constant (self ):
402
- """
401
+ r """
403
402
A height bound for this elliptic curve.
404
403
405
404
OUTPUT:
@@ -410,12 +409,11 @@ cdef class _Curvedata: # cython class wrapping eclib's Curvedata class
410
409
canonical height. This is the minimum of the Silverman and
411
410
Cremona_Prickett-Siksek height bounds.
412
411
413
- .. note ::
412
+ .. NOTE ::
414
413
415
- Since eclib can compute this to arbitrary precision, we
414
+ Since `` eclib`` can compute this to arbitrary precision, we
416
415
could return a Sage real, but this is only a bound and in
417
- the contexts in which it is used extra precision is
418
- irrelevant.
416
+ the contexts in which it is used extra precision is irrelevant.
419
417
420
418
EXAMPLES::
421
419
@@ -542,7 +540,7 @@ cdef class _mw:
542
540
cdef int verb
543
541
544
542
def __init__ (self , _Curvedata curve , verb = False , pp = 1 , maxr = 999 ):
545
- """
543
+ r """
546
544
Constructor for mw class.
547
545
548
546
INPUT:
@@ -704,10 +702,10 @@ cdef class _mw:
704
702
705
703
.. NOTE::
706
704
707
- The eclib function which implements this only carries out
708
- any saturation if the rank of the points increases upon
709
- adding the new point. This is because it is assumed that
710
- one saturates as ones goes along.
705
+ The eclib function which implements this only carries out
706
+ any saturation if the rank of the points increases upon
707
+ adding the new point. This is because it is assumed that
708
+ one saturates as ones goes along.
711
709
712
710
EXAMPLES::
713
711
@@ -753,7 +751,7 @@ cdef class _mw:
753
751
754
752
def getbasis (self ):
755
753
"""
756
- Returns the current basis of the mw structure.
754
+ Return the current basis of the mw structure.
757
755
758
756
OUTPUT:
759
757
@@ -778,7 +776,7 @@ cdef class _mw:
778
776
779
777
def regulator (self ):
780
778
"""
781
- Returns the regulator of the current basis of the mw group.
779
+ Return the regulator of the current basis of the mw group.
782
780
783
781
OUTPUT:
784
782
@@ -810,7 +808,7 @@ cdef class _mw:
810
808
811
809
def rank (self ):
812
810
"""
813
- Returns the rank of the current basis of the mw group.
811
+ Return the rank of the current basis of the mw group.
814
812
815
813
OUTPUT:
816
814
@@ -908,7 +906,7 @@ cdef class _mw:
908
906
return ok, index, unsat
909
907
910
908
def search (self , h_lim , int moduli_option = 0 , int verb = 0 ):
911
- """
909
+ r """
912
910
Search for points in the mw group.
913
911
914
912
INPUT:
@@ -926,17 +924,16 @@ cdef class _mw:
926
924
927
925
.. NOTE::
928
926
929
- The effect of the search is also governed by the class
930
- options, notably whether the points found are processed:
931
- meaning that linear relations are found and saturation is
932
- carried out, with the result that the list of generators
933
- will always contain a `\ZZ`-span of the saturation of the
934
- points found, modulo torsion.
927
+ The effect of the search is also governed by the class
928
+ options, notably whether the points found are processed:
929
+ meaning that linear relations are found and saturation is
930
+ carried out, with the result that the list of generators
931
+ will always contain a `\Z Z`-span of the saturation of the
932
+ points found, modulo torsion.
935
933
936
934
OUTPUT:
937
935
938
- None. The effect of the search is to update the list of
939
- generators.
936
+ None. The effect of the search is to update the list of generators.
940
937
941
938
EXAMPLES::
942
939
@@ -1069,7 +1066,7 @@ cdef class _two_descent:
1069
1066
1070
1067
def getrank (self ):
1071
1068
"""
1072
- Returns the rank (after doing a 2-descent).
1069
+ Return the rank (after doing a 2-descent).
1073
1070
1074
1071
OUTPUT:
1075
1072
@@ -1102,7 +1099,7 @@ cdef class _two_descent:
1102
1099
1103
1100
def getrankbound (self ):
1104
1101
"""
1105
- Returns the rank upper bound (after doing a 2-descent).
1102
+ Return the rank upper bound (after doing a 2-descent).
1106
1103
1107
1104
OUTPUT:
1108
1105
@@ -1135,7 +1132,7 @@ cdef class _two_descent:
1135
1132
1136
1133
def getselmer (self ):
1137
1134
"""
1138
- Returns the 2-Selmer rank (after doing a 2-descent).
1135
+ Return the 2-Selmer rank (after doing a 2-descent).
1139
1136
1140
1137
OUTPUT:
1141
1138
@@ -1167,7 +1164,7 @@ cdef class _two_descent:
1167
1164
1168
1165
def ok (self ):
1169
1166
"""
1170
- Returns the success flag (after doing a 2-descent).
1167
+ Return the success flag (after doing a 2-descent).
1171
1168
1172
1169
OUTPUT:
1173
1170
@@ -1196,7 +1193,7 @@ cdef class _two_descent:
1196
1193
1197
1194
def getcertain (self ):
1198
1195
"""
1199
- Returns the certainty flag (after doing a 2-descent).
1196
+ Return the certainty flag (after doing a 2-descent).
1200
1197
1201
1198
OUTPUT:
1202
1199
@@ -1273,16 +1270,17 @@ cdef class _two_descent:
1273
1270
sig_off()
1274
1271
1275
1272
def getbasis (self ):
1276
- """
1277
- Returns the basis of points found by doing a 2-descent.
1273
+ r """
1274
+ Return the basis of points found by doing a 2-descent.
1278
1275
1279
1276
If the success and certain flags are 1, this will be a
1280
1277
`\Z Z/2\Z Z`-basis for `E( \Q Q) /2E( \Q Q) ` ( modulo torsion) ,
1281
1278
otherwise possibly only for a proper subgroup.
1282
1279
1283
1280
.. NOTE::
1284
1281
1285
- You must call ``saturate()`` first, or a RunTimeError will be raised.
1282
+ You must call ``saturate( ) `` first, or a ``RunTimeError``
1283
+ will be raised.
1286
1284
1287
1285
OUTPUT:
1288
1286
@@ -1320,7 +1318,7 @@ cdef class _two_descent:
1320
1318
1321
1319
def regulator (self ):
1322
1320
"""
1323
- Returns the regulator of the points found by doing a 2-descent.
1321
+ Return the regulator of the points found by doing a 2-descent.
1324
1322
1325
1323
OUTPUT:
1326
1324
0 commit comments