We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
gcd in multivariate polynomial rings over RR (as well as CC, CIF, CDF, etc.) does not return the correct answer:
gcd
RR
CC
CIF
CDF
sage: F = PolynomialRing(RR, 'x,y').fraction_field() sage: F.inject_variables() Defining x, y sage: gcd(x, x) 1.00000000000000
Note that the answer is correct for univariate polynomial rings over RR:
sage: F = PolynomialRing(RR, 'x').fraction_field() sage: F.inject_variables() Defining x sage: gcd(x, x) x
This might be related to #32285. See also #23909, #10771.
Component: algebra
Keywords: gcd, polynomials, fraction field
Issue created by migration from https://trac.sagemath.org/ticket/32286
The text was updated successfully, but these errors were encountered:
No branches or pull requests
gcd
in multivariate polynomial rings overRR
(as well asCC
,CIF
,CDF
, etc.) does not return the correct answer:Note that the answer is correct for univariate polynomial rings over
RR
:This might be related to #32285. See also #23909, #10771.
Component: algebra
Keywords: gcd, polynomials, fraction field
Issue created by migration from https://trac.sagemath.org/ticket/32286
The text was updated successfully, but these errors were encountered: