Skip to content

Commit fafd930

Browse files
author
Matthias Koeppe
committed
src/sage/rings/polynomial/polynomial_quotient_ring.py: Fix up # needs
1 parent defa42e commit fafd930

File tree

1 file changed

+20
-19
lines changed

1 file changed

+20
-19
lines changed

src/sage/rings/polynomial/polynomial_quotient_ring.py

+20-19
Original file line numberDiff line numberDiff line change
@@ -563,15 +563,15 @@ def _coerce_map_from_(self, R):
563563
TESTS::
564564
565565
sage: P5.<x> = GF(5)[]
566-
sage: Q = P5.quo([(x^2+1)^2]) # needs sage.rings.finite_rings
566+
sage: Q = P5.quo([(x^2+1)^2])
567567
sage: P.<x> = ZZ[]
568568
sage: Q1 = P.quo([(x^2+1)^2*(x^2-3)])
569569
sage: Q2 = P.quo([(x^2+1)^2*(x^5+3)])
570-
sage: Q.has_coerce_map_from(Q1) #indirect doctest # needs sage.rings.finite_rings
570+
sage: Q.has_coerce_map_from(Q1) #indirect doctest
571571
True
572-
sage: Q1.has_coerce_map_from(Q) # needs sage.rings.finite_rings
572+
sage: Q1.has_coerce_map_from(Q)
573573
False
574-
sage: Q1.has_coerce_map_from(Q2) # needs sage.rings.finite_rings
574+
sage: Q1.has_coerce_map_from(Q2)
575575
False
576576
577577
The following tests against a bug fixed in :trac:`8992`::
@@ -787,9 +787,9 @@ def construction(self):
787787
sage: F(R) == Q
788788
True
789789
sage: P.<t> = GF(3)[]
790-
sage: Q = P.quo([2 + t^2]) # needs sage.rings.finite_rings
791-
sage: F, R = Q.construction() # needs sage.rings.finite_rings
792-
sage: F(R) == Q # needs sage.rings.finite_rings
790+
sage: Q = P.quo([2 + t^2])
791+
sage: F, R = Q.construction()
792+
sage: F(R) == Q
793793
True
794794
795795
AUTHOR:
@@ -910,7 +910,7 @@ def is_finite(self):
910910
::
911911
912912
sage: P.<v> = GF(2)[]
913-
sage: P.quotient(v^2 - v).is_finite() # needs sage.rings.finite_rings
913+
sage: P.quotient(v^2 - v).is_finite()
914914
True
915915
"""
916916
f = self.modulus()
@@ -927,8 +927,8 @@ def __iter__(self):
927927
EXAMPLES::
928928
929929
sage: R.<x> = GF(3)[]
930-
sage: Q = R.quo(x^3 - x^2 - x - 1) # needs sage.rings.finite_rings
931-
sage: list(Q) # needs sage.rings.finite_rings
930+
sage: Q = R.quo(x^3 - x^2 - x - 1)
931+
sage: list(Q)
932932
[0,
933933
1,
934934
2,
@@ -939,7 +939,7 @@ def __iter__(self):
939939
...
940940
2*xbar^2 + 2*xbar + 1,
941941
2*xbar^2 + 2*xbar + 2]
942-
sage: len(_) == Q.cardinality() == 27 # needs sage.rings.finite_rings
942+
sage: len(_) == Q.cardinality() == 27
943943
True
944944
"""
945945
if not self.is_finite():
@@ -978,8 +978,8 @@ def degree(self):
978978
EXAMPLES::
979979
980980
sage: R.<x> = PolynomialRing(GF(3))
981-
sage: S = R.quotient(x^2005 + 1) # needs sage.rings.finite_rings
982-
sage: S.degree() # needs sage.rings.finite_rings
981+
sage: S = R.quotient(x^2005 + 1)
982+
sage: S.degree()
983983
2005
984984
"""
985985
return self.modulus().degree()
@@ -1191,8 +1191,8 @@ def modulus(self):
11911191
EXAMPLES::
11921192
11931193
sage: R.<x> = PolynomialRing(GF(3))
1194-
sage: S = R.quotient(x^2 - 2) # needs sage.rings.finite_rings
1195-
sage: S.modulus() # needs sage.rings.finite_rings
1194+
sage: S = R.quotient(x^2 - 2)
1195+
sage: S.modulus()
11961196
x^2 + 1
11971197
"""
11981198
return self.__polynomial
@@ -1458,7 +1458,7 @@ def S_class_group(self, S, proof=True):
14581458
`x^2 + 31` from 12 to 2, i.e. we lose a generator of order 6 (this was
14591459
fixed in :trac:`14489`)::
14601460
1461-
sage: S.S_class_group([K.ideal(a)]) # not tested # needs sage.rings.number_field
1461+
sage: S.S_class_group([K.ideal(a)]) # representation varies # not tested, needs sage.rings.number_field
14621462
[((1/4*xbar^2 + 31/4, (-1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8,
14631463
1/16*xbar^3 + 1/16*xbar^2 + 31/16*xbar + 31/16,
14641464
-1/16*a*xbar^3 + (1/16*a + 1/8)*xbar^2 - 31/16*a*xbar + 31/16*a + 31/8),
@@ -1470,10 +1470,11 @@ def S_class_group(self, S, proof=True):
14701470
14711471
Note that all the returned values live where we expect them to::
14721472
1473-
sage: CG = S.S_class_group([]) # needs sage.rings.number_field
1474-
sage: type(CG[0][0][1]) # needs sage.rings.number_field
1473+
sage: # needs sage.rings.number_field
1474+
sage: CG = S.S_class_group([])
1475+
sage: type(CG[0][0][1])
14751476
<class 'sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing_generic_with_category.element_class'>
1476-
sage: type(CG[0][1]) # needs sage.rings.number_field
1477+
sage: type(CG[0][1])
14771478
<class 'sage.rings.integer.Integer'>
14781479
14791480
TESTS:

0 commit comments

Comments
 (0)