@@ -231,16 +231,17 @@ cpdef find_wilson_decomposition_with_two_truncated_groups(int k,int n):
231
231
sage: _ = f( * args)
232
232
"""
233
233
cdef int r,m_min,m_max,m,r1_min,r1_max,r1,r2,r1_p_r2
234
- for r in [1 ] + list (xrange (k+ 1 , n- 2 )): # as r*1+1+1 <= n and because we need
235
- # an OA(k+2,r), necessarily r=1 or r >= k+1
234
+ for r in [1 ] + list (range (k+ 1 , n- 2 )):
235
+ # as r*1+1+1 <= n and because we need
236
+ # an OA(k+2,r), necessarily r=1 or r >= k+1
236
237
if not is_available(k+ 2 ,r):
237
238
continue
238
239
m_min = (n - (2 * r- 2 ))/ r
239
240
m_max = (n - 2 )/ r
240
241
if m_min > 1 :
241
- m_values = list (xrange (max (m_min, k - 1 ), m_max + 1 ))
242
+ m_values = list (range (max (m_min, k - 1 ), m_max + 1 ))
242
243
else :
243
- m_values = [1 ] + list (xrange (k - 1 , m_max + 1 ))
244
+ m_values = [1 ] + list (range (k - 1 , m_max + 1 ))
244
245
for m in m_values:
245
246
r1_p_r2 = n- r* m # the sum of r1+r2
246
247
# it is automatically >= 2 since m <= m_max
@@ -253,9 +254,9 @@ cpdef find_wilson_decomposition_with_two_truncated_groups(int k,int n):
253
254
r1_min = r1_p_r2 - (r- 1 )
254
255
r1_max = min (r- 1 , r1_p_r2)
255
256
if r1_min > 1 :
256
- r1_values = list ( xrange ( max (k - 1 , r1_min), r1_max + 1 ) )
257
+ r1_values = range ( max (k - 1 , r1_min), r1_max + 1 )
257
258
else :
258
- r1_values = [1 ] + list (xrange (k- 1 , r1_max + 1 ))
259
+ r1_values = [1 ] + list (range (k- 1 , r1_max + 1 ))
259
260
for r1 in r1_values:
260
261
if not is_available(k,r1):
261
262
continue
@@ -589,7 +590,8 @@ cpdef find_thwart_lemma_3_5(int k,int N):
589
590
continue
590
591
591
592
NN = N - n* m
592
- for a in range (max (0 , (NN- n+ 2 )/ 3 ), min (n, NN)+ 1 ): # (NN-n+2)/3 <==> ceil((NN-n)/3)
593
+ for a in range (max (0 , (NN- n+ 2 )/ 3 ), min (n, NN)+ 1 ):
594
+ # (NN-n+2)/3 <==> ceil((NN-n)/3)
593
595
if not is_available(k,a):
594
596
continue
595
597
na = n- a
0 commit comments