From 53ede8c9bad73793c9431a51ac511eefa8c09eb2 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Mon, 5 Dec 2022 14:21:20 -0800 Subject: [PATCH 01/49] sage.rings.finite_rings: Deprecate is_FiniteField, is_PrimeFiniteField --- src/sage/crypto/boolean_function.pyx | 11 +++++++---- src/sage/crypto/lfsr.py | 4 ++-- .../dynamics/arithmetic_dynamics/affine_ds.py | 10 +++++----- .../dynamics/arithmetic_dynamics/generic_ds.py | 8 ++++---- .../arithmetic_dynamics/projective_ds.py | 14 +++++++------- src/sage/groups/cubic_braid.py | 4 ++-- src/sage/groups/matrix_gps/orthogonal.py | 8 ++++---- src/sage/groups/matrix_gps/symplectic.py | 4 ++-- src/sage/groups/matrix_gps/unitary.py | 8 ++++---- src/sage/matrix/matrix_space.py | 4 ++-- src/sage/modules/free_module.py | 2 +- src/sage/rings/algebraic_closure_finite_field.py | 6 +++--- src/sage/rings/finite_rings/element_base.pyx | 4 ++-- .../rings/finite_rings/finite_field_base.pyx | 11 ++++++++--- .../finite_rings/finite_field_constructor.py | 16 +++++++++++----- src/sage/rings/finite_rings/hom_finite_field.pyx | 8 ++++---- .../finite_rings/hom_prime_finite_field.pyx | 4 ++-- src/sage/rings/finite_rings/homset.py | 4 ++-- src/sage/rings/morphism.pyx | 6 +++--- src/sage/rings/polynomial/polynomial_element.pyx | 8 ++++---- .../polynomial/polynomial_ring_constructor.py | 4 ++-- .../polynomial/polynomial_singular_interface.py | 14 +++++++------- src/sage/schemes/affine/affine_homset.py | 4 ++-- src/sage/schemes/affine/affine_morphism.py | 8 ++++---- src/sage/schemes/affine/affine_space.py | 16 ++++++++-------- src/sage/schemes/curves/constructor.py | 10 +++++----- src/sage/schemes/cyclic_covers/constructor.py | 4 ++-- src/sage/schemes/elliptic_curves/constructor.py | 4 ++-- src/sage/schemes/generic/algebraic_scheme.py | 4 ++-- .../schemes/hyperelliptic_curves/constructor.py | 2 +- src/sage/schemes/plane_conics/constructor.py | 4 ++-- src/sage/schemes/product_projective/homset.py | 4 ++-- src/sage/schemes/product_projective/space.py | 8 ++++---- src/sage/schemes/projective/projective_homset.py | 4 ++-- .../schemes/projective/projective_morphism.py | 10 +++++----- src/sage/schemes/projective/projective_space.py | 6 +++--- .../schemes/projective/projective_subscheme.py | 4 ++-- src/sage/symbolic/ring.pyx | 4 ++-- 38 files changed, 136 insertions(+), 122 deletions(-) diff --git a/src/sage/crypto/boolean_function.pyx b/src/sage/crypto/boolean_function.pyx index a9ea665475c..10693a17992 100644 --- a/src/sage/crypto/boolean_function.pyx +++ b/src/sage/crypto/boolean_function.pyx @@ -38,8 +38,7 @@ from sage.rings.integer_ring import ZZ from sage.rings.integer cimport Integer from sage.rings.finite_rings.finite_field_constructor import GF from sage.rings.polynomial.pbori.pbori import BooleanPolynomial -from sage.rings.finite_rings.finite_field_constructor import is_FiniteField -from sage.rings.finite_rings.finite_field_givaro import FiniteField_givaro +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.rings.polynomial.polynomial_element import is_Polynomial from sage.misc.superseded import deprecated_function_alias @@ -329,11 +328,15 @@ cdef class BooleanFunction(SageObject): elif is_Polynomial(x): K = x.base_ring() - if is_FiniteField(K) and K.characteristic() == 2: + if isinstance(K, FiniteField) and K.characteristic() == 2: self._nvariables = K.degree() bitset_init(self._truth_table, (1< 1: # Specialized code breaks for n == 1 specialized = polynomial_ring.PolynomialRing_dense_mod_n - elif is_FiniteField(base_ring): + elif isinstance(base_ring, FiniteField): specialized = polynomial_ring.PolynomialRing_dense_finite_field elif isinstance(base_ring, padic_base_leaves.pAdicFieldCappedRelative): specialized = polynomial_ring.PolynomialRing_dense_padic_field_capped_relative diff --git a/src/sage/rings/polynomial/polynomial_singular_interface.py b/src/sage/rings/polynomial/polynomial_singular_interface.py index 40b77534d19..5d309ceb85c 100644 --- a/src/sage/rings/polynomial/polynomial_singular_interface.py +++ b/src/sage/rings/polynomial/polynomial_singular_interface.py @@ -44,7 +44,7 @@ from sage.interfaces.singular import singular from sage.rings.rational_field import is_RationalField from sage.rings.function_field.function_field import RationalFunctionField -from sage.rings.finite_rings.finite_field_base import is_FiniteField +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.rings.integer_ring import ZZ import sage.rings.finite_rings.finite_field_constructor @@ -103,13 +103,13 @@ def _do_singular_init_(singular, base_ring, char, _vars, order): elif isinstance(base_ring, sage.rings.abc.IntegerModRing): char = base_ring.characteristic() - if sage.rings.finite_rings.finite_field_constructor.is_FiniteField(base_ring) and char <= 2147483647: + if isinstance(base_ring, FiniteField) and char <= 2147483647: return make_ring(str(char)), None if char.is_power_of(2): return make_ring(f"(integer,2,{char.nbits()-1})"), None return make_ring(f"(integer,{char})"), None - elif sage.rings.finite_rings.finite_field_constructor.is_FiniteField(base_ring): + elif isinstance(base_ring, FiniteField): # not the prime field! gen = str(base_ring.gen()) R = make_ring(f"({char},{gen})") @@ -148,7 +148,7 @@ def _do_singular_init_(singular, base_ring, char, _vars, order): if B.is_prime_field() or B is ZZ: return make_ring(f"({base_char},{gens})"), None - if is_FiniteField(B) and B.characteristic() <= 2147483647: + if isinstance(B, FiniteField) and B.characteristic() <= 2147483647: ext_gen = str(B.gen()) _vars = '(' + ext_gen + ', ' + _vars[1:] @@ -333,7 +333,7 @@ def _singular_(self, singular=singular): R._check_valid() if self.base_ring() is ZZ or self.base_ring().is_prime_field(): return R - if sage.rings.finite_rings.finite_field_constructor.is_FiniteField(self.base_ring()) or \ + if isinstance(self.base_ring(), FiniteField) or \ (number_field.number_field_base.is_NumberField(self.base_ring()) and self.base_ring().is_absolute()): R.set_ring() # sorry for that, but needed for minpoly if singular.eval('minpoly') != f"({self.__minpoly})": @@ -427,14 +427,14 @@ def can_convert_to_singular(R): sage.rings.abc.RealField, sage.rings.abc.ComplexField, sage.rings.abc.RealDoubleField, sage.rings.abc.ComplexDoubleField))): return True - elif sage.rings.finite_rings.finite_field_constructor.is_FiniteField(base_ring): + elif isinstance(base_ring, FiniteField): return base_ring.characteristic() <= 2147483647 elif number_field.number_field_base.is_NumberField(base_ring): return base_ring.is_absolute() elif sage.rings.fraction_field.is_FractionField(base_ring): B = base_ring.base_ring() return (B.is_prime_field() or B is ZZ - or (is_FiniteField(B) and B.characteristic() <= 2147483647)) + or (isinstance(B, FiniteField) and B.characteristic() <= 2147483647)) elif isinstance(base_ring, RationalFunctionField): return base_ring.constant_field().is_prime_field() else: diff --git a/src/sage/schemes/affine/affine_homset.py b/src/sage/schemes/affine/affine_homset.py index 98b3b3a8994..914e54f7148 100644 --- a/src/sage/schemes/affine/affine_homset.py +++ b/src/sage/schemes/affine/affine_homset.py @@ -41,7 +41,7 @@ from sage.rings.rational_field import is_RationalField from sage.categories.fields import Fields from sage.categories.number_fields import NumberFields -from sage.rings.finite_rings.finite_field_constructor import is_FiniteField +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.schemes.generic.homset import SchemeHomset_points, SchemeHomset_generic @@ -354,7 +354,7 @@ def points(self, **kwds): raise TypeError("a positive bound B (= %s) must be specified"%B) from sage.schemes.affine.affine_rational_point import enum_affine_number_field return enum_affine_number_field(self, bound=B, tolerance=tol, precision=prec) - elif is_FiniteField(R): + elif isinstance(R, FiniteField): from sage.schemes.affine.affine_rational_point import enum_affine_finite_field return enum_affine_finite_field(self) else: diff --git a/src/sage/schemes/affine/affine_morphism.py b/src/sage/schemes/affine/affine_morphism.py index 1c4f2dff188..e6a8bad39bd 100644 --- a/src/sage/schemes/affine/affine_morphism.py +++ b/src/sage/schemes/affine/affine_morphism.py @@ -62,12 +62,11 @@ from sage.arith.all import gcd from sage.rings.integer import Integer -from sage.rings.finite_rings.finite_field_constructor import is_PrimeFiniteField from sage.rings.fraction_field import FractionField from sage.rings.fraction_field_element import FractionFieldElement from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ -from sage.rings.finite_rings.finite_field_constructor import is_FiniteField +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.schemes.generic.morphism import SchemeMorphism_polynomial @@ -229,7 +228,8 @@ def __init__(self, parent, polys, check=True): SchemeMorphism_polynomial.__init__(self, parent, polys, check) # used in _fast_eval and _fastpolys - self._is_prime_finite_field = is_PrimeFiniteField(polys[0].base_ring()) + R = polys[0].base_ring() + self._is_prime_finite_field = isinstance(R, FiniteField) and R.is_prime_field() def __call__(self, x, check=True): """ @@ -683,7 +683,7 @@ def as_dynamical_system(self): R = self.base_ring() if R not in _Fields: return DynamicalSystem_affine(list(self), self.domain()) - if is_FiniteField(R): + if isinstance(R, FiniteField): return DynamicalSystem_affine_finite_field(list(self), self.domain()) return DynamicalSystem_affine_field(list(self), self.domain()) diff --git a/src/sage/schemes/affine/affine_space.py b/src/sage/schemes/affine/affine_space.py index ba56ef9fc8d..52c13b29068 100644 --- a/src/sage/schemes/affine/affine_space.py +++ b/src/sage/schemes/affine/affine_space.py @@ -17,7 +17,7 @@ from sage.rings.rational_field import is_RationalField from sage.rings.polynomial.polynomial_ring import is_PolynomialRing from sage.rings.polynomial.multi_polynomial_ring import is_MPolynomialRing -from sage.rings.finite_rings.finite_field_constructor import is_FiniteField +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.categories.map import Map from sage.categories.fields import Fields from sage.categories.homset import Hom @@ -132,7 +132,7 @@ def AffineSpace(n, R=None, names=None, ambient_projective_space=None, from sage.schemes.projective.projective_space import ProjectiveSpace ambient_projective_space = ProjectiveSpace(n, R) if R in _Fields: - if is_FiniteField(R): + if isinstance(R, FiniteField): return AffineSpace_finite_field(n, R, names, ambient_projective_space, default_embedding_index) else: @@ -270,12 +270,12 @@ def rational_points(self, F=None): TypeError: second argument (= Integer Ring) must be a finite field """ if F is None: - if not is_FiniteField(self.base_ring()): - raise TypeError("base ring (= %s) must be a finite field"%self.base_ring()) - return [ P for P in self ] - elif not is_FiniteField(F): - raise TypeError("second argument (= %s) must be a finite field"%F) - return [ P for P in self.base_extend(F) ] + if not isinstance(self.base_ring(), FiniteField): + raise TypeError("base ring (= %s) must be a finite field" % self.base_ring()) + return [P for P in self] + elif not isinstance(F, FiniteField): + raise TypeError("second argument (= %s) must be a finite field" % F) + return [P for P in self.base_extend(F)] def __eq__(self, right): """ diff --git a/src/sage/schemes/curves/constructor.py b/src/sage/schemes/curves/constructor.py index 8a85dd9737c..9da795ac958 100644 --- a/src/sage/schemes/curves/constructor.py +++ b/src/sage/schemes/curves/constructor.py @@ -38,7 +38,7 @@ from sage.rings.polynomial.multi_polynomial_element import is_MPolynomial from sage.rings.polynomial.multi_polynomial_ring import is_MPolynomialRing -from sage.rings.finite_rings.finite_field_constructor import is_FiniteField +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.rings.rational_field import QQ @@ -294,7 +294,7 @@ def Curve(F, A=None): if is_AffineSpace(A): if n != 2: - if is_FiniteField(k): + if isinstance(k, FiniteField): if A.coordinate_ring().ideal(F).is_prime(): return IntegralAffineCurve_finite_field(A, F) if k in Fields(): @@ -307,7 +307,7 @@ def Curve(F, A=None): raise TypeError("need a single nonconstant polynomial to define a plane curve") F = F[0] - if is_FiniteField(k): + if isinstance(k, FiniteField): if _is_irreducible_and_reduced(F): return IntegralAffinePlaneCurve_finite_field(A, F) return AffinePlaneCurve_finite_field(A, F) @@ -321,7 +321,7 @@ def Curve(F, A=None): if n != 2: if not all(f.is_homogeneous() for f in F): raise TypeError("polynomials defining a curve in a projective space must be homogeneous") - if is_FiniteField(k): + if isinstance(k, FiniteField): if A.coordinate_ring().ideal(F).is_prime(): return IntegralProjectiveCurve_finite_field(A, F) if k in Fields(): @@ -339,7 +339,7 @@ def Curve(F, A=None): if not F.is_homogeneous(): raise TypeError("{} is not a homogeneous polynomial".format(F)) - if is_FiniteField(k): + if isinstance(k, FiniteField): if _is_irreducible_and_reduced(F): return IntegralProjectivePlaneCurve_finite_field(A, F) return ProjectivePlaneCurve_finite_field(A, F) diff --git a/src/sage/schemes/cyclic_covers/constructor.py b/src/sage/schemes/cyclic_covers/constructor.py index 0966b0793d5..aba10277b19 100644 --- a/src/sage/schemes/cyclic_covers/constructor.py +++ b/src/sage/schemes/cyclic_covers/constructor.py @@ -9,7 +9,7 @@ # ***************************************************************************** from sage.rings.polynomial.polynomial_element import is_Polynomial -from sage.rings.finite_rings.finite_field_constructor import is_FiniteField +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.schemes.affine.affine_space import AffineSpace from .cycliccover_generic import CyclicCover_generic from .cycliccover_finite_field import CyclicCover_finite_field @@ -127,7 +127,7 @@ def CyclicCover(r, f, names=None, check_smooth=True): names = ["x", "y"] A2 = AffineSpace(2, R, names=names) - if is_FiniteField(R): + if isinstance(R, FiniteField): return CyclicCover_finite_field(A2, r, f, names=names) else: return CyclicCover_generic(A2, r, f, names=names) diff --git a/src/sage/schemes/elliptic_curves/constructor.py b/src/sage/schemes/elliptic_curves/constructor.py index 1ecdc082cd5..931779c8c7a 100644 --- a/src/sage/schemes/elliptic_curves/constructor.py +++ b/src/sage/schemes/elliptic_curves/constructor.py @@ -27,7 +27,7 @@ import sage.rings.abc from sage.rings.polynomial.multi_polynomial_ring import is_MPolynomialRing -from sage.rings.finite_rings.finite_field_constructor import is_FiniteField +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.rings.number_field.number_field import is_NumberField from sage.rings.polynomial.multi_polynomial_element import is_MPolynomial from sage.rings.ring import is_Ring @@ -477,7 +477,7 @@ def create_object(self, version, key, **kwds): elif isinstance(R, sage.rings.abc.pAdicField): from .ell_padic_field import EllipticCurve_padic_field return EllipticCurve_padic_field(R, x) - elif is_FiniteField(R) or (isinstance(R, sage.rings.abc.IntegerModRing) and R.characteristic().is_prime()): + elif isinstance(R, FiniteField) or (isinstance(R, sage.rings.abc.IntegerModRing) and R.characteristic().is_prime()): from .ell_finite_field import EllipticCurve_finite_field return EllipticCurve_finite_field(R, x) elif R in _Fields: diff --git a/src/sage/schemes/generic/algebraic_scheme.py b/src/sage/schemes/generic/algebraic_scheme.py index 60d883905fe..aac33ed3042 100644 --- a/src/sage/schemes/generic/algebraic_scheme.py +++ b/src/sage/schemes/generic/algebraic_scheme.py @@ -132,7 +132,7 @@ from sage.rings.integer_ring import ZZ from sage.rings.qqbar import QQbar from sage.rings.rational_field import is_RationalField -from sage.rings.finite_rings.finite_field_constructor import is_FiniteField +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.rings.number_field.order import is_NumberFieldOrder from sage.misc.latex import latex @@ -886,7 +886,7 @@ def rational_points(self, **kwds): if bound == 0: if is_RationalField(F): raise TypeError("A positive bound (= %s) must be specified."%bound) - if not is_FiniteField(F): + if not isinstance(F, FiniteField): raise TypeError("Argument F (= %s) must be a finite field."%F) pts = [] for P in self.ambient_space().rational_points(F): diff --git a/src/sage/schemes/hyperelliptic_curves/constructor.py b/src/sage/schemes/hyperelliptic_curves/constructor.py index 54556e08755..590677e21a9 100644 --- a/src/sage/schemes/hyperelliptic_curves/constructor.py +++ b/src/sage/schemes/hyperelliptic_curves/constructor.py @@ -24,7 +24,7 @@ import sage.rings.abc from sage.rings.rational_field import is_RationalField -from sage.rings.finite_rings.finite_field_constructor import is_FiniteField +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.rings.polynomial.polynomial_element import is_Polynomial from sage.structure.dynamic_class import dynamic_class diff --git a/src/sage/schemes/plane_conics/constructor.py b/src/sage/schemes/plane_conics/constructor.py index a2a14190087..a962a392a63 100644 --- a/src/sage/schemes/plane_conics/constructor.py +++ b/src/sage/schemes/plane_conics/constructor.py @@ -31,7 +31,7 @@ from sage.rings.ring import IntegralDomain from sage.rings.rational_field import is_RationalField -from sage.rings.finite_rings.finite_field_constructor import is_FiniteField +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.rings.polynomial.multi_polynomial_element import is_MPolynomial from sage.rings.polynomial.polynomial_ring import is_PolynomialRing from sage.rings.polynomial.multi_polynomial_ring import is_MPolynomialRing @@ -233,7 +233,7 @@ def Conic(base_field, F=None, names=None, unique=True): if F.parent().ngens() == 3: P2 = ProjectiveSpace(2, base_field, names) - if is_FiniteField(base_field): + if isinstance(base_field, FiniteField): return ProjectiveConic_finite_field(P2, F) if is_RationalField(base_field): return ProjectiveConic_rational_field(P2, F) diff --git a/src/sage/schemes/product_projective/homset.py b/src/sage/schemes/product_projective/homset.py index 7f4e1de0773..2b0119b1250 100644 --- a/src/sage/schemes/product_projective/homset.py +++ b/src/sage/schemes/product_projective/homset.py @@ -22,7 +22,7 @@ from sage.categories.number_fields import NumberFields from sage.misc.mrange import xmrange from sage.misc.misc_c import prod -from sage.rings.finite_rings.finite_field_constructor import is_FiniteField +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.rings.rational_field import is_RationalField from sage.schemes.generic.algebraic_scheme import AlgebraicScheme_subscheme from sage.schemes.generic.homset import SchemeHomset_points @@ -228,7 +228,7 @@ def points(self, **kwds): raise TypeError("a positive bound B (= %s) must be specified"%B) from sage.schemes.product_projective.rational_point import enum_product_projective_number_field return enum_product_projective_number_field(self, bound=B) - elif is_FiniteField(R): + elif isinstance(R, FiniteField): from sage.schemes.product_projective.rational_point import enum_product_projective_finite_field return enum_product_projective_finite_field(self) else: diff --git a/src/sage/schemes/product_projective/space.py b/src/sage/schemes/product_projective/space.py index 79bd69f671e..ac94e72cd0c 100644 --- a/src/sage/schemes/product_projective/space.py +++ b/src/sage/schemes/product_projective/space.py @@ -45,7 +45,7 @@ from sage.rings.integer import Integer from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.rational_field import QQ -from sage.rings.finite_rings.finite_field_constructor import is_FiniteField +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.categories.fields import Fields from sage.categories.commutative_rings import CommutativeRings from sage.rings.polynomial.polydict import ETuple @@ -137,7 +137,7 @@ def ProductProjectiveSpaces(n, R=None, names='x'): raise AttributeError("components must be over the same base ring") N.append(PS.dimension_relative()) names += PS.variable_names() - if is_FiniteField(R): + if isinstance(R, FiniteField): X = ProductProjectiveSpaces_finite_field(N, R, names) elif R in Fields(): X = ProductProjectiveSpaces_field(N, R, names) @@ -162,7 +162,7 @@ def ProductProjectiveSpaces(n, R=None, names='x'): else: n_vars = sum(1+d for d in n) names = normalize_names(n_vars, name_list) - if is_FiniteField(R): + if isinstance(R, FiniteField): X = ProductProjectiveSpaces_finite_field(n, R, names) elif R in Fields(): X = ProductProjectiveSpaces_field(n, R, names) @@ -1302,6 +1302,6 @@ def rational_points(self, F=None): """ if F is None: return list(self) - elif not is_FiniteField(F): + elif not isinstance(F, FiniteField): raise TypeError("second argument (= %s) must be a finite field"%F) return list(self.base_extend(F)) diff --git a/src/sage/schemes/projective/projective_homset.py b/src/sage/schemes/projective/projective_homset.py index 3ffd4a6b6e4..3ee0b78876e 100644 --- a/src/sage/schemes/projective/projective_homset.py +++ b/src/sage/schemes/projective/projective_homset.py @@ -47,7 +47,7 @@ from sage.rings.rational_field import is_RationalField from sage.categories.fields import Fields from sage.categories.number_fields import NumberFields -from sage.rings.finite_rings.finite_field_constructor import is_FiniteField +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.schemes.generic.algebraic_scheme import AlgebraicScheme_subscheme from copy import copy @@ -284,7 +284,7 @@ def points(self, **kwds): raise TypeError("a positive bound B (= %s) must be specified"%B) from sage.schemes.projective.projective_rational_point import enum_projective_number_field return enum_projective_number_field(self, bound=B, tolerance=tol, precision=prec) - elif is_FiniteField(R): + elif isinstance(R, FiniteField): from sage.schemes.projective.projective_rational_point import enum_projective_finite_field return enum_projective_finite_field(self.extended_codomain()) else: diff --git a/src/sage/schemes/projective/projective_morphism.py b/src/sage/schemes/projective/projective_morphism.py index 30afbb10ab1..45c1bb01b55 100644 --- a/src/sage/schemes/projective/projective_morphism.py +++ b/src/sage/schemes/projective/projective_morphism.py @@ -72,8 +72,7 @@ import sage.rings.abc from sage.rings.integer import Integer from sage.rings.algebraic_closure_finite_field import AlgebraicClosureFiniteField_generic -from sage.rings.finite_rings.finite_field_constructor import is_FiniteField -from sage.rings.finite_rings.finite_field_constructor import is_PrimeFiniteField +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.rings.finite_rings.finite_field_constructor import GF from sage.rings.fraction_field import FractionField from sage.rings.integer_ring import ZZ @@ -274,7 +273,8 @@ def __init__(self, parent, polys, check=True): SchemeMorphism_polynomial.__init__(self, parent, polys, check) - self._is_prime_finite_field = is_PrimeFiniteField(polys[0].base_ring()) + R = polys[0].base_ring() + self._is_prime_finite_field = isinstance(R, FiniteField) and R.is_prime_field() def __call__(self, x, check=True): r""" @@ -727,7 +727,7 @@ def as_dynamical_system(self): R = self.base_ring() if R not in _Fields: return DynamicalSystem_projective(list(self), self.domain()) - if is_FiniteField(R): + if isinstance(R, FiniteField): return DynamicalSystem_projective_finite_field(list(self), self.domain()) return DynamicalSystem_projective_field(list(self), self.domain()) @@ -1006,7 +1006,7 @@ def normalize_coordinates(self, **kwds): # scales by 1/gcd of the coefficients. if R in _NumberFields: O = R.maximal_order() - elif is_FiniteField(R): + elif isinstance(R, FiniteField): O = R elif isinstance(R, QuotientRing_generic): O = R.ring() diff --git a/src/sage/schemes/projective/projective_space.py b/src/sage/schemes/projective/projective_space.py index 670304af237..e215da942e1 100644 --- a/src/sage/schemes/projective/projective_space.py +++ b/src/sage/schemes/projective/projective_space.py @@ -81,7 +81,7 @@ from sage.arith.misc import gcd, binomial -from sage.rings.finite_rings.finite_field_constructor import is_FiniteField +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.rings.integer import Integer from sage.rings.integer_ring import ZZ from sage.rings.polynomial.multi_polynomial_ring import is_MPolynomialRing @@ -256,7 +256,7 @@ def ProjectiveSpace(n, R=None, names=None): if R is None: R = ZZ # default is the integers if R in _Fields: - if is_FiniteField(R): + if isinstance(R, FiniteField): return ProjectiveSpace_finite_field(n, R, names) if is_RationalField(R): return ProjectiveSpace_rational_field(n, R, names) @@ -2253,7 +2253,7 @@ def rational_points(self, F=None): """ if F is None: return [P for P in self] - elif not is_FiniteField(F): + elif not isinstance(F, FiniteField): raise TypeError("second argument (= %s) must be a finite field" % F) return [P for P in self.base_extend(F)] diff --git a/src/sage/schemes/projective/projective_subscheme.py b/src/sage/schemes/projective/projective_subscheme.py index 3c0faa498a6..2d7bdf2974a 100644 --- a/src/sage/schemes/projective/projective_subscheme.py +++ b/src/sage/schemes/projective/projective_subscheme.py @@ -29,7 +29,7 @@ from sage.matrix.constructor import matrix from sage.rings.integer_ring import ZZ -from sage.rings.finite_rings.finite_field_constructor import is_FiniteField +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.rational_field import is_RationalField @@ -982,7 +982,7 @@ def dual(self): from sage.libs.singular.function_factory import ff K = self.base_ring() - if not(is_RationalField(K) or is_FiniteField(K)): + if not(is_RationalField(K) or isinstance(K, FiniteField)): raise NotImplementedError("base ring must be QQ or a finite field") I = self.defining_ideal() m = I.ngens() diff --git a/src/sage/symbolic/ring.pyx b/src/sage/symbolic/ring.pyx index 2036a7331d4..9ecb93578d8 100644 --- a/src/sage/symbolic/ring.pyx +++ b/src/sage/symbolic/ring.pyx @@ -217,7 +217,7 @@ cdef class SymbolicRing(sage.rings.abc.SymbolicRing): from sage.rings.complex_mpfr import ComplexField from sage.rings.infinity import InfinityRing, UnsignedInfinityRing from sage.rings.real_lazy import RLF, CLF - from sage.rings.finite_rings.finite_field_base import is_FiniteField + from sage.rings.finite_rings.finite_field_base import FiniteField from sage.interfaces.maxima import Maxima @@ -235,7 +235,7 @@ cdef class SymbolicRing(sage.rings.abc.SymbolicRing): sage.rings.abc.RealBallField, sage.rings.abc.ComplexBallField, sage.rings.abc.IntegerModRing)) - or is_FiniteField(R)): + or isinstance(R, FiniteField)): return True elif isinstance(R, GenericSymbolicSubring): return True From 8d4d8e58683173fc9b452f9f3a8d764785ba1b36 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Mon, 5 Dec 2022 14:46:10 -0800 Subject: [PATCH 02/49] sage.rings.finite_rings: Make it a namespace package --- src/.relint.yml | 2 +- src/sage/rings/finite_rings/__init__.py | 0 2 files changed, 1 insertion(+), 1 deletion(-) delete mode 100644 src/sage/rings/finite_rings/__init__.py diff --git a/src/.relint.yml b/src/.relint.yml index abadae0de28..d1534abfdd2 100644 --- a/src/.relint.yml +++ b/src/.relint.yml @@ -47,6 +47,6 @@ hint: | Sage library code should not import from sage.PAC.KAGE.all when sage.PAC.KAGE is an implicit Hint: namespace package. Type import_statements("SOME_IDENTIFIER") to find a more specific import. - pattern: 'from\s+sage(|[.](arith|categories|combinat|ext|graphs(|[.]decompositions)|interfaces|libs|matrix|misc|numerical(|[.]backends)|rings|sets))[.]all\s+import' + pattern: 'from\s+sage(|[.](arith|categories|combinat|ext|graphs(|[.]decompositions)|interfaces|libs|matrix|misc|numerical(|[.]backends)|rings(|[.]finite_rings)|sets))[.]all\s+import' filePattern: '.*[.](py|pyx|pxi)$' error: false # Make this a warning instead of an error for now diff --git a/src/sage/rings/finite_rings/__init__.py b/src/sage/rings/finite_rings/__init__.py deleted file mode 100644 index e69de29bb2d..00000000000 From 6ce26bc9f01f71faeb4a144a67b8487671cc45f5 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Mon, 5 Dec 2022 15:16:51 -0800 Subject: [PATCH 03/49] src/sage/rings/finite_rings/finite_field_constructor.py: Restore re-export of is_FiniteField --- src/sage/rings/finite_rings/finite_field_constructor.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/sage/rings/finite_rings/finite_field_constructor.py b/src/sage/rings/finite_rings/finite_field_constructor.py index 544e8125880..a264e86ecd5 100644 --- a/src/sage/rings/finite_rings/finite_field_constructor.py +++ b/src/sage/rings/finite_rings/finite_field_constructor.py @@ -177,7 +177,7 @@ from sage.rings.integer import Integer # the import below is just a redirection -from sage.rings.finite_rings.finite_field_base import FiniteField +from sage.rings.finite_rings.finite_field_base import is_FiniteField assert is_FiniteField # just to silent pyflakes try: From 98a5484775ac1ec596baa9a3739499cf22cc61f0 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Mon, 5 Dec 2022 15:28:53 -0800 Subject: [PATCH 04/49] src/sage/rings/finite_rings/hom_finite_field.pyx: Import ABC as FiniteField_base --- src/sage/rings/finite_rings/hom_finite_field.pyx | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/src/sage/rings/finite_rings/hom_finite_field.pyx b/src/sage/rings/finite_rings/hom_finite_field.pyx index 55f2cac6a1d..44dc3450be8 100644 --- a/src/sage/rings/finite_rings/hom_finite_field.pyx +++ b/src/sage/rings/finite_rings/hom_finite_field.pyx @@ -106,7 +106,7 @@ from sage.rings.integer cimport Integer from sage.categories.homset import Hom from sage.structure.element cimport Element -from sage.rings.finite_rings.finite_field_base import FiniteField +from sage.rings.finite_rings.finite_field_base import FiniteField as FiniteField_base from sage.rings.morphism cimport RingHomomorphism, RingHomomorphism_im_gens, FrobeniusEndomorphism_generic from sage.rings.finite_rings.finite_field_constructor import FiniteField @@ -227,9 +227,9 @@ cdef class FiniteFieldHomomorphism_generic(RingHomomorphism_im_gens): """ domain = parent.domain() codomain = parent.codomain() - if not isinstance(domain, FiniteField): + if not isinstance(domain, FiniteField_base): raise TypeError("The domain is not a finite field or does not provide the required interface for finite fields") - if not isinstance(codomain, FiniteField): + if not isinstance(codomain, FiniteField_base): raise TypeError("The codomain is not a finite field or does not provide the required interface for finite fields") if domain.characteristic() != codomain.characteristic() or codomain.degree() % domain.degree() != 0: raise ValueError("No embedding of %s into %s" % (domain, codomain)) @@ -522,7 +522,7 @@ cdef class FrobeniusEndomorphism_finite_field(FrobeniusEndomorphism_generic): ... TypeError: The domain is not a finite field or does not provide the required interface for finite fields """ - if not isinstance(domain, FiniteField): + if not isinstance(domain, FiniteField_base): raise TypeError("The domain is not a finite field or does not provide the required interface for finite fields") try: n = Integer(n) From 2e6b5efe57a925b6bd5c2d9b8ad49f7718e05af7 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Mon, 5 Dec 2022 15:29:18 -0800 Subject: [PATCH 05/49] sage.rings.finite_rings: Deprecate is_FiniteFieldElent --- src/sage/crypto/mq/rijndael_gf.py | 12 +++--------- src/sage/crypto/sbox.pyx | 5 ++--- .../dynamics/arithmetic_dynamics/projective_ds.py | 1 + src/sage/rings/algebraic_closure_finite_field.py | 3 +-- src/sage/rings/finite_rings/element_base.pyx | 8 +++++++- src/sage/rings/padics/padic_template_element.pxi | 5 +++-- src/sage/schemes/elliptic_curves/ell_finite_field.py | 5 +++-- 7 files changed, 20 insertions(+), 19 deletions(-) diff --git a/src/sage/crypto/mq/rijndael_gf.py b/src/sage/crypto/mq/rijndael_gf.py index 154c84d146c..1e08fb8e998 100644 --- a/src/sage/crypto/mq/rijndael_gf.py +++ b/src/sage/crypto/mq/rijndael_gf.py @@ -424,7 +424,7 @@ from sage.matrix.constructor import matrix from sage.matrix.constructor import column_matrix -from sage.structure.element import Matrix +from sage.structure.element import FieldElement, Matrix from sage.rings.finite_rings.finite_field_constructor import FiniteField from sage.structure.sage_object import SageObject from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing @@ -757,10 +757,7 @@ def _GF_to_hex(self, GF): sage: rgf._GF_to_hex(output) 'e142cd5fcd9d6d94a3340793034391b5' """ - from sage.rings.finite_rings.element_base import is_FiniteFieldElement - if not isinstance(GF, Matrix) and \ - not isinstance(GF, list) and \ - not is_FiniteFieldElement(GF): + if not isinstance(GF, (Matrix, list, FieldElement)): msg = ("keyword 'GF' must be a matrix over {0}, a list of " "elements from {0}, or a single element from {0}") raise TypeError(msg.format(self._F)) @@ -883,10 +880,7 @@ def _GF_to_bin(self, GF): sage: rgf._GF_to_bin(output) '11011000000111111111100000011011110110000001111111111000000110111101100000011111111110000001101111011000000111111111100000011011' """ - from sage.rings.finite_rings.element_base import is_FiniteFieldElement - if not isinstance(GF, Matrix) and \ - not isinstance(GF, list) and \ - not is_FiniteFieldElement(GF): + if not isinstance(GF, (Matrix, list, FieldElement)): msg = ("keyword 'GF' must be a matrix over {0}, a list of " "elements from {0}, or a single element from {0}") raise TypeError(msg.format(self)) diff --git a/src/sage/crypto/sbox.pyx b/src/sage/crypto/sbox.pyx index 77b7a904cc2..fb9a6f39da3 100644 --- a/src/sage/crypto/sbox.pyx +++ b/src/sage/crypto/sbox.pyx @@ -5,7 +5,7 @@ cimport cython from cysignals.memory cimport check_allocarray, sig_free from sage.structure.sage_object cimport SageObject -from sage.structure.element cimport Element +from sage.structure.element cimport Element, FieldElement from sage.combinat.integer_vector import IntegerVectors from sage.crypto.boolean_function import BooleanFunction @@ -17,7 +17,6 @@ from sage.misc.functional import is_even from sage.misc.misc_c import prod as mul from sage.misc.superseded import deprecated_function_alias from sage.modules.free_module_element import vector -from sage.rings.finite_rings.element_base import is_FiniteFieldElement from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF from sage.rings.ideal import FieldIdeal, Ideal from sage.rings.integer_ring import ZZ @@ -195,7 +194,7 @@ cdef class SBox(SageObject): _S_list = [] for e in S: - if is_FiniteFieldElement(e): + if isinstance(e, FieldElement) and e.parent().is_finite(): e = e.polynomial().change_ring(ZZ).subs(e.parent().characteristic()) _S_list.append(e) S = _S_list diff --git a/src/sage/dynamics/arithmetic_dynamics/projective_ds.py b/src/sage/dynamics/arithmetic_dynamics/projective_ds.py index 30b11ce4261..eb18d2fd0d3 100644 --- a/src/sage/dynamics/arithmetic_dynamics/projective_ds.py +++ b/src/sage/dynamics/arithmetic_dynamics/projective_ds.py @@ -73,6 +73,7 @@ class initialization directly. from sage.categories.finite_fields import FiniteFields from sage.rings.algebraic_closure_finite_field import AlgebraicClosureFiniteField_generic from sage.rings.complex_mpfr import ComplexField +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.rings.finite_rings.finite_field_constructor import GF from sage.rings.finite_rings.integer_mod_ring import Zmod from sage.rings.fraction_field import (FractionField, is_FractionField, FractionField_1poly_field) diff --git a/src/sage/rings/algebraic_closure_finite_field.py b/src/sage/rings/algebraic_closure_finite_field.py index 8577f1c613e..5d05d77a9c7 100644 --- a/src/sage/rings/algebraic_closure_finite_field.py +++ b/src/sage/rings/algebraic_closure_finite_field.py @@ -57,7 +57,6 @@ from sage.misc.abstract_method import abstract_method from sage.misc.fast_methods import WithEqualityById -from sage.rings.finite_rings.element_base import is_FiniteFieldElement from sage.rings.finite_rings.finite_field_base import FiniteField from sage.rings.ring import Field from sage.structure.element import FieldElement @@ -91,7 +90,7 @@ def __init__(self, parent, value): and ``loads(dumps(x))``. """ - if is_FiniteFieldElement(value): + if isinstance(value, FieldElement) and value.parent().is_finite(): n = value.parent().degree() else: from sage.rings.integer import Integer diff --git a/src/sage/rings/finite_rings/element_base.pyx b/src/sage/rings/finite_rings/element_base.pyx index 02ca50d18d1..d92fbb792d2 100755 --- a/src/sage/rings/finite_rings/element_base.pyx +++ b/src/sage/rings/finite_rings/element_base.pyx @@ -25,18 +25,24 @@ from sage.misc.superseded import deprecated_function_alias def is_FiniteFieldElement(x): """ - Returns if x is a finite field element. + Return True if ``x`` is a finite field element. + + This function is deprecated. EXAMPLES:: sage: from sage.rings.finite_rings.element_base import is_FiniteFieldElement sage: is_FiniteFieldElement(1) + doctest:...: DeprecationWarning: the function is_FiniteFieldElement is deprecated; use isinstance(x, sage.structure.element.FieldElement) and x.parent().is_finite() instead False sage: is_FiniteFieldElement(IntegerRing()) False sage: is_FiniteFieldElement(GF(5)(2)) True """ + from sage.misc.superseded import deprecation + deprecation(32664, "the function is_FiniteFieldElement is deprecated; use isinstance(x, sage.structure.element.FieldElement) and x.parent().is_finite() instead") + from sage.rings.finite_rings.finite_field_base import FiniteField return isinstance(x, Element) and isinstance(x.parent(), FiniteField) diff --git a/src/sage/rings/padics/padic_template_element.pxi b/src/sage/rings/padics/padic_template_element.pxi index fed8ac89f81..2356fe9b2e6 100644 --- a/src/sage/rings/padics/padic_template_element.pxi +++ b/src/sage/rings/padics/padic_template_element.pxi @@ -30,13 +30,14 @@ import sage.rings.finite_rings.integer_mod from cypari2.types cimport * from cypari2.gen cimport Gen as pari_gen from sage.libs.pari.convert_gmp cimport INT_to_mpz +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.rings.padics.common_conversion cimport get_ordp, get_preccap from sage.rings.integer cimport Integer from sage.rings.infinity import infinity from sage.rings.rational import Rational from sage.rings.padics.precision_error import PrecisionError from sage.rings.padics.misc import trim_zeros -from sage.structure.element import canonical_coercion +from sage.structure.element import canonical_coercion, FieldElement import itertools cdef long maxordp = (1L << (sizeof(long) * 8 - 2)) - 1 @@ -145,7 +146,7 @@ cdef class pAdicTemplateElement(pAdicGenericElement): elif sage.rings.finite_rings.integer_mod.is_IntegerMod(x): if not Integer(self.prime_pow.prime).divides(x.parent().order()): raise TypeError("p does not divide modulus %s"%x.parent().order()) - elif sage.rings.finite_rings.element_base.is_FiniteFieldElement(x): + elif isinstance(x, FieldElement) and isinstance(x.parent(), FiniteField): k = self.parent().residue_field() if not k.has_coerce_map_from(x.parent()): raise NotImplementedError("conversion from finite fields which do not embed into the residue field not implemented") diff --git a/src/sage/schemes/elliptic_curves/ell_finite_field.py b/src/sage/schemes/elliptic_curves/ell_finite_field.py index 6676a1964c2..bd7aaf44c09 100644 --- a/src/sage/schemes/elliptic_curves/ell_finite_field.py +++ b/src/sage/schemes/elliptic_curves/ell_finite_field.py @@ -29,7 +29,8 @@ from .constructor import EllipticCurve from sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field import HyperellipticCurve_finite_field from sage.rings.all import Integer, ZZ, PolynomialRing, GF, polygen -from sage.rings.finite_rings.element_base import is_FiniteFieldElement +from sage.rings.finite_rings.finite_field_base import FiniteField +from sage.structure.element import FieldElement import sage.groups.generic as generic from . import ell_point from sage.arith.all import gcd, lcm, binomial @@ -1529,7 +1530,7 @@ def is_j_supersingular(j, proof=True): sage: [p for p in prime_range(100) if is_j_supersingular(GF(p)(123456))] [2, 3, 59, 89] """ - if not is_FiniteFieldElement(j): + if not (isinstance(j, FieldElement) and isinstance(j.parent(), FiniteField)): raise ValueError("%s must be an element of a finite field" % j) F = j.parent() From 3be7c975fb00896aef21d721eda69d6d22759385 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Mon, 5 Dec 2022 16:30:09 -0800 Subject: [PATCH 06/49] Fixups --- src/sage/modules/free_module.py | 4 ++-- src/sage/rings/finite_rings/element_base.pyx | 1 + src/sage/rings/finite_rings/finite_field_base.pyx | 1 + src/sage/rings/finite_rings/finite_field_constructor.py | 2 ++ src/sage/schemes/hyperelliptic_curves/constructor.py | 6 +++++- 5 files changed, 11 insertions(+), 3 deletions(-) diff --git a/src/sage/modules/free_module.py b/src/sage/modules/free_module.py index ff916cc4ad2..6b2f5b87b27 100644 --- a/src/sage/modules/free_module.py +++ b/src/sage/modules/free_module.py @@ -183,7 +183,6 @@ import sage.misc.latex as latex from sage.modules.module import Module -import sage.rings.finite_rings.finite_field_constructor as finite_field import sage.rings.ring as ring import sage.rings.abc import sage.rings.integer_ring @@ -195,6 +194,7 @@ from sage.categories.infinite_enumerated_sets import InfiniteEnumeratedSets from sage.misc.lazy_attribute import lazy_attribute from sage.misc.randstate import current_randstate +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.structure.factory import UniqueFactory from sage.structure.sequence import Sequence from sage.structure.richcmp import (richcmp_method, rich_to_bool, richcmp, @@ -6348,7 +6348,7 @@ def _element_constructor_(self, e, *args, **kwds): """ try: k = e.parent() - if finite_field.isinstance(k, FiniteField) and k.base_ring() == self.base_ring() and k.degree() == self.degree(): + if isinstance(k, FiniteField) and k.base_ring() == self.base_ring() and k.degree() == self.degree(): return self(e._vector_()) except AttributeError: pass diff --git a/src/sage/rings/finite_rings/element_base.pyx b/src/sage/rings/finite_rings/element_base.pyx index d92fbb792d2..17ca80e9028 100755 --- a/src/sage/rings/finite_rings/element_base.pyx +++ b/src/sage/rings/finite_rings/element_base.pyx @@ -34,6 +34,7 @@ def is_FiniteFieldElement(x): sage: from sage.rings.finite_rings.element_base import is_FiniteFieldElement sage: is_FiniteFieldElement(1) doctest:...: DeprecationWarning: the function is_FiniteFieldElement is deprecated; use isinstance(x, sage.structure.element.FieldElement) and x.parent().is_finite() instead + See https://trac.sagemath.org/32664 for details. False sage: is_FiniteFieldElement(IntegerRing()) False diff --git a/src/sage/rings/finite_rings/finite_field_base.pyx b/src/sage/rings/finite_rings/finite_field_base.pyx index d13c93f23be..09959aeae49 100644 --- a/src/sage/rings/finite_rings/finite_field_base.pyx +++ b/src/sage/rings/finite_rings/finite_field_base.pyx @@ -2122,6 +2122,7 @@ def is_FiniteField(R): sage: from sage.rings.finite_rings.finite_field_base import FiniteField sage: is_FiniteField(GF(9,'a')) doctest:...: DeprecationWarning: the function is_FiniteField is deprecated; use isinstance(x, sage.rings.finite_rings.finite_field_base.FiniteField) instead + See https://trac.sagemath.org/32664 for details. True sage: is_FiniteField(GF(next_prime(10^10))) True diff --git a/src/sage/rings/finite_rings/finite_field_constructor.py b/src/sage/rings/finite_rings/finite_field_constructor.py index a264e86ecd5..23ed63d8b30 100644 --- a/src/sage/rings/finite_rings/finite_field_constructor.py +++ b/src/sage/rings/finite_rings/finite_field_constructor.py @@ -797,8 +797,10 @@ def is_PrimeFiniteField(x): EXAMPLES:: + sage: from sage.rings.finite_rings.finite_field_constructor import is_PrimeFiniteField sage: is_PrimeFiniteField(QQ) doctest:...: DeprecationWarning: the function is_PrimeFiniteField is deprecated; use isinstance(x, sage.rings.finite_rings.finite_field_base.FiniteField) and x.is_prime_field() instead + See https://trac.sagemath.org/32664 for details. False sage: is_PrimeFiniteField(GF(7)) True diff --git a/src/sage/schemes/hyperelliptic_curves/constructor.py b/src/sage/schemes/hyperelliptic_curves/constructor.py index 590677e21a9..21afb10ef3a 100644 --- a/src/sage/schemes/hyperelliptic_curves/constructor.py +++ b/src/sage/schemes/hyperelliptic_curves/constructor.py @@ -249,7 +249,11 @@ def HyperellipticCurve(f, h=0, names=None, PP=None, check_squarefree=True): genus_classes = {2: HyperellipticCurve_g2} - is_pAdicField = lambda x: isinstance(x, sage.rings.abc.pAdicField) + def is_FiniteField(x): + return isinstance(x, FiniteField) + + def is_pAdicField(x): + return isinstance(x, sage.rings.abc.pAdicField) fields = [ ("FiniteField", is_FiniteField, HyperellipticCurve_finite_field), From 97a363e8cc60fc67718fad16d16ce583f24a7e0d Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Mon, 5 Dec 2022 17:58:06 -0800 Subject: [PATCH 07/49] Fixups --- src/sage/interfaces/gap.py | 2 +- src/sage/rings/finite_rings/finite_field_base.pyx | 2 +- src/sage/rings/finite_rings/finite_field_ntl_gf2e.py | 1 + src/sage/rings/finite_rings/hom_prime_finite_field.pyx | 2 +- src/sage/symbolic/ring.pyx | 4 ++-- 5 files changed, 6 insertions(+), 5 deletions(-) diff --git a/src/sage/interfaces/gap.py b/src/sage/interfaces/gap.py index c80a847d7e9..e105d5845ca 100644 --- a/src/sage/interfaces/gap.py +++ b/src/sage/interfaces/gap.py @@ -1743,7 +1743,7 @@ def intmod_gap_to_sage(x): sage: b.parent() Ring of integers modulo 65537 """ - from sage.rings.finite_rings.all import FiniteField + from sage.rings.finite_rings.finite_field_constructor import FiniteField from sage.rings.finite_rings.integer_mod import Mod from sage.rings.integer import Integer s = str(x) diff --git a/src/sage/rings/finite_rings/finite_field_base.pyx b/src/sage/rings/finite_rings/finite_field_base.pyx index 09959aeae49..470bbdf0502 100644 --- a/src/sage/rings/finite_rings/finite_field_base.pyx +++ b/src/sage/rings/finite_rings/finite_field_base.pyx @@ -2119,7 +2119,7 @@ def is_FiniteField(R): EXAMPLES:: - sage: from sage.rings.finite_rings.finite_field_base import FiniteField + sage: from sage.rings.finite_rings.finite_field_base import is_FiniteField sage: is_FiniteField(GF(9,'a')) doctest:...: DeprecationWarning: the function is_FiniteField is deprecated; use isinstance(x, sage.rings.finite_rings.finite_field_base.FiniteField) instead See https://trac.sagemath.org/32664 for details. diff --git a/src/sage/rings/finite_rings/finite_field_ntl_gf2e.py b/src/sage/rings/finite_rings/finite_field_ntl_gf2e.py index 82004502674..47723af64bd 100644 --- a/src/sage/rings/finite_rings/finite_field_ntl_gf2e.py +++ b/src/sage/rings/finite_rings/finite_field_ntl_gf2e.py @@ -52,6 +52,7 @@ def late_import(): import sage.rings.polynomial.polynomial_element is_Polynomial = sage.rings.polynomial.polynomial_element.is_Polynomial + class FiniteField_ntl_gf2e(FiniteField): """ Finite Field of characteristic 2 and order `2^n`. diff --git a/src/sage/rings/finite_rings/hom_prime_finite_field.pyx b/src/sage/rings/finite_rings/hom_prime_finite_field.pyx index 8120f5a4cd6..617595ea383 100644 --- a/src/sage/rings/finite_rings/hom_prime_finite_field.pyx +++ b/src/sage/rings/finite_rings/hom_prime_finite_field.pyx @@ -33,7 +33,7 @@ from .hom_finite_field cimport SectionFiniteFieldHomomorphism_generic from .hom_finite_field cimport FiniteFieldHomomorphism_generic from .hom_finite_field cimport FrobeniusEndomorphism_finite_field -from sage.rings.finite_rings.finite_field_base import FiniteField, is_FiniteField +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.rings.morphism cimport RingHomomorphism_im_gens diff --git a/src/sage/symbolic/ring.pyx b/src/sage/symbolic/ring.pyx index 9ecb93578d8..ce033910621 100644 --- a/src/sage/symbolic/ring.pyx +++ b/src/sage/symbolic/ring.pyx @@ -234,8 +234,8 @@ cdef class SymbolicRing(sage.rings.abc.SymbolicRing): sage.rings.abc.ComplexIntervalField, sage.rings.abc.RealBallField, sage.rings.abc.ComplexBallField, - sage.rings.abc.IntegerModRing)) - or isinstance(R, FiniteField)): + sage.rings.abc.IntegerModRing, + FiniteField))): return True elif isinstance(R, GenericSymbolicSubring): return True From 0c014033f33a907da6ba7c48224102e0ddd82af3 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Mon, 5 Dec 2022 18:53:12 -0800 Subject: [PATCH 08/49] Fixup: Elements of finite fields are not instances of FieldElement --- src/sage/crypto/mq/rijndael_gf.py | 10 +++++++--- src/sage/crypto/sbox.pyx | 5 +++-- src/sage/rings/algebraic_closure_finite_field.py | 4 ++-- src/sage/rings/padics/padic_template_element.pxi | 4 ++-- src/sage/schemes/elliptic_curves/ell_finite_field.py | 4 ++-- 5 files changed, 16 insertions(+), 11 deletions(-) diff --git a/src/sage/crypto/mq/rijndael_gf.py b/src/sage/crypto/mq/rijndael_gf.py index 1e08fb8e998..2dccf6b03b4 100644 --- a/src/sage/crypto/mq/rijndael_gf.py +++ b/src/sage/crypto/mq/rijndael_gf.py @@ -424,7 +424,7 @@ from sage.matrix.constructor import matrix from sage.matrix.constructor import column_matrix -from sage.structure.element import FieldElement, Matrix +from sage.structure.element import Element, Matrix from sage.rings.finite_rings.finite_field_constructor import FiniteField from sage.structure.sage_object import SageObject from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing @@ -757,7 +757,9 @@ def _GF_to_hex(self, GF): sage: rgf._GF_to_hex(output) 'e142cd5fcd9d6d94a3340793034391b5' """ - if not isinstance(GF, (Matrix, list, FieldElement)): + if not isinstance(GF, Matrix) and \ + not isinstance(GF, list) and \ + not (isinstance(GF, Element) and isinstance(GF.parent(), FiniteField)): msg = ("keyword 'GF' must be a matrix over {0}, a list of " "elements from {0}, or a single element from {0}") raise TypeError(msg.format(self._F)) @@ -880,7 +882,9 @@ def _GF_to_bin(self, GF): sage: rgf._GF_to_bin(output) '11011000000111111111100000011011110110000001111111111000000110111101100000011111111110000001101111011000000111111111100000011011' """ - if not isinstance(GF, (Matrix, list, FieldElement)): + if not isinstance(GF, Matrix) and \ + not isinstance(GF, list) and \ + not (isinstance(GF, Element) and isinstance(GF.parent(), FiniteField)): msg = ("keyword 'GF' must be a matrix over {0}, a list of " "elements from {0}, or a single element from {0}") raise TypeError(msg.format(self)) diff --git a/src/sage/crypto/sbox.pyx b/src/sage/crypto/sbox.pyx index fb9a6f39da3..87683d79517 100644 --- a/src/sage/crypto/sbox.pyx +++ b/src/sage/crypto/sbox.pyx @@ -5,7 +5,7 @@ cimport cython from cysignals.memory cimport check_allocarray, sig_free from sage.structure.sage_object cimport SageObject -from sage.structure.element cimport Element, FieldElement +from sage.structure.element cimport Element from sage.combinat.integer_vector import IntegerVectors from sage.crypto.boolean_function import BooleanFunction @@ -17,6 +17,7 @@ from sage.misc.functional import is_even from sage.misc.misc_c import prod as mul from sage.misc.superseded import deprecated_function_alias from sage.modules.free_module_element import vector +from sage.rings.finite_rings.finite_field_base import FiniteField from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF from sage.rings.ideal import FieldIdeal, Ideal from sage.rings.integer_ring import ZZ @@ -194,7 +195,7 @@ cdef class SBox(SageObject): _S_list = [] for e in S: - if isinstance(e, FieldElement) and e.parent().is_finite(): + if isinstance(e, Element) and isinstance(e.parent(), FiniteField): e = e.polynomial().change_ring(ZZ).subs(e.parent().characteristic()) _S_list.append(e) S = _S_list diff --git a/src/sage/rings/algebraic_closure_finite_field.py b/src/sage/rings/algebraic_closure_finite_field.py index 5d05d77a9c7..c527bcb6dc4 100644 --- a/src/sage/rings/algebraic_closure_finite_field.py +++ b/src/sage/rings/algebraic_closure_finite_field.py @@ -59,7 +59,7 @@ from sage.rings.finite_rings.finite_field_base import FiniteField from sage.rings.ring import Field -from sage.structure.element import FieldElement +from sage.structure.element import Element, FieldElement from sage.structure.richcmp import richcmp @@ -90,7 +90,7 @@ def __init__(self, parent, value): and ``loads(dumps(x))``. """ - if isinstance(value, FieldElement) and value.parent().is_finite(): + if isinstance(value, Element) and isinstance(value.parent(), FiniteField): n = value.parent().degree() else: from sage.rings.integer import Integer diff --git a/src/sage/rings/padics/padic_template_element.pxi b/src/sage/rings/padics/padic_template_element.pxi index 2356fe9b2e6..72ff7784eb1 100644 --- a/src/sage/rings/padics/padic_template_element.pxi +++ b/src/sage/rings/padics/padic_template_element.pxi @@ -37,7 +37,7 @@ from sage.rings.infinity import infinity from sage.rings.rational import Rational from sage.rings.padics.precision_error import PrecisionError from sage.rings.padics.misc import trim_zeros -from sage.structure.element import canonical_coercion, FieldElement +from sage.structure.element import canonical_coercion, Element import itertools cdef long maxordp = (1L << (sizeof(long) * 8 - 2)) - 1 @@ -146,7 +146,7 @@ cdef class pAdicTemplateElement(pAdicGenericElement): elif sage.rings.finite_rings.integer_mod.is_IntegerMod(x): if not Integer(self.prime_pow.prime).divides(x.parent().order()): raise TypeError("p does not divide modulus %s"%x.parent().order()) - elif isinstance(x, FieldElement) and isinstance(x.parent(), FiniteField): + elif isinstance(x, Element) and isinstance(x.parent(), FiniteField): k = self.parent().residue_field() if not k.has_coerce_map_from(x.parent()): raise NotImplementedError("conversion from finite fields which do not embed into the residue field not implemented") diff --git a/src/sage/schemes/elliptic_curves/ell_finite_field.py b/src/sage/schemes/elliptic_curves/ell_finite_field.py index bd7aaf44c09..863c56b22ea 100644 --- a/src/sage/schemes/elliptic_curves/ell_finite_field.py +++ b/src/sage/schemes/elliptic_curves/ell_finite_field.py @@ -30,7 +30,7 @@ from sage.schemes.hyperelliptic_curves.hyperelliptic_finite_field import HyperellipticCurve_finite_field from sage.rings.all import Integer, ZZ, PolynomialRing, GF, polygen from sage.rings.finite_rings.finite_field_base import FiniteField -from sage.structure.element import FieldElement +from sage.structure.element import Element import sage.groups.generic as generic from . import ell_point from sage.arith.all import gcd, lcm, binomial @@ -1530,7 +1530,7 @@ def is_j_supersingular(j, proof=True): sage: [p for p in prime_range(100) if is_j_supersingular(GF(p)(123456))] [2, 3, 59, 89] """ - if not (isinstance(j, FieldElement) and isinstance(j.parent(), FiniteField)): + if not (isinstance(j, Element) and isinstance(j.parent(), FiniteField)): raise ValueError("%s must be an element of a finite field" % j) F = j.parent() From 9f4d1c4bd227c145d964bff1a4f40305f780be2d Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Mon, 5 Dec 2022 19:26:05 -0800 Subject: [PATCH 09/49] src/sage/crypto/mq/rijndael_gf.py: Fix imports --- src/sage/crypto/mq/rijndael_gf.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/src/sage/crypto/mq/rijndael_gf.py b/src/sage/crypto/mq/rijndael_gf.py index 2dccf6b03b4..6bcb86f4d21 100644 --- a/src/sage/crypto/mq/rijndael_gf.py +++ b/src/sage/crypto/mq/rijndael_gf.py @@ -425,6 +425,7 @@ from sage.matrix.constructor import matrix from sage.matrix.constructor import column_matrix from sage.structure.element import Element, Matrix +from sage.rings.finite_rings.finite_field_base import FiniteField as FiniteField_base from sage.rings.finite_rings.finite_field_constructor import FiniteField from sage.structure.sage_object import SageObject from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing @@ -759,7 +760,7 @@ def _GF_to_hex(self, GF): """ if not isinstance(GF, Matrix) and \ not isinstance(GF, list) and \ - not (isinstance(GF, Element) and isinstance(GF.parent(), FiniteField)): + not (isinstance(GF, Element) and isinstance(GF.parent(), FiniteField_base)): msg = ("keyword 'GF' must be a matrix over {0}, a list of " "elements from {0}, or a single element from {0}") raise TypeError(msg.format(self._F)) @@ -884,7 +885,7 @@ def _GF_to_bin(self, GF): """ if not isinstance(GF, Matrix) and \ not isinstance(GF, list) and \ - not (isinstance(GF, Element) and isinstance(GF.parent(), FiniteField)): + not (isinstance(GF, Element) and isinstance(GF.parent(), FiniteField_base)): msg = ("keyword 'GF' must be a matrix over {0}, a list of " "elements from {0}, or a single element from {0}") raise TypeError(msg.format(self)) From bdf2f331e31f0583a247409ef4b47beeb2b4cef7 Mon Sep 17 00:00:00 2001 From: Alex Chandler Date: Sun, 29 Jan 2023 10:46:39 -0800 Subject: [PATCH 10/49] sage -fiximports src/sage/algebras src/sage/combinat src/sage/matroids --- .../algebras/affine_nil_temperley_lieb.py | 2 +- src/sage/algebras/cluster_algebra.py | 2 +- src/sage/algebras/free_algebra.py | 4 +- src/sage/algebras/free_algebra_quotient.py | 2 +- src/sage/algebras/group_algebra.py | 4 +- .../hecke_algebras/ariki_koike_algebra.py | 2 +- src/sage/algebras/iwahori_hecke_algebra.py | 6 +- src/sage/algebras/lie_algebras/bch.py | 2 +- .../algebras/lie_algebras/free_lie_algebra.py | 2 +- .../lie_conformal_algebra_element.py | 2 +- ..._conformal_algebra_with_structure_coefs.py | 2 +- .../algebras/quatalg/quaternion_algebra.py | 11 +- src/sage/algebras/schur_algebra.py | 2 +- src/sage/algebras/shuffle_algebra.py | 2 +- .../algebras/steenrod/steenrod_algebra.py | 6 +- .../steenrod/steenrod_algebra_mult.py | 5 +- src/sage/combinat/affine_permutation.py | 2 +- src/sage/combinat/alternating_sign_matrix.py | 2 +- src/sage/combinat/baxter_permutations.py | 2 +- .../combinat/binary_recurrence_sequences.py | 6 +- src/sage/combinat/blob_algebra.py | 2 +- .../cluster_algebra_quiver/cluster_seed.py | 8 +- .../combinat/cluster_algebra_quiver/quiver.py | 4 +- .../quiver_mutation_type.py | 3 +- src/sage/combinat/combinat.py | 3 +- src/sage/combinat/combination.py | 2 +- src/sage/combinat/composition_signed.py | 2 +- src/sage/combinat/crystals/alcove_path.py | 2 +- .../combinat/cyclic_sieving_phenomenon.py | 2 +- src/sage/combinat/decorated_permutation.py | 2 +- src/sage/combinat/descent_algebra.py | 2 +- src/sage/combinat/designs/bibd.py | 3 +- src/sage/combinat/designs/block_design.py | 4 +- src/sage/combinat/designs/covering_design.py | 2 +- .../combinat/designs/difference_family.py | 152 +++++++++--------- .../combinat/designs/difference_matrices.py | 3 +- .../designs/group_divisible_designs.py | 2 +- .../combinat/designs/incidence_structures.py | 2 +- .../orthogonal_arrays_build_recursive.py | 8 +- .../orthogonal_arrays_find_recursive.pyx | 2 +- src/sage/combinat/designs/resolvable_bibd.py | 2 +- src/sage/combinat/dyck_word.py | 6 +- src/sage/combinat/free_module.py | 5 +- src/sage/combinat/fully_packed_loop.py | 2 +- src/sage/combinat/integer_vector.py | 2 +- src/sage/combinat/integer_vector_weighted.py | 3 +- src/sage/combinat/interval_posets.py | 4 +- src/sage/combinat/matrices/hadamard_matrix.py | 26 +-- src/sage/combinat/matrices/latin.py | 2 +- .../multiset_partition_into_sets_ordered.py | 2 +- .../combinat/ncsf_qsym/generic_basis_code.py | 2 +- src/sage/combinat/ncsf_qsym/ncsf.py | 4 +- src/sage/combinat/ncsf_qsym/qsym.py | 2 +- src/sage/combinat/ncsym/bases.py | 4 +- src/sage/combinat/necklace.py | 5 +- src/sage/combinat/partition.py | 5 +- src/sage/combinat/partition_algebra.py | 3 +- src/sage/combinat/path_tableaux/frieze.py | 2 +- src/sage/combinat/permutation.py | 3 +- src/sage/combinat/posets/hasse_diagram.py | 2 +- src/sage/combinat/posets/posets.py | 2 +- .../rigged_configurations/kleber_tree.py | 2 +- .../combinat/root_system/cartan_matrix.py | 2 +- src/sage/combinat/root_system/coxeter_type.py | 2 +- .../root_system/reflection_group_complex.py | 5 +- .../root_system/reflection_group_element.pyx | 3 +- .../combinat/root_system/weyl_characters.py | 3 +- src/sage/combinat/root_system/weyl_group.py | 4 +- src/sage/combinat/schubert_polynomial.py | 2 +- src/sage/combinat/set_partition_ordered.py | 3 +- src/sage/combinat/sf/character.py | 4 +- src/sage/combinat/sf/elementary.py | 3 +- src/sage/combinat/sf/homogeneous.py | 3 +- src/sage/combinat/sf/jack.py | 3 +- src/sage/combinat/sf/k_dual.py | 2 +- src/sage/combinat/sf/macdonald.py | 2 +- src/sage/combinat/sf/powersum.py | 2 +- src/sage/combinat/sf/sfa.py | 8 +- src/sage/combinat/sf/witt.py | 4 +- src/sage/combinat/similarity_class_type.py | 3 +- src/sage/combinat/skew_tableau.py | 4 +- src/sage/combinat/species/cycle_species.py | 3 +- .../combinat/species/generating_series.py | 2 +- src/sage/combinat/subset.py | 4 +- src/sage/combinat/symmetric_group_algebra.py | 2 +- src/sage/combinat/t_sequences.py | 116 ++++++------- src/sage/combinat/tableau.py | 3 +- src/sage/combinat/tableau_tuple.py | 2 +- src/sage/combinat/tamari_lattices.py | 2 +- src/sage/combinat/words/lyndon_word.py | 5 +- src/sage/combinat/words/morphism.py | 2 +- src/sage/combinat/words/paths.py | 2 +- src/sage/combinat/words/shuffle_product.py | 2 +- src/sage/combinat/words/word_generators.py | 2 +- src/sage/matroids/basis_matroid.pyx | 2 +- src/sage/matroids/constructor.py | 3 +- src/sage/matroids/extension.pyx | 2 +- src/sage/matroids/lean_matrix.pyx | 5 +- src/sage/matroids/linear_matroid.pyx | 5 +- 99 files changed, 328 insertions(+), 266 deletions(-) diff --git a/src/sage/algebras/affine_nil_temperley_lieb.py b/src/sage/algebras/affine_nil_temperley_lieb.py index 8aff4321abb..f7901ae314d 100644 --- a/src/sage/algebras/affine_nil_temperley_lieb.py +++ b/src/sage/algebras/affine_nil_temperley_lieb.py @@ -7,7 +7,7 @@ # Distributed under the terms of the GNU General Public License (GPL) # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.categories.all import AlgebrasWithBasis +from sage.categories.algebras_with_basis import AlgebrasWithBasis from sage.combinat.root_system.cartan_type import CartanType from sage.combinat.root_system.weyl_group import WeylGroup from sage.rings.ring import Ring diff --git a/src/sage/algebras/cluster_algebra.py b/src/sage/algebras/cluster_algebra.py index 81615828b56..f3e88d96298 100644 --- a/src/sage/algebras/cluster_algebra.py +++ b/src/sage/algebras/cluster_algebra.py @@ -354,7 +354,7 @@ from copy import copy -from sage.arith.all import binomial +from sage.arith.misc import binomial from sage.categories.homset import Hom from sage.categories.morphism import SetMorphism from sage.categories.rings import Rings diff --git a/src/sage/algebras/free_algebra.py b/src/sage/algebras/free_algebra.py index 7286f62ce27..3004878a378 100644 --- a/src/sage/algebras/free_algebra.py +++ b/src/sage/algebras/free_algebra.py @@ -149,7 +149,7 @@ from sage.structure.factory import UniqueFactory from sage.misc.cachefunc import cached_method -from sage.all import PolynomialRing +from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.ring import Algebra from sage.categories.algebras_with_basis import AlgebrasWithBasis from sage.combinat.free_module import CombinatorialFreeModule @@ -282,7 +282,7 @@ def create_key(self, base_ring, arg1=None, arg2=None, PolRing = PolynomialRing(base_ring, *args, **kwds) if degrees is None: return (PolRing,) - from sage.all import TermOrder + from sage.rings.polynomial.term_order import TermOrder T = TermOrder(PolRing.term_order(), PolRing.ngens() + 1) varnames = list(PolRing.variable_names()) newname = 'x' diff --git a/src/sage/algebras/free_algebra_quotient.py b/src/sage/algebras/free_algebra_quotient.py index 583eb5f9ae8..b3090baa029 100644 --- a/src/sage/algebras/free_algebra_quotient.py +++ b/src/sage/algebras/free_algebra_quotient.py @@ -357,7 +357,7 @@ def hamilton_quatalg(R): """ n = 3 from sage.algebras.free_algebra import FreeAlgebra - from sage.matrix.all import MatrixSpace + from sage.matrix.matrix_space import MatrixSpace A = FreeAlgebra(R, n, 'i') F = A.monoid() i, j, k = F.gens() diff --git a/src/sage/algebras/group_algebra.py b/src/sage/algebras/group_algebra.py index 6821a64f68f..c639106b239 100644 --- a/src/sage/algebras/group_algebra.py +++ b/src/sage/algebras/group_algebra.py @@ -35,8 +35,8 @@ # http://www.gnu.org/licenses/ #***************************************************************************** -from sage.rings.all import IntegerRing -from sage.categories.all import Rings +from sage.rings.integer_ring import IntegerRing +from sage.categories.rings import Rings from sage.categories.magmas import Magmas from sage.categories.additive_magmas import AdditiveMagmas from sage.categories.sets_cat import Sets diff --git a/src/sage/algebras/hecke_algebras/ariki_koike_algebra.py b/src/sage/algebras/hecke_algebras/ariki_koike_algebra.py index c1596761c99..5f21e1049b0 100644 --- a/src/sage/algebras/hecke_algebras/ariki_koike_algebra.py +++ b/src/sage/algebras/hecke_algebras/ariki_koike_algebra.py @@ -540,7 +540,7 @@ def dimension(self): sage: LT.dimension() 29160 """ - from sage.arith.all import factorial + from sage.arith.misc import factorial return self._r**self._n * factorial(self._n) def some_elements(self): diff --git a/src/sage/algebras/iwahori_hecke_algebra.py b/src/sage/algebras/iwahori_hecke_algebra.py index 900039c7909..a9935dd36e2 100644 --- a/src/sage/algebras/iwahori_hecke_algebra.py +++ b/src/sage/algebras/iwahori_hecke_algebra.py @@ -30,10 +30,12 @@ from sage.structure.parent import Parent from sage.structure.unique_representation import UniqueRepresentation from sage.categories.realizations import Realizations, Category_realization_of_parent -from sage.categories.all import AlgebrasWithBasis, FiniteDimensionalAlgebrasWithBasis, CoxeterGroups +from sage.categories.algebras_with_basis import AlgebrasWithBasis +from sage.categories.finite_dimensional_algebras_with_basis import FiniteDimensionalAlgebrasWithBasis +from sage.categories.coxeter_groups import CoxeterGroups from sage.rings.integer_ring import ZZ from sage.rings.polynomial.laurent_polynomial_ring import LaurentPolynomialRing -from sage.arith.all import is_square +from sage.arith.misc import is_square from sage.combinat.root_system.coxeter_group import CoxeterGroup from sage.sets.family import Family from sage.combinat.free_module import CombinatorialFreeModule diff --git a/src/sage/algebras/lie_algebras/bch.py b/src/sage/algebras/lie_algebras/bch.py index 1cb3f0442cb..657b8c194a1 100644 --- a/src/sage/algebras/lie_algebras/bch.py +++ b/src/sage/algebras/lie_algebras/bch.py @@ -20,7 +20,7 @@ from sage.arith.misc import bernoulli from sage.categories.lie_algebras import LieAlgebras from sage.combinat.integer_vector import IntegerListsLex -from sage.arith.all import factorial +from sage.arith.misc import factorial from sage.rings.rational_field import QQ from sage.structure.element import canonical_coercion diff --git a/src/sage/algebras/lie_algebras/free_lie_algebra.py b/src/sage/algebras/lie_algebras/free_lie_algebra.py index 8a02e5265c6..79df5a5d90b 100644 --- a/src/sage/algebras/lie_algebras/free_lie_algebra.py +++ b/src/sage/algebras/lie_algebras/free_lie_algebra.py @@ -265,7 +265,7 @@ def graded_dimension(self, k): """ if k == 0: return 0 - from sage.arith.all import moebius + from sage.arith.misc import moebius s = len(self.lie_algebra_generators()) k = ZZ(k) # Make sure we have something that is in ZZ return sum(moebius(d) * s**(k // d) for d in k.divisors()) // k diff --git a/src/sage/algebras/lie_conformal_algebras/lie_conformal_algebra_element.py b/src/sage/algebras/lie_conformal_algebras/lie_conformal_algebra_element.py index c40e654e157..d10426501f2 100644 --- a/src/sage/algebras/lie_conformal_algebras/lie_conformal_algebra_element.py +++ b/src/sage/algebras/lie_conformal_algebras/lie_conformal_algebra_element.py @@ -14,7 +14,7 @@ # (at your option) any later version. # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.arith.all import factorial +from sage.arith.misc import factorial from sage.misc.misc_c import prod from sage.misc.repr import repr_lincomb from sage.misc.latex import latex diff --git a/src/sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_structure_coefs.py b/src/sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_structure_coefs.py index b2cf3582793..46119ad45f1 100644 --- a/src/sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_structure_coefs.py +++ b/src/sage/algebras/lie_conformal_algebras/lie_conformal_algebra_with_structure_coefs.py @@ -17,7 +17,7 @@ # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.arith.all import binomial +from sage.arith.misc import binomial from sage.sets.family import Family from .lie_conformal_algebra_element import LCAStructureCoefficientsElement from sage.categories.lie_conformal_algebras import LieConformalAlgebras diff --git a/src/sage/algebras/quatalg/quaternion_algebra.py b/src/sage/algebras/quatalg/quaternion_algebra.py index 45a4d512c0a..0e4b1e979a8 100644 --- a/src/sage/algebras/quatalg/quaternion_algebra.py +++ b/src/sage/algebras/quatalg/quaternion_algebra.py @@ -35,9 +35,14 @@ # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.arith.all import (hilbert_conductor_inverse, hilbert_conductor, - factor, gcd, kronecker_symbol, valuation) -from sage.rings.all import RR, Integer +from sage.arith.misc import hilbert_conductor_inverse +from sage.arith.misc import hilbert_conductor +from sage.arith.misc import factor +from sage.arith.misc import GCD as gcd +from sage.arith.misc import kronecker as kronecker_symbol +from sage.arith.misc import valuation +from sage.rings.real_mpfr import RR +from sage.rings.integer import Integer from sage.rings.integer_ring import ZZ from sage.rings.rational import Rational from sage.rings.finite_rings.finite_field_constructor import GF diff --git a/src/sage/algebras/schur_algebra.py b/src/sage/algebras/schur_algebra.py index b716db0ce94..ff960e56dd9 100644 --- a/src/sage/algebras/schur_algebra.py +++ b/src/sage/algebras/schur_algebra.py @@ -41,7 +41,7 @@ from sage.combinat.sf.sf import SymmetricFunctions from sage.combinat.symmetric_group_algebra import SymmetricGroupAlgebra from sage.combinat.tableau import SemistandardTableaux -from sage.arith.all import binomial +from sage.arith.misc import binomial from sage.matrix.constructor import Matrix from sage.misc.cachefunc import cached_method from sage.misc.flatten import flatten diff --git a/src/sage/algebras/shuffle_algebra.py b/src/sage/algebras/shuffle_algebra.py index 26c8a40f485..5d383f8dfab 100644 --- a/src/sage/algebras/shuffle_algebra.py +++ b/src/sage/algebras/shuffle_algebra.py @@ -972,7 +972,7 @@ def expansion_on_basis(self, w): sage: S.expansion_on_basis(Word('abab')) 2*B[aabb] + B[abab] """ - from sage.arith.all import factorial + from sage.arith.misc import factorial if not w: return self._alg.one() if len(w) == 1: diff --git a/src/sage/algebras/steenrod/steenrod_algebra.py b/src/sage/algebras/steenrod/steenrod_algebra.py index 49b281d9a49..978a3557a9d 100644 --- a/src/sage/algebras/steenrod/steenrod_algebra.py +++ b/src/sage/algebras/steenrod/steenrod_algebra.py @@ -455,7 +455,9 @@ from sage.combinat.free_module import CombinatorialFreeModule from sage.misc.lazy_attribute import lazy_attribute from sage.misc.cachefunc import cached_method -from sage.categories.all import ModulesWithBasis, tensor, Hom +from sage.categories.modules_with_basis import ModulesWithBasis +from sage.categories.tensor import tensor +from sage.categories.homset import Hom ###################################################### # the main class @@ -584,7 +586,7 @@ def __init__(self, p=2, basis='milnor', **kwds): sage: A1 == SteenrodAlgebra(2, profile=[2,1], basis='pst') False """ - from sage.arith.all import is_prime + from sage.arith.misc import is_prime from sage.categories.super_hopf_algebras_with_basis import SuperHopfAlgebrasWithBasis from sage.categories.infinite_enumerated_sets import InfiniteEnumeratedSets from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets diff --git a/src/sage/algebras/steenrod/steenrod_algebra_mult.py b/src/sage/algebras/steenrod/steenrod_algebra_mult.py index ec92c86fcc5..1fb52aba028 100644 --- a/src/sage/algebras/steenrod/steenrod_algebra_mult.py +++ b/src/sage/algebras/steenrod/steenrod_algebra_mult.py @@ -611,8 +611,9 @@ def multinomial_odd(list,p): sage: multinomial_odd([1,2,4], 107) 105 """ - from sage.rings.all import GF, Integer - from sage.arith.all import binomial + from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF + from sage.rings.integer import Integer + from sage.arith.misc import binomial n = sum(list) answer = 1 F = GF(p) diff --git a/src/sage/combinat/affine_permutation.py b/src/sage/combinat/affine_permutation.py index 9ee4e166abe..22bb6a4e421 100644 --- a/src/sage/combinat/affine_permutation.py +++ b/src/sage/combinat/affine_permutation.py @@ -23,7 +23,7 @@ from sage.rings.integer_ring import ZZ from sage.groups.perm_gps.permgroup_named import SymmetricGroup -from sage.arith.all import binomial +from sage.arith.misc import binomial from sage.combinat.root_system.cartan_type import CartanType from sage.combinat.root_system.weyl_group import WeylGroup from sage.combinat.composition import Composition diff --git a/src/sage/combinat/alternating_sign_matrix.py b/src/sage/combinat/alternating_sign_matrix.py index c7c7317811c..e9eb810cd6d 100644 --- a/src/sage/combinat/alternating_sign_matrix.py +++ b/src/sage/combinat/alternating_sign_matrix.py @@ -46,7 +46,7 @@ from sage.modules.free_module_element import zero_vector from sage.misc.cachefunc import cached_method from sage.rings.integer_ring import ZZ -from sage.arith.all import factorial +from sage.arith.misc import factorial from sage.rings.integer import Integer from sage.combinat.posets.lattices import LatticePoset from sage.combinat.gelfand_tsetlin_patterns import GelfandTsetlinPatternsTopRow diff --git a/src/sage/combinat/baxter_permutations.py b/src/sage/combinat/baxter_permutations.py index 382e4abcdab..ddf46c37457 100644 --- a/src/sage/combinat/baxter_permutations.py +++ b/src/sage/combinat/baxter_permutations.py @@ -231,7 +231,7 @@ def cardinality(self): """ if self._n == 0: return 1 - from sage.arith.all import binomial + from sage.arith.misc import binomial return sum((binomial(self._n + 1, k) * binomial(self._n + 1, k + 1) * binomial(self._n + 1, k + 2)) // diff --git a/src/sage/combinat/binary_recurrence_sequences.py b/src/sage/combinat/binary_recurrence_sequences.py index 4dd28d897fe..ecfcc2ccd4e 100644 --- a/src/sage/combinat/binary_recurrence_sequences.py +++ b/src/sage/combinat/binary_recurrence_sequences.py @@ -65,7 +65,11 @@ from sage.rings.finite_rings.integer_mod_ring import Integers from sage.rings.finite_rings.finite_field_constructor import GF from sage.rings.integer import Integer -from sage.arith.all import lcm, next_prime, is_prime, next_prime_power, legendre_symbol +from sage.arith.functions import lcm +from sage.arith.misc import next_prime +from sage.arith.misc import is_prime +from sage.arith.misc import next_prime_power +from sage.arith.misc import legendre_symbol from sage.functions.log import log from sage.misc.functional import sqrt diff --git a/src/sage/combinat/blob_algebra.py b/src/sage/combinat/blob_algebra.py index 5da88de497f..992cb461b63 100644 --- a/src/sage/combinat/blob_algebra.py +++ b/src/sage/combinat/blob_algebra.py @@ -24,7 +24,7 @@ #from sage.misc.inherit_comparison import InheritComparisonClasscallMetaclass from sage.misc.cachefunc import cached_method from sage.misc.misc import powerset -from sage.arith.all import binomial +from sage.arith.misc import binomial from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets from sage.categories.algebras import Algebras from sage.combinat.diagram_algebras import (TemperleyLiebDiagrams, diagram_latex, diff --git a/src/sage/combinat/cluster_algebra_quiver/cluster_seed.py b/src/sage/combinat/cluster_algebra_quiver/cluster_seed.py index d7c4d849e0c..246768ef1d7 100644 --- a/src/sage/combinat/cluster_algebra_quiver/cluster_seed.py +++ b/src/sage/combinat/cluster_algebra_quiver/cluster_seed.py @@ -43,13 +43,13 @@ from sage.rings.fraction_field import FractionField from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.fraction_field_element import FractionFieldElement -from sage.sets.all import Set +from sage.sets.set import Set from sage.graphs.digraph import DiGraph from sage.combinat.cluster_algebra_quiver.quiver_mutation_type import QuiverMutationType_Irreducible, QuiverMutationType_Reducible from sage.combinat.cluster_algebra_quiver.mutation_type import is_mutation_finite from random import randint from sage.misc.misc_c import prod -from sage.matrix.all import identity_matrix +from sage.matrix.special import identity_matrix from sage.matrix.constructor import matrix from sage.combinat.cluster_algebra_quiver.quiver import ClusterQuiver from sage.rings.integer import Integer @@ -3110,7 +3110,7 @@ def principal_extension(self): sage: T2 == T True """ - from sage.matrix.all import identity_matrix + from sage.matrix.special import identity_matrix if self._m != 0: raise ValueError("the b-matrix is not square") M = self._M.stack(identity_matrix(self._n)) @@ -4600,7 +4600,7 @@ def _bino(n, k): 0 """ if n >= 0: - from sage.arith.all import binomial + from sage.arith.misc import binomial return binomial(n, k) else: return 0 diff --git a/src/sage/combinat/cluster_algebra_quiver/quiver.py b/src/sage/combinat/cluster_algebra_quiver/quiver.py index 8808c9f2053..52156babeb2 100644 --- a/src/sage/combinat/cluster_algebra_quiver/quiver.py +++ b/src/sage/combinat/cluster_algebra_quiver/quiver.py @@ -558,7 +558,9 @@ def plot(self, circular=True, center=(0, 0), directed=True, mark=None, """ from sage.plot.colors import rainbow from sage.graphs.graph_generators import GraphGenerators - from sage.all import e, pi, I + from sage.symbolic.constants import e + from sage.symbolic.constants import pi + from sage.rings.imaginary_unit import I graphs = GraphGenerators() # returns positions for graph vertices on two concentric cycles with radius 1 and 2 diff --git a/src/sage/combinat/cluster_algebra_quiver/quiver_mutation_type.py b/src/sage/combinat/cluster_algebra_quiver/quiver_mutation_type.py index 80e66662a2e..59ebbfc9c07 100644 --- a/src/sage/combinat/cluster_algebra_quiver/quiver_mutation_type.py +++ b/src/sage/combinat/cluster_algebra_quiver/quiver_mutation_type.py @@ -27,7 +27,8 @@ from sage.rings.infinity import infinity from sage.graphs.digraph import DiGraph from sage.graphs.graph import Graph -from sage.arith.all import binomial, euler_phi +from sage.arith.misc import binomial +from sage.arith.misc import euler_phi from sage.misc.misc_c import prod from sage.matrix.constructor import matrix diff --git a/src/sage/combinat/combinat.py b/src/sage/combinat/combinat.py index e5ad98ea4ab..fb125cf49aa 100644 --- a/src/sage/combinat/combinat.py +++ b/src/sage/combinat/combinat.py @@ -171,7 +171,8 @@ from sage.rings.rational_field import QQ from sage.rings.integer import Integer from sage.rings.infinity import infinity -from sage.arith.all import bernoulli, factorial +from sage.arith.misc import bernoulli +from sage.arith.misc import factorial from sage.rings.polynomial.polynomial_element import Polynomial from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.libs.pari.all import pari diff --git a/src/sage/combinat/combination.py b/src/sage/combinat/combination.py index 810e55308ec..42e727c6877 100644 --- a/src/sage/combinat/combination.py +++ b/src/sage/combinat/combination.py @@ -28,7 +28,7 @@ from sage.rings.integer import Integer from sage.rings.integer_ring import ZZ -from sage.arith.all import binomial +from sage.arith.misc import binomial from .integer_vector import IntegerVectors from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets from sage.structure.parent import Parent diff --git a/src/sage/combinat/composition_signed.py b/src/sage/combinat/composition_signed.py index 8d8b78bcd59..17e26066e95 100644 --- a/src/sage/combinat/composition_signed.py +++ b/src/sage/combinat/composition_signed.py @@ -20,7 +20,7 @@ from sage.rings.integer_ring import ZZ from .composition import Compositions_n, Composition from sage.rings.integer import Integer -from sage.arith.all import binomial +from sage.arith.misc import binomial class SignedCompositions(Compositions_n): diff --git a/src/sage/combinat/crystals/alcove_path.py b/src/sage/combinat/crystals/alcove_path.py index fdc06a06d25..2bbe8592cd4 100644 --- a/src/sage/combinat/crystals/alcove_path.py +++ b/src/sage/combinat/crystals/alcove_path.py @@ -31,7 +31,7 @@ from sage.graphs.digraph import DiGraph from sage.combinat.root_system.cartan_type import CartanType from sage.combinat.root_system.root_system import RootSystem -from sage.all import vector +from sage.modules.free_module_element import free_module_element as vector from sage.rings.integer import Integer from sage.combinat.root_system.weyl_group import WeylGroup from sage.misc.misc_c import prod diff --git a/src/sage/combinat/cyclic_sieving_phenomenon.py b/src/sage/combinat/cyclic_sieving_phenomenon.py index e654a8fc94a..d09168791cb 100644 --- a/src/sage/combinat/cyclic_sieving_phenomenon.py +++ b/src/sage/combinat/cyclic_sieving_phenomenon.py @@ -26,7 +26,7 @@ # **************************************************************************** from __future__ import annotations from sage.rings.integer_ring import ZZ -from sage.arith.all import lcm +from sage.arith.functions import lcm from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing diff --git a/src/sage/combinat/decorated_permutation.py b/src/sage/combinat/decorated_permutation.py index 44ebba094b4..7845749177c 100644 --- a/src/sage/combinat/decorated_permutation.py +++ b/src/sage/combinat/decorated_permutation.py @@ -24,7 +24,7 @@ from sage.structure.unique_representation import UniqueRepresentation from sage.structure.parent import Parent from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets -from sage.arith.all import factorial +from sage.arith.misc import factorial from sage.rings.integer import Integer from sage.combinat.permutation import Permutations from sage.combinat.subset import Subsets diff --git a/src/sage/combinat/descent_algebra.py b/src/sage/combinat/descent_algebra.py index 3707a258e47..d40fb7ea25e 100644 --- a/src/sage/combinat/descent_algebra.py +++ b/src/sage/combinat/descent_algebra.py @@ -19,7 +19,7 @@ from sage.structure.unique_representation import UniqueRepresentation from sage.categories.algebras import Algebras from sage.categories.realizations import Realizations, Category_realization_of_parent -from sage.categories.all import FiniteDimensionalAlgebrasWithBasis +from sage.categories.finite_dimensional_algebras_with_basis import FiniteDimensionalAlgebrasWithBasis from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ from sage.arith.misc import factorial diff --git a/src/sage/combinat/designs/bibd.py b/src/sage/combinat/designs/bibd.py index 72be454ec63..996ab02a584 100644 --- a/src/sage/combinat/designs/bibd.py +++ b/src/sage/combinat/designs/bibd.py @@ -53,7 +53,8 @@ from sage.categories.sets_cat import EmptySetError from sage.misc.unknown import Unknown from .design_catalog import transversal_design # type:ignore -from sage.arith.all import binomial, is_prime_power +from sage.arith.misc import binomial +from sage.arith.misc import is_prime_power from .group_divisible_designs import GroupDivisibleDesign from .designs_pyx import is_pairwise_balanced_design diff --git a/src/sage/combinat/designs/block_design.py b/src/sage/combinat/designs/block_design.py index abdaca1e17b..884cafd003e 100644 --- a/src/sage/combinat/designs/block_design.py +++ b/src/sage/combinat/designs/block_design.py @@ -55,7 +55,9 @@ from sage.modules.free_module import VectorSpace from sage.rings.integer import Integer from sage.rings.integer_ring import ZZ -from sage.arith.all import binomial, integer_floor, is_prime_power +from sage.arith.misc import binomial +from sage.arith.misc import integer_floor +from sage.arith.misc import is_prime_power from .incidence_structures import IncidenceStructure from sage.rings.finite_rings.finite_field_constructor import FiniteField from sage.categories.sets_cat import EmptySetError diff --git a/src/sage/combinat/designs/covering_design.py b/src/sage/combinat/designs/covering_design.py index 1c0dfa47628..d87ddc6dfbd 100644 --- a/src/sage/combinat/designs/covering_design.py +++ b/src/sage/combinat/designs/covering_design.py @@ -51,7 +51,7 @@ from sage.misc.sage_eval import sage_eval from sage.structure.sage_object import SageObject from sage.rings.rational import Rational -from sage.arith.all import binomial +from sage.arith.misc import binomial from sage.combinat.combination import Combinations from sage.combinat.designs.incidence_structures import IncidenceStructure from sage.cpython.string import bytes_to_str diff --git a/src/sage/combinat/designs/difference_family.py b/src/sage/combinat/designs/difference_family.py index 8846dcd06bc..ed9bb493616 100644 --- a/src/sage/combinat/designs/difference_family.py +++ b/src/sage/combinat/designs/difference_family.py @@ -1268,8 +1268,8 @@ def turyn_1965_3x3xK(k=4): def _is_periodic_sequence(seq, period): r"""Check if the sequence is periodic with correct period. - - The sequence should have length at least twice the period, so that + + The sequence should have length at least twice the period, so that periodicity can be checked. INPUT: @@ -1280,7 +1280,7 @@ def _is_periodic_sequence(seq, period): EXAMPLES:: - sage: from sage.combinat.designs.difference_family import _is_periodic_sequence + sage: from sage.combinat.designs.difference_family import _is_periodic_sequence sage: _is_periodic_sequence([0, 1, 2, 3, 0, 1, 2, 3], 4) True sage: _is_periodic_sequence([0, 1, 0, 1, 0, 1, 0, 1], 4) @@ -1304,18 +1304,18 @@ def _is_periodic_sequence(seq, period): return True def _create_m_sequence(q, n, check=True): - r"""Create an m-sequence over GF(q) with period `q^n-1`. - + r"""Create an m-sequence over GF(q) with period `q^n-1`. + Given a prime power `q`, the m-sequence is created as described by [Zie1959]_ from a primitive function over the finite field `GF(q)`. - Given a primitive function `f=c_0+c_1x+...+c_nx^n` over `K=GF(q)` of degree `n`, + Given a primitive function `f=c_0+c_1x+...+c_nx^n` over `K=GF(q)` of degree `n`, the recurrence is given by: `a_i = -c_0^{-1}(c_1a_{i-1}+...+c_na{i-n})`. The first `n` elements will be `0,0,...,0,1` and these will give a maximal length recurrence sequence as shown in [Mit2008]_. INPUT: - + - ``q`` -- a prime power. - ``n`` -- a nonnegative number. @@ -1344,18 +1344,18 @@ def _create_m_sequence(q, n, check=True): raise ValueError('n cannot be negative') K = GF(q, 'a') - + T = PolynomialRing(K, 'x') primitive = T.irreducible_element(n, algorithm='random') while not primitive.is_primitive(): primitive = T.irreducible_element(n, algorithm='random') coeffs = primitive.coefficients() exps = primitive.exponents() - + period = q**n - 1 seq_len = period*2 if check else period seq = [1]+[0]*(n-1) - + while len(seq) < seq_len: nxt = 0 for i, coeff in zip(exps[1:], coeffs[1:]): @@ -1368,14 +1368,14 @@ def _create_m_sequence(q, n, check=True): def _get_submodule_of_order(G, order): r"""Construct a submodule of the given order from group `G`. - + This method tries to construct submodules from various elements of `G` until - a submodule of the correct order is found. - + a submodule of the correct order is found. + INPUT: - + - ``G`` -- an additive abelian group. - + - ``order`` -- integer, the order of the desired syubmodule. TESTS: @@ -1396,9 +1396,9 @@ def _get_submodule_of_order(G, order): def relative_difference_set_from_m_sequence(q, N, check=True): r"""Construct `R((q^N-1)/(q-1), q-1, q^{N-1}, q^{N-2})` where `q` is a prime power and `N\ge 2`. - + The relative difference set is constructed over the set of additive integers modulo `q^N-1`, - as described in Theorem 5.1 of [EB1966]_. Given an m-sequence `(a_i)` of period `q^N-1`, the + as described in Theorem 5.1 of [EB1966]_. Given an m-sequence `(a_i)` of period `q^N-1`, the set is: `R=\{i | 0 \le i \le q^{N-1}, a_i=1\}`. INPUT: @@ -1412,7 +1412,7 @@ def relative_difference_set_from_m_sequence(q, N, check=True): EXAMPLES:: - sage: from sage.combinat.designs.difference_family import relative_difference_set_from_m_sequence + sage: from sage.combinat.designs.difference_family import relative_difference_set_from_m_sequence sage: relative_difference_set_from_m_sequence(2, 4) #random [(0), (4), (5), (6), (7), (9), (11), (12)] sage: relative_difference_set_from_m_sequence(8, 2, check=False) #random @@ -1446,7 +1446,7 @@ def relative_difference_set_from_m_sequence(q, N, check=True): m_seq = _create_m_sequence(q, N, check=False) period = q**N-1 G = AdditiveAbelianGroup([period]) - + set1 = [i for i in G if m_seq[i[0]] == 1] if check: @@ -1524,9 +1524,9 @@ def relative_difference_set_from_homomorphism(q, N, d, check=True): def is_relative_difference_set(R, G, H, params, verbose =False): r"""Check if `R` is a difference set of `G` relative to `H`, with the given parameters. - This function checks that `G`, `H` and `R` have the orders specified in the parameters, and + This function checks that `G`, `H` and `R` have the orders specified in the parameters, and that `R` satisfies the definition of relative difference set (from [EB1966]_): the collection of - differences `r-s`, `r,s \in R`, `r \neq s` contains only elements of `G` which are not in `H`, and contains + differences `r-s`, `r,s \in R`, `r \neq s` contains only elements of `G` which are not in `H`, and contains every such element exactly `d` times. INPUT: @@ -1562,33 +1562,33 @@ def is_relative_difference_set(R, G, H, params, verbose =False): """ m, n, k, d = params if G.order() != m*n: - if verbose: + if verbose: print('Incorrect order of G:', G.order()) return False if H.order() != n: - if verbose: + if verbose: print('Incorect order of H:', H.order()) if len(R) != k: - if verbose: + if verbose: print('Length of R not correct:', len(R)) return False - + diff_set = {} for el1 in R: for el2 in R: if el1 != el2: idx = el1-el2 - if idx not in diff_set: + if idx not in diff_set: diff_set[idx] = 0 diff_set[idx] += 1 values = [diff_set[x] for x in diff_set] if max(values) != d or min(values) != d: - if verbose: + if verbose: print('There is a value in the difference set which is not repeated d times') return False - + for el in G: if el in H and el in diff_set: if verbose: @@ -1603,8 +1603,8 @@ def is_relative_difference_set(R, G, H, params, verbose =False): def is_supplementary_difference_set(Ks, v, lmbda): r"""Check that the sets in ``Ks`` are `n-\{v; k_1,...,k_n; \lambda \}` supplementary difference sets. - - From the definition in [Spe1975]_: let `S_1, S_2, ..., S_n` be `n` subsets of an additive abelian group `G` of order `v` + + From the definition in [Spe1975]_: let `S_1, S_2, ..., S_n` be `n` subsets of an additive abelian group `G` of order `v` such that `|S_i|= k_i`. If, for each `g\in G`, `g \neq 0`, the total number of solutions of `a_i-a'_i = g`, with `a_i,a'_i \in S_i` is `\lambda`, then `S_1, S_2, ..., S_n` are `n-\{v; k_1,...,k_n;\lambda\}` supplementary difference sets. @@ -1617,7 +1617,7 @@ def is_supplementary_difference_set(Ks, v, lmbda): - ``lmbda`` -- integer, the parameter `\lambda` of the supplementary difference sets. EXAMPLES:: - + sage: from sage.combinat.designs.difference_family import supplementary_difference_set, is_supplementary_difference_set sage: S1, S2, S3, S4 = supplementary_difference_set(17) sage: is_supplementary_difference_set([S1, S2, S3, S4], 16, 16) @@ -1639,7 +1639,7 @@ def is_supplementary_difference_set(Ks, v, lmbda): for el1 in K: for el2 in K: diff = G[el1]-G[el2] - + if diff not in differences_counter: differences_counter[diff] = 0 differences_counter[diff] += 1 @@ -1655,12 +1655,12 @@ def is_supplementary_difference_set(Ks, v, lmbda): def supplementary_difference_set(q, existence=False, check=True): r"""Construct `4-\{2v; v, v+1, v, v; 2v\}` supplementary difference sets where `q=2v+1`. - The sets are created from relative difference sets as detailed in Theorem 3.3 of [Spe1975]_. this construction + The sets are created from relative difference sets as detailed in Theorem 3.3 of [Spe1975]_. this construction requires that `q` is an odd prime power and that there exists `s \ge 0` such that `(q-(2^{s+1}+1))/2^{s+1}` is an odd prime power. - Note that the construction from [Spe1975]_ states that the resulting sets are `4-\{2v; v+1, v, v, v; 2v\}` - supplementary difference sets. However, the implementation of that construction returns + Note that the construction from [Spe1975]_ states that the resulting sets are `4-\{2v; v+1, v, v, v; 2v\}` + supplementary difference sets. However, the implementation of that construction returns `4-\{2v; v, v+1, v, v; 2v\}` supplementary difference sets. This is not important, since the supplementary difference sets are not ordered. @@ -1671,14 +1671,14 @@ def supplementary_difference_set(q, existence=False, check=True): - ``existence`` -- boolean (dafault False). If true, only check whether the supplementary difference sets can be constructed. - - ``check`` -- boolean (default True). If true, check that the sets are supplementary difference sets + - ``check`` -- boolean (default True). If true, check that the sets are supplementary difference sets before returning them. OUTPUT: - If ``existence`` is false, the function returns the 4 sets (containing integers), or raises an + If ``existence`` is false, the function returns the 4 sets (containing integers), or raises an error if ``q`` does not satify the constraints. - If ``existence`` is true, the function returns a boolean representing whether supplementary difference + If ``existence`` is true, the function returns a boolean representing whether supplementary difference sets can be constructed. EXAMPLES:: @@ -1691,7 +1691,7 @@ def supplementary_difference_set(q, existence=False, check=True): [0, 2, 6, 9, 11, 12, 13, 15]) If existence is ``True``, the function returns a boolean:: - + sage: supplementary_difference_set(7, existence=True) False sage: supplementary_difference_set(17, existence=True) @@ -1732,8 +1732,8 @@ def supplementary_difference_set(q, existence=False, check=True): if is_prime_power(prime_pow) and prime_pow % 2 == 1: m = (q - (2**(s+1) + 1)) // 2**(s+1) + 1 break - s += 1 - + s += 1 + if existence: return is_prime_power(q) and q % 2 == 1 and m != -1 @@ -1741,12 +1741,12 @@ def supplementary_difference_set(q, existence=False, check=True): raise ValueError('q must be an odd prime power') if m == -1: raise ValueError('There is no s for which m-1 is an odd prime power') - + set1 = relative_difference_set_from_homomorphism(m-1, 2, (m-2)//2, check=False) - + from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing P = PolynomialRing(ZZ, 'x') - + #Compute psi3, psi4 hall = 0 for d in set1: @@ -1755,7 +1755,7 @@ def supplementary_difference_set(q, existence=False, check=True): T_2m = 0 for i in range(2*m): T_2m += P.monomial(i) - + modulo = P.monomial(2*m)-1 diff = T_2m - (1+P.monomial(m))*hall @@ -1771,7 +1771,7 @@ def supplementary_difference_set(q, existence=False, check=True): for i in range(s): psi3 = (alfa3(P.monomial(2))+P.monomial(1)*alfa4(P.monomial(2))).mod(P.monomial(4*m)-1) psi4 = (alfa3(P.monomial(2)) + P.monomial(1)*(T_2m(P.monomial(2)) - alfa4(P.monomial(2)))).mod(P.monomial(4*m)-1) - + # Construction of psi1, psi2 set2 = relative_difference_set_from_m_sequence(q, 2, check=False) s3 = _get_fixed_relative_difference_set(set2) @@ -1782,7 +1782,7 @@ def supplementary_difference_set(q, existence=False, check=True): diff = (s3[i]-s3[j]) if diff%(q-1) == 0 and diff%(q**2-1) != 0: phi_exps.append(s3[i]) - + exps1 = [(x+1)//2 for x in phi_exps if x%2 == 1] exps2 = [x//2 for x in phi_exps if x%2 == 0] @@ -1824,14 +1824,14 @@ def _get_fixed_relative_difference_set(rel_diff_set, as_elements=False): of this set fixed by `q` (see Section 3 of [Spe1975]_). We say that a set is fixed by `t` if `\{td | d\in R\}= R`. - In addition, the set returned by this function will contain the element `0`. This is needed in the + In addition, the set returned by this function will contain the element `0`. This is needed in the construction of supplementary difference sets (see :func:`supplementary_difference_set`). INPUT: - + - ``rel_diff_set`` -- the relative difference set. - - ``as_elements`` -- boolean (default False). If true, the list returned will contain elements of the + - ``as_elements`` -- boolean (default False). If true, the list returned will contain elements of the abelian group (this may slow down the computation considerably). OUTPUT: @@ -1842,11 +1842,11 @@ def _get_fixed_relative_difference_set(rel_diff_set, as_elements=False): EXAMPLES:: - sage: from sage.combinat.designs.difference_family import relative_difference_set_from_m_sequence, _get_fixed_relative_difference_set + sage: from sage.combinat.designs.difference_family import relative_difference_set_from_m_sequence, _get_fixed_relative_difference_set sage: s1 = relative_difference_set_from_m_sequence(5, 2) sage: _get_fixed_relative_difference_set(s1) #random - [2, 10, 19, 23, 0] - + [2, 10, 19, 23, 0] + If ``as_elements`` is true, the reuslt will contain elements of the group:: sage: _get_fixed_relative_difference_set(s1, as_elements=True) #random @@ -1871,7 +1871,7 @@ def _get_fixed_relative_difference_set(rel_diff_set, as_elements=False): """ G = rel_diff_set[0].parent() q = len(rel_diff_set) - + s2 = None for el in G: fixed_set = [el+x for x in rel_diff_set] @@ -1894,20 +1894,20 @@ def _get_fixed_relative_difference_set(rel_diff_set, as_elements=False): def _is_fixed_relative_difference_set(R, q): r"""Check if the relative difference set `R` is fixed by `q`. - + A relative difference set `R` is fixed by `q` if `\{qd | d\in R\}= R` (see Section 3 of [Spe1975]_). INPUT: - ``R`` -- the relative difference sets, as a list containing elements of the abelian group. - - ``q`` -- an integer. + - ``q`` -- an integer. EXAMPLES:: sage: from sage.combinat.designs.difference_family import relative_difference_set_from_m_sequence, _get_fixed_relative_difference_set, _is_fixed_relative_difference_set sage: s1 = relative_difference_set_from_m_sequence(7, 2) - sage: s2 = _get_fixed_relative_difference_set(s1, as_elements=True) + sage: s2 = _get_fixed_relative_difference_set(s1, as_elements=True) sage: _is_fixed_relative_difference_set(s2, len(s2)) True sage: G = AdditiveAbelianGroup([15]) @@ -1918,7 +1918,7 @@ def _is_fixed_relative_difference_set(R, q): If the relative difference set does not contain elements of the group, the method returns false:: sage: s1 = relative_difference_set_from_m_sequence(7, 2) - sage: s2 = _get_fixed_relative_difference_set(s1, as_elements=False) + sage: s2 = _get_fixed_relative_difference_set(s1, as_elements=False) sage: _is_fixed_relative_difference_set(s2, len(s2)) False @@ -1927,18 +1927,18 @@ def _is_fixed_relative_difference_set(R, q): for el in R: if q*el not in R: return False - return True + return True def skew_supplementary_difference_set(n, existence=False, check=True): r"""Construct `4-\{n; n_1, n_2, n_3, n_4; \lambda\}` supplementary difference sets where `S_1` is skew and `n_1+n_2+n_3+n_4= n+\lambda`. - These sets are constructed from available data, as described in [Djo1994]_. The set `S_1 \subset G` is + These sets are constructed from available data, as described in [Djo1994]_. The set `S_1 \subset G` is always skew, i.e. `S_1 \cap (-S_1) = \emptyset` and `S_1 \cup (-S_1) = G\setminus\{0\}`. The data for `n = 103, 151` is taken from [Djo1994]_ and the data for `n = 67, 113, 127, 157, 163, 181, 241` is taken from [Djo1992]_. - + INPUT: - ``n`` -- integer, the parameter of the supplementary difference set. @@ -1946,14 +1946,14 @@ def skew_supplementary_difference_set(n, existence=False, check=True): - ``existence`` -- boolean (dafault False). If true, only check whether the supplementary difference sets can be constructed. - - ``check`` -- boolean (default True). If true, check that the sets are supplementary difference sets + - ``check`` -- boolean (default True). If true, check that the sets are supplementary difference sets with `S_1` skew before returning them. Setting this parameter to False may speed up the computation considerably. - + OUTPUT: - If ``existence`` is false, the function returns the 4 sets (containing integers modulo `n`), or raises an + If ``existence`` is false, the function returns the 4 sets (containing integers modulo `n`), or raises an error if data for the given ``n`` is not available. - If ``existence`` is true, the function returns a boolean representing whether skew supplementary difference + If ``existence`` is true, the function returns a boolean representing whether skew supplementary difference sets can be constructed. EXAMPLES:: @@ -1962,7 +1962,7 @@ def skew_supplementary_difference_set(n, existence=False, check=True): sage: S1, S2, S3, S4 = skew_supplementary_difference_set(103) If existence is ``True``, the function returns a boolean :: - + sage: skew_supplementary_difference_set(103, existence=True) True sage: skew_supplementary_difference_set(17, existence=True) @@ -1991,14 +1991,14 @@ def skew_supplementary_difference_set(n, existence=False, check=True): True """ - + indices = { 67: [[0,3,5,6,9,10,13,14,17,18,20], [0,2,4,9,11,12,13,16,19,21], [1,3,6,10,11,13,14,16,20,21], [2,4,6,8,9,11,14,17,19]], - 103: [[1,3,4,6,8,11,12,14,17,18,20,22,25,27,28,30,32], - [2,9,10,12,13,14,15,16,20,21,22,23,24,26,28,29,30], + 103: [[1,3,4,6,8,11,12,14,17,18,20,22,25,27,28,30,32], + [2,9,10,12,13,14,15,16,20,21,22,23,24,26,28,29,30], [0,1,2,3,4,11,12,13,16,17,19,20,21,24,25,26,28,30,31], [0,1,2,3,4,5,6,13,15,18,19,20,23,24,25,26,27,28,29,31]], 113: [[0,3,4,6,8,10,13,14], @@ -2064,13 +2064,13 @@ def generate_set(index_set, cosets): if existence: return n in indices - + if n not in indices: raise ValueError(f'Skew SDS of order {n} not yet implemented.') - + Z = Zmod(n) H = list(map(Z, H_db[n])) - + cosets = [] for el in cosets_gens[n]: even_coset = [] @@ -2080,7 +2080,7 @@ def generate_set(index_set, cosets): odd_coset.append(-x*el) cosets.append(even_coset) cosets.append(odd_coset) - + S1 = generate_set(indices[n][0], cosets) S2 = generate_set(indices[n][1], cosets) S3 = generate_set(indices[n][2], cosets) @@ -2090,16 +2090,16 @@ def generate_set(index_set, cosets): lmbda = len(S1)+len(S2)+len(S3)+len(S4) - n assert is_supplementary_difference_set([S1, S2, S3, S4], n, lmbda) assert _is_skew_set(S1, n) - + return S1, S2, S3, S4 def _is_skew_set(S, n): r"""Check if `S` is a skew set over the set of integers modulo `n`. - From [Djo1994]_, a set `S \subset G` (where `G` is a finite abelian group of order `n`) is of skew + From [Djo1994]_, a set `S \subset G` (where `G` is a finite abelian group of order `n`) is of skew type if `S_1 \cap (-S_1) = \emptyset` and `S_1 \cup (-S_1) = G\setminus \{0\}`. - INPUT: + INPUT: - ``S`` -- the set to be checked, containing integers modulo `n`. diff --git a/src/sage/combinat/designs/difference_matrices.py b/src/sage/combinat/designs/difference_matrices.py index 03aeb966af5..72b935e0f94 100644 --- a/src/sage/combinat/designs/difference_matrices.py +++ b/src/sage/combinat/designs/difference_matrices.py @@ -14,7 +14,8 @@ from sage.misc.cachefunc import cached_function from sage.categories.sets_cat import EmptySetError from sage.rings.finite_rings.finite_field_constructor import FiniteField -from sage.arith.all import is_prime_power, divisors +from sage.arith.misc import is_prime_power +from sage.arith.misc import divisors from .designs_pyx import is_difference_matrix from .database import DM as DM_constructions diff --git a/src/sage/combinat/designs/group_divisible_designs.py b/src/sage/combinat/designs/group_divisible_designs.py index 6bb032a793d..b6898358c45 100644 --- a/src/sage/combinat/designs/group_divisible_designs.py +++ b/src/sage/combinat/designs/group_divisible_designs.py @@ -31,7 +31,7 @@ # http://www.gnu.org/licenses/ #***************************************************************************** -from sage.arith.all import is_prime_power +from sage.arith.misc import is_prime_power from sage.misc.unknown import Unknown from .incidence_structures import IncidenceStructure diff --git a/src/sage/combinat/designs/incidence_structures.py b/src/sage/combinat/designs/incidence_structures.py index dfb6c90f652..774885a0363 100644 --- a/src/sage/combinat/designs/incidence_structures.py +++ b/src/sage/combinat/designs/incidence_structures.py @@ -1577,7 +1577,7 @@ def is_t_design(self, t=None, v=None, k=None, l=None, return_parameters=False): sage: I.is_t_design(return_parameters=True) (False, (0, 0, 0, 0)) """ - from sage.arith.all import binomial + from sage.arith.misc import binomial # Missing parameters ? if v is None: diff --git a/src/sage/combinat/designs/orthogonal_arrays_build_recursive.py b/src/sage/combinat/designs/orthogonal_arrays_build_recursive.py index 526487adb97..9716849b744 100644 --- a/src/sage/combinat/designs/orthogonal_arrays_build_recursive.py +++ b/src/sage/combinat/designs/orthogonal_arrays_build_recursive.py @@ -365,7 +365,7 @@ def OA_and_oval(q, *, solver=None, integrality_tolerance=1e-3): sage: _ = OA_and_oval """ - from sage.arith.all import is_prime_power + from sage.arith.misc import is_prime_power from sage.combinat.designs.block_design import projective_plane from .orthogonal_arrays import OA_relabel @@ -683,7 +683,7 @@ def thwart_lemma_3_5(k,n,m,a,b,c,d=0,complement=False,explain_construction=False Charles J.Colbourn, Jeffrey H. Dinitz, Mieczyslaw Wojtas. Designs, Codes and Cryptography 5, no. 3 (1995): 189-197. """ - from sage.arith.all import is_prime_power + from sage.arith.misc import is_prime_power from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF if complement: @@ -797,7 +797,7 @@ def thwart_lemma_4_1(k,n,m,explain_construction=False): Canad. Math. Bull vol7 num.4 (1964) """ from sage.rings.finite_rings.finite_field_constructor import FiniteField - from sage.arith.all import is_prime_power + from sage.arith.misc import is_prime_power from .block_design import DesarguesianProjectivePlaneDesign from itertools import chain @@ -1387,7 +1387,7 @@ def brouwer_separable_design(k,t,q,x,check=False,verbose=False,explain_construct from sage.combinat.designs.orthogonal_arrays import OA_from_PBD from .difference_family import difference_family from .orthogonal_arrays import incomplete_orthogonal_array - from sage.arith.all import is_prime_power + from sage.arith.misc import is_prime_power if explain_construction: return ("Brouwer's separable design construction with t={},q={},x={} from:\n"+ diff --git a/src/sage/combinat/designs/orthogonal_arrays_find_recursive.pyx b/src/sage/combinat/designs/orthogonal_arrays_find_recursive.pyx index d1d4eb10828..3fee26e2a22 100644 --- a/src/sage/combinat/designs/orthogonal_arrays_find_recursive.pyx +++ b/src/sage/combinat/designs/orthogonal_arrays_find_recursive.pyx @@ -48,7 +48,7 @@ Functions from sage.misc.cachefunc import cached_function from .orthogonal_arrays import orthogonal_array from sage.rings.integer cimport Integer, smallInteger -from sage.arith.all import prime_powers +from sage.arith.misc import prime_powers @cached_function def find_recursive_construction(k, n): diff --git a/src/sage/combinat/designs/resolvable_bibd.py b/src/sage/combinat/designs/resolvable_bibd.py index 7085e2d9ab1..944a1b6d4a7 100644 --- a/src/sage/combinat/designs/resolvable_bibd.py +++ b/src/sage/combinat/designs/resolvable_bibd.py @@ -48,7 +48,7 @@ --------- """ from itertools import repeat -from sage.arith.all import is_prime_power +from sage.arith.misc import is_prime_power from sage.combinat.designs.bibd import BalancedIncompleteBlockDesign from sage.categories.sets_cat import EmptySetError from .bibd import balanced_incomplete_block_design diff --git a/src/sage/combinat/dyck_word.py b/src/sage/combinat/dyck_word.py index 78fc75dda53..db6ef33b337 100644 --- a/src/sage/combinat/dyck_word.py +++ b/src/sage/combinat/dyck_word.py @@ -89,7 +89,7 @@ from sage.structure.unique_representation import UniqueRepresentation from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets from sage.categories.infinite_enumerated_sets import InfiniteEnumeratedSets -from sage.categories.all import Posets +from sage.categories.posets import Posets from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ @@ -1978,7 +1978,7 @@ def number_of_parking_functions(self) -> int: sage: DyckWord(area_sequence=[0,0,0]).number_of_parking_functions() 6 """ - from sage.arith.all import multinomial + from sage.arith.misc import multinomial return multinomial(self.rise_composition()) def list_parking_functions(self): @@ -3774,7 +3774,7 @@ def cardinality(self) -> int: ....: for p in range(7)) True """ - from sage.arith.all import binomial + from sage.arith.misc import binomial return (self.k1 - self.k2 + 1) * binomial(self.k1 + self.k2, self.k2) // (self.k1 + 1) ################################################################ diff --git a/src/sage/combinat/free_module.py b/src/sage/combinat/free_module.py index d6042d6facc..9d4be0317c7 100644 --- a/src/sage/combinat/free_module.py +++ b/src/sage/combinat/free_module.py @@ -24,7 +24,10 @@ from sage.misc.cachefunc import cached_method from sage.misc.lazy_attribute import lazy_attribute from sage.categories.morphism import SetMorphism -from sage.categories.all import Category, Sets, ModulesWithBasis, GradedAlgebrasWithBasis +from sage.categories.category import Category +from sage.categories.sets_cat import Sets +from sage.categories.modules_with_basis import ModulesWithBasis +from sage.categories.graded_algebras_with_basis import GradedAlgebrasWithBasis from sage.categories.tensor import tensor import sage.data_structures.blas_dict as blas from sage.typeset.ascii_art import AsciiArt, ascii_art diff --git a/src/sage/combinat/fully_packed_loop.py b/src/sage/combinat/fully_packed_loop.py index 81eb5131349..4156e10c350 100644 --- a/src/sage/combinat/fully_packed_loop.py +++ b/src/sage/combinat/fully_packed_loop.py @@ -38,7 +38,7 @@ from sage.misc.decorators import options from sage.matrix.constructor import matrix -from sage.arith.all import factorial +from sage.arith.misc import factorial from sage.rings.integer import Integer from sage.misc.misc_c import prod diff --git a/src/sage/combinat/integer_vector.py b/src/sage/combinat/integer_vector.py index 2b88a6e3e1e..1a4f015adc4 100644 --- a/src/sage/combinat/integer_vector.py +++ b/src/sage/combinat/integer_vector.py @@ -42,7 +42,7 @@ from sage.categories.infinite_enumerated_sets import InfiniteEnumeratedSets from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets from sage.rings.infinity import PlusInfinity -from sage.arith.all import binomial +from sage.arith.misc import binomial from sage.rings.integer_ring import ZZ from sage.rings.semirings.non_negative_integer_semiring import NN from sage.rings.integer import Integer diff --git a/src/sage/combinat/integer_vector_weighted.py b/src/sage/combinat/integer_vector_weighted.py index 1c2c109217c..6cde208ea19 100644 --- a/src/sage/combinat/integer_vector_weighted.py +++ b/src/sage/combinat/integer_vector_weighted.py @@ -281,7 +281,8 @@ def __init__(self, weight): sage: TestSuite(C).run() """ self._weights = weight - from sage.sets.all import Family, NonNegativeIntegers + from sage.sets.family import Family + from sage.sets.non_negative_integers import NonNegativeIntegers # Use "partial" to make the basis function (with the weights # argument specified) pickleable. Otherwise, it seems to # cause problems... diff --git a/src/sage/combinat/interval_posets.py b/src/sage/combinat/interval_posets.py index 7ccede75e8b..6e56d2248fa 100644 --- a/src/sage/combinat/interval_posets.py +++ b/src/sage/combinat/interval_posets.py @@ -36,7 +36,7 @@ from sage.categories.enumerated_sets import EnumeratedSets from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets from sage.categories.posets import Posets -from sage.categories.all import Monoids +from sage.categories.monoids import Monoids from sage.combinat.posets.posets import Poset, FinitePoset from sage.categories.finite_posets import FinitePosets from sage.combinat.binary_tree import BinaryTrees @@ -3707,7 +3707,7 @@ def cardinality(self) -> Integer: sage: [TamariIntervalPosets(i).cardinality() for i in range(6)] [1, 1, 3, 13, 68, 399] """ - from sage.arith.all import binomial + from sage.arith.misc import binomial n = self._size if n == 0: return Integer(1) diff --git a/src/sage/combinat/matrices/hadamard_matrix.py b/src/sage/combinat/matrices/hadamard_matrix.py index 74cd1a3bb32..4b6ddf75321 100644 --- a/src/sage/combinat/matrices/hadamard_matrix.py +++ b/src/sage/combinat/matrices/hadamard_matrix.py @@ -59,7 +59,9 @@ from sage.rings.integer_ring import ZZ from sage.matrix.constructor import matrix, block_matrix, block_diagonal_matrix, diagonal_matrix -from sage.arith.all import is_square, is_prime_power, divisors +from sage.arith.misc import is_square +from sage.arith.misc import is_prime_power +from sage.arith.misc import divisors from math import sqrt from sage.matrix.constructor import identity_matrix as I from sage.matrix.constructor import ones_matrix as J @@ -1100,8 +1102,8 @@ def turyn_type_hadamard_matrix_smallcases(n, existence=False, check=True): def hadamard_matrix_spence_construction(n, existence=False, check=True): r"""Create an Hadamard matrix of order `n` using Spence construction. - This construction (detailed in [Spe1975]_), uses supplementary difference sets implemented in - :func:`sage.combinat.designs.difference_family.supplementary_difference_set` to create the + This construction (detailed in [Spe1975]_), uses supplementary difference sets implemented in + :func:`sage.combinat.designs.difference_family.supplementary_difference_set` to create the desired matrix. INPUT: @@ -1153,10 +1155,10 @@ def hadamard_matrix_spence_construction(n, existence=False, check=True): assert n%4 == 0 and n > 0 q = n//4 - - if existence: + + if existence: return supplementary_difference_set(q, existence=True) - + if not supplementary_difference_set(q, existence=True): raise ValueError(f'The order {n} is not covered by Spence construction.') @@ -1166,7 +1168,7 @@ def hadamard_matrix_spence_construction(n, existence=False, check=True): A2 = matrix.circulant([1 if j in S4 else -1 for j in range(q-1)]) A3 = matrix.circulant([1 if j in S3 else -1 for j in range(q-1)]) A4 = matrix.circulant([1 if j in S2 else -1 for j in range(q-1)]) - + P = matrix(ZZ, [[1 if (i + j)%(q-1) == 0 else 0 for i in range(1, q)] for j in range(1, q)]) e = matrix([1]*(q-1)) @@ -1928,9 +1930,9 @@ def GS_skew_hadamard_smallcases(n, existence=False, check=True): :func:`sage.combinat.matrices.hadamard_matrix.williamson_goethals_seidel_skew_hadamard_matrix` Matrices for `n=36` and `52` are given in [GS70s]_. Matrices for `n=92` are given in [Wall71]_. - - Additional data is obtained from skew supplementary difference sets contained in - :func:`sage.combinat.designs.difference_family.skew_supplementary_difference_set`, using the + + Additional data is obtained from skew supplementary difference sets contained in + :func:`sage.combinat.designs.difference_family.skew_supplementary_difference_set`, using the construction described in [Djo1992]_. INPUT: @@ -1979,7 +1981,7 @@ def pmtoZ(s): c = [1, 1,-1,-1,-1, 1,-1, 1,-1, 1,-1, 1, 1,-1, 1,-1, 1,-1, 1,-1,-1,-1, 1] d = [1,-1,-1,-1,-1, 1,-1,-1, 1,-1,-1, 1, 1,-1,-1, 1,-1,-1, 1,-1,-1,-1,-1] return WGS(a, b, c, d, check=check) - + if skew_supplementary_difference_set(n//4, existence=True): t = n//4 S1, S2, S3, S4 = skew_supplementary_difference_set(t, check=False) @@ -1988,7 +1990,7 @@ def pmtoZ(s): c = [-1 if i in S3 else 1 for i in range(t)] d = [-1 if i in S4 else 1 for i in range(t)] return WGS(a, b, c, d, check=check) - + return None _skew_had_cache={} diff --git a/src/sage/combinat/matrices/latin.py b/src/sage/combinat/matrices/latin.py index 82e6ff65311..e36edf0fc82 100644 --- a/src/sage/combinat/matrices/latin.py +++ b/src/sage/combinat/matrices/latin.py @@ -139,7 +139,7 @@ from sage.combinat.permutation import Permutation from sage.interfaces.gap import gap from sage.groups.perm_gps.permgroup import PermutationGroup -from sage.arith.all import is_prime +from sage.arith.misc import is_prime from sage.rings.finite_rings.finite_field_constructor import FiniteField from sage.misc.flatten import flatten diff --git a/src/sage/combinat/multiset_partition_into_sets_ordered.py b/src/sage/combinat/multiset_partition_into_sets_ordered.py index 8963ab00f0d..26e4bcb691c 100755 --- a/src/sage/combinat/multiset_partition_into_sets_ordered.py +++ b/src/sage/combinat/multiset_partition_into_sets_ordered.py @@ -81,7 +81,7 @@ from sage.rings.infinity import infinity from sage.rings.integer_ring import ZZ from sage.rings.power_series_ring import PowerSeriesRing -from sage.arith.all import binomial +from sage.arith.misc import binomial from sage.combinat.subset import Subsets_sk from sage.combinat.composition import Composition, Compositions, composition_iterator_fast diff --git a/src/sage/combinat/ncsf_qsym/generic_basis_code.py b/src/sage/combinat/ncsf_qsym/generic_basis_code.py index 87364ac04c6..1c0247ad9c9 100644 --- a/src/sage/combinat/ncsf_qsym/generic_basis_code.py +++ b/src/sage/combinat/ncsf_qsym/generic_basis_code.py @@ -34,7 +34,7 @@ from sage.combinat.partition import Partition from sage.combinat.permutation import Permutations from sage.rings.integer import Integer -from sage.categories.all import AlgebrasWithBasis +from sage.categories.algebras_with_basis import AlgebrasWithBasis from sage.misc.lazy_attribute import lazy_attribute from sage.misc.abstract_method import abstract_method from sage.categories.category_types import Category_over_base_ring diff --git a/src/sage/combinat/ncsf_qsym/ncsf.py b/src/sage/combinat/ncsf_qsym/ncsf.py index 7a53a902b94..40cd8b8e44a 100644 --- a/src/sage/combinat/ncsf_qsym/ncsf.py +++ b/src/sage/combinat/ncsf_qsym/ncsf.py @@ -2251,7 +2251,7 @@ def coproduct(self): From: Non-Commutative Symmetric Functions over the Rational Field in the Complete basis To: Non-Commutative Symmetric Functions over the Rational Field in the Complete basis # Non-Commutative Symmetric Functions over the Rational Field in the Complete basis """ - from sage.categories.all import tensor + from sage.categories.tensor import tensor if hasattr(self, "coproduct_on_generators"): return self.algebra_morphism(self.coproduct_on_generators, codomain = tensor([self, self])) else: @@ -2496,7 +2496,7 @@ def coproduct_on_generators(self, i): if i < 1: raise ValueError("Not a positive integer: {}".format(i)) x = self.algebra_generators()[i] - from sage.categories.all import tensor + from sage.categories.tensor import tensor return tensor([self.one(), x]) + tensor([x, self.one()]) class Ribbon(CombinatorialFreeModule, BindableClass): diff --git a/src/sage/combinat/ncsf_qsym/qsym.py b/src/sage/combinat/ncsf_qsym/qsym.py index 086b68c6175..9964996c453 100644 --- a/src/sage/combinat/ncsf_qsym/qsym.py +++ b/src/sage/combinat/ncsf_qsym/qsym.py @@ -3683,7 +3683,7 @@ def _precompute_M(self, n): M = self.realization_of().M() if l <= n: from sage.misc.cachefunc import cached_function - from sage.arith.all import gcd + from sage.arith.misc import GCD as gcd @cached_function def monolambda(I): diff --git a/src/sage/combinat/ncsym/bases.py b/src/sage/combinat/ncsym/bases.py index 6d8b1b86185..c1bd340a05c 100644 --- a/src/sage/combinat/ncsym/bases.py +++ b/src/sage/combinat/ncsym/bases.py @@ -18,7 +18,9 @@ from sage.misc.bindable_class import BindableClass from sage.categories.graded_hopf_algebras import GradedHopfAlgebras from sage.categories.realizations import Category_realization_of_parent -from sage.categories.all import ModulesWithBasis, tensor, Hom +from sage.categories.modules_with_basis import ModulesWithBasis +from sage.categories.tensor import tensor +from sage.categories.homset import Hom from sage.combinat.set_partition import SetPartition, SetPartitions from sage.combinat.free_module import CombinatorialFreeModule diff --git a/src/sage/combinat/necklace.py b/src/sage/combinat/necklace.py index a065cabdd2c..ef38833b29e 100644 --- a/src/sage/combinat/necklace.py +++ b/src/sage/combinat/necklace.py @@ -26,7 +26,10 @@ from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets from sage.structure.parent import Parent from sage.structure.unique_representation import UniqueRepresentation -from sage.arith.all import euler_phi, factorial, divisors, gcd +from sage.arith.misc import euler_phi +from sage.arith.misc import factorial +from sage.arith.misc import divisors +from sage.arith.misc import GCD as gcd from sage.rings.integer_ring import ZZ from sage.rings.integer import Integer from sage.misc.misc_c import prod diff --git a/src/sage/combinat/partition.py b/src/sage/combinat/partition.py index 423ea6a3730..367299a4e60 100644 --- a/src/sage/combinat/partition.py +++ b/src/sage/combinat/partition.py @@ -308,7 +308,8 @@ from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ from sage.rings.semirings.non_negative_integer_semiring import NN -from sage.arith.all import factorial, gcd +from sage.arith.misc import factorial +from sage.arith.misc import GCD as gcd from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.integer import Integer from sage.rings.infinity import infinity @@ -326,7 +327,7 @@ from sage.combinat.combinatorial_map import combinatorial_map from sage.groups.perm_gps.permgroup import PermutationGroup from sage.graphs.dot2tex_utils import have_dot2tex -from sage.arith.all import binomial +from sage.arith.misc import binomial class Partition(CombinatorialElement): diff --git a/src/sage/combinat/partition_algebra.py b/src/sage/combinat/partition_algebra.py index 740482395b4..789a214f365 100644 --- a/src/sage/combinat/partition_algebra.py +++ b/src/sage/combinat/partition_algebra.py @@ -21,7 +21,8 @@ from sage.combinat.set_partition import SetPartition, SetPartitions, SetPartitions_set from sage.sets.set import Set, Set_generic from sage.graphs.graph import Graph -from sage.arith.all import factorial, binomial +from sage.arith.misc import factorial +from sage.arith.misc import binomial from .permutation import Permutations from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ diff --git a/src/sage/combinat/path_tableaux/frieze.py b/src/sage/combinat/path_tableaux/frieze.py index da1d4205b00..ff034a12ea7 100644 --- a/src/sage/combinat/path_tableaux/frieze.py +++ b/src/sage/combinat/path_tableaux/frieze.py @@ -327,7 +327,7 @@ def triangulation(self): from sage.plot.line import line from sage.plot.text import text from sage.functions.trig import sin, cos - from sage.all import pi + from sage.symbolic.constants import pi G = Graphics() G.set_aspect_ratio(1.0) diff --git a/src/sage/combinat/permutation.py b/src/sage/combinat/permutation.py index 424ea7dd68b..38a8270d1ca 100644 --- a/src/sage/combinat/permutation.py +++ b/src/sage/combinat/permutation.py @@ -253,7 +253,8 @@ from sage.rings.integer import Integer from sage.rings.integer_ring import ZZ from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing -from sage.arith.all import factorial, multinomial +from sage.arith.misc import factorial +from sage.arith.misc import multinomial from sage.matrix.matrix_space import MatrixSpace from sage.combinat.tools import transitive_ideal from sage.combinat.composition import Composition diff --git a/src/sage/combinat/posets/hasse_diagram.py b/src/sage/combinat/posets/hasse_diagram.py index d857092f9c7..da265a33271 100644 --- a/src/sage/combinat/posets/hasse_diagram.py +++ b/src/sage/combinat/posets/hasse_diagram.py @@ -23,7 +23,7 @@ from sage.rings.finite_rings.finite_field_constructor import GF from sage.misc.lazy_attribute import lazy_attribute from sage.misc.cachefunc import cached_method -from sage.arith.all import binomial +from sage.arith.misc import binomial from sage.misc.rest_index_of_methods import gen_rest_table_index from sage.combinat.posets.hasse_cython import (moebius_matrix_fast, coxeter_matrix_fast, diff --git a/src/sage/combinat/posets/posets.py b/src/sage/combinat/posets/posets.py index 2836d59d960..fc0aa8b2b56 100644 --- a/src/sage/combinat/posets/posets.py +++ b/src/sage/combinat/posets/posets.py @@ -292,7 +292,7 @@ from sage.misc.cachefunc import cached_method from sage.misc.lazy_attribute import lazy_attribute from sage.misc.misc_c import prod -from sage.arith.all import binomial +from sage.arith.misc import binomial from sage.categories.category import Category from sage.categories.sets_cat import Sets from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets diff --git a/src/sage/combinat/rigged_configurations/kleber_tree.py b/src/sage/combinat/rigged_configurations/kleber_tree.py index df5db0f5fe8..983b8826b95 100644 --- a/src/sage/combinat/rigged_configurations/kleber_tree.py +++ b/src/sage/combinat/rigged_configurations/kleber_tree.py @@ -71,7 +71,7 @@ from sage.misc.cachefunc import cached_method from sage.misc.latex import latex from sage.misc.misc_c import prod -from sage.arith.all import binomial +from sage.arith.misc import binomial from sage.features import FeatureNotPresentError from sage.rings.integer import Integer diff --git a/src/sage/combinat/root_system/cartan_matrix.py b/src/sage/combinat/root_system/cartan_matrix.py index a4d66256bf5..c747f95b8a8 100644 --- a/src/sage/combinat/root_system/cartan_matrix.py +++ b/src/sage/combinat/root_system/cartan_matrix.py @@ -489,7 +489,7 @@ def symmetrizer(self): iset = self.index_set() # The result from is_symmetrizable needs to be scaled # to integer coefficients - from sage.arith.all import LCM + from sage.arith.functions import lcm as LCM from sage.rings.rational_field import QQ scalar = LCM([QQ(x).denominator() for x in sym]) return Family( {iset[i]: ZZ(val*scalar) for i, val in enumerate(sym)} ) diff --git a/src/sage/combinat/root_system/coxeter_type.py b/src/sage/combinat/root_system/coxeter_type.py index 9c10c3c04db..39fa6ca0d01 100644 --- a/src/sage/combinat/root_system/coxeter_type.py +++ b/src/sage/combinat/root_system/coxeter_type.py @@ -23,7 +23,7 @@ from sage.combinat.root_system.cartan_type import CartanType import sage.rings.abc from sage.matrix.args import SparseEntry -from sage.matrix.all import Matrix +from sage.matrix.constructor import Matrix from sage.symbolic.ring import SR from sage.structure.unique_representation import UniqueRepresentation from sage.structure.sage_object import SageObject diff --git a/src/sage/combinat/root_system/reflection_group_complex.py b/src/sage/combinat/root_system/reflection_group_complex.py index bebb3dc9f04..9687152e09a 100644 --- a/src/sage/combinat/root_system/reflection_group_complex.py +++ b/src/sage/combinat/root_system/reflection_group_complex.py @@ -207,7 +207,8 @@ from sage.groups.perm_gps.permgroup import PermutationGroup_generic from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ -from sage.matrix.all import Matrix, identity_matrix +from sage.matrix.constructor import Matrix +from sage.matrix.special import identity_matrix from sage.structure.element import is_Matrix from sage.interfaces.gap3 import gap3 from sage.rings.universal_cyclotomic_field import E @@ -1548,7 +1549,7 @@ def cartan_matrix(self): if self.is_crystallographic(): from sage.combinat.root_system.cartan_matrix import CartanMatrix as CartanMat else: - from sage.matrix.all import Matrix as CartanMat + from sage.matrix.constructor import Matrix as CartanMat return CartanMat(self._gap_group.CartanMat().sage()) def invariant_form(self, brute_force=False): diff --git a/src/sage/combinat/root_system/reflection_group_element.pyx b/src/sage/combinat/root_system/reflection_group_element.pyx index b724132637b..4a537aa9d68 100644 --- a/src/sage/combinat/root_system/reflection_group_element.pyx +++ b/src/sage/combinat/root_system/reflection_group_element.pyx @@ -33,7 +33,8 @@ from sage.interfaces.gap3 import gap3 from sage.combinat.root_system.cartan_matrix import CartanMatrix from sage.misc.sage_eval import sage_eval from sage.combinat.root_system.reflection_group_c import reduced_word_c, reduce_in_coset -from sage.matrix.all import Matrix, identity_matrix +from sage.matrix.constructor import Matrix +from sage.matrix.special import identity_matrix cdef class ComplexReflectionGroupElement(PermutationGroupElement): diff --git a/src/sage/combinat/root_system/weyl_characters.py b/src/sage/combinat/root_system/weyl_characters.py index 17c84dfb8ce..32356dd6d24 100644 --- a/src/sage/combinat/root_system/weyl_characters.py +++ b/src/sage/combinat/root_system/weyl_characters.py @@ -10,7 +10,8 @@ # **************************************************************************** import sage.combinat.root_system.branching_rules -from sage.categories.all import Algebras, AlgebrasWithBasis +from sage.categories.algebras import Algebras +from sage.categories.algebras_with_basis import AlgebrasWithBasis from sage.combinat.free_module import CombinatorialFreeModule from sage.combinat.root_system.cartan_type import CartanType from sage.combinat.root_system.root_system import RootSystem diff --git a/src/sage/combinat/root_system/weyl_group.py b/src/sage/combinat/root_system/weyl_group.py index a8c13419c4b..3cad709aebb 100644 --- a/src/sage/combinat/root_system/weyl_group.py +++ b/src/sage/combinat/root_system/weyl_group.py @@ -53,7 +53,9 @@ from sage.combinat.root_system.root_lattice_realizations import RootLatticeRealizations from sage.structure.unique_representation import UniqueRepresentation from sage.structure.richcmp import richcmp, richcmp_not_equal -from sage.categories.all import WeylGroups, FiniteWeylGroups, AffineWeylGroups +from sage.categories.weyl_groups import WeylGroups +from sage.categories.finite_weyl_groups import FiniteWeylGroups +from sage.categories.affine_weyl_groups import AffineWeylGroups from sage.categories.permutation_groups import PermutationGroups from sage.sets.family import Family from sage.matrix.constructor import Matrix diff --git a/src/sage/combinat/schubert_polynomial.py b/src/sage/combinat/schubert_polynomial.py index 07d679ac65d..a6efb83a561 100644 --- a/src/sage/combinat/schubert_polynomial.py +++ b/src/sage/combinat/schubert_polynomial.py @@ -74,7 +74,7 @@ # https://www.gnu.org/licenses/ # **************************************************************************** from sage.combinat.free_module import CombinatorialFreeModule -from sage.categories.all import GradedAlgebrasWithBasis +from sage.categories.graded_algebras_with_basis import GradedAlgebrasWithBasis from sage.rings.integer import Integer from sage.rings.integer_ring import ZZ from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing diff --git a/src/sage/combinat/set_partition_ordered.py b/src/sage/combinat/set_partition_ordered.py index 62f59de06b4..3c6dcbb383c 100644 --- a/src/sage/combinat/set_partition_ordered.py +++ b/src/sage/combinat/set_partition_ordered.py @@ -24,7 +24,8 @@ # # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.arith.all import factorial, multinomial +from sage.arith.misc import factorial +from sage.arith.misc import multinomial from sage.categories.cartesian_product import cartesian_product from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets from sage.categories.infinite_enumerated_sets import InfiniteEnumeratedSets diff --git a/src/sage/combinat/sf/character.py b/src/sage/combinat/sf/character.py index e5752c307eb..b57874ad832 100644 --- a/src/sage/combinat/sf/character.py +++ b/src/sage/combinat/sf/character.py @@ -31,7 +31,9 @@ from sage.misc.cachefunc import cached_method from sage.categories.homset import Hom from sage.categories.morphism import SetMorphism -from sage.arith.all import divisors, moebius, binomial +from sage.arith.misc import divisors +from sage.arith.misc import moebius +from sage.arith.misc import binomial from sage.rings.integer import Integer diff --git a/src/sage/combinat/sf/elementary.py b/src/sage/combinat/sf/elementary.py index 446acbf23a3..3ed3db345d5 100644 --- a/src/sage/combinat/sf/elementary.py +++ b/src/sage/combinat/sf/elementary.py @@ -20,7 +20,8 @@ from . import multiplicative, classical from sage.combinat.partition import Partition from sage.misc.misc_c import prod -from sage.arith.all import factorial, binomial +from sage.arith.misc import factorial +from sage.arith.misc import binomial from sage.rings.infinity import infinity ################################### diff --git a/src/sage/combinat/sf/homogeneous.py b/src/sage/combinat/sf/homogeneous.py index 3157a9bf0eb..42c6aeb55ad 100644 --- a/src/sage/combinat/sf/homogeneous.py +++ b/src/sage/combinat/sf/homogeneous.py @@ -29,7 +29,8 @@ from sage.combinat.partition import Partition from sage.rings.infinity import infinity from sage.misc.misc_c import prod -from sage.arith.all import factorial, binomial +from sage.arith.misc import factorial +from sage.arith.misc import binomial class SymmetricFunctionAlgebra_homogeneous(multiplicative.SymmetricFunctionAlgebra_multiplicative): diff --git a/src/sage/combinat/sf/jack.py b/src/sage/combinat/sf/jack.py index c46c78afefe..233471d1b7e 100644 --- a/src/sage/combinat/sf/jack.py +++ b/src/sage/combinat/sf/jack.py @@ -33,7 +33,8 @@ import sage.categories.all from sage.rings.integer import Integer from sage.rings.rational_field import QQ -from sage.arith.all import gcd, lcm +from sage.arith.misc import GCD as gcd +from sage.arith.functions import lcm from sage.rings.fraction_field import is_FractionField from sage.misc.misc_c import prod from sage.categories.morphism import SetMorphism diff --git a/src/sage/combinat/sf/k_dual.py b/src/sage/combinat/sf/k_dual.py index 425af1bc96f..0828cb636d3 100644 --- a/src/sage/combinat/sf/k_dual.py +++ b/src/sage/combinat/sf/k_dual.py @@ -31,7 +31,7 @@ from sage.structure.parent import Parent from sage.structure.unique_representation import UniqueRepresentation -from sage.categories.all import GradedHopfAlgebras +from sage.categories.graded_hopf_algebras import GradedHopfAlgebras from sage.combinat.partition import Partition, Partitions, Partitions_all_bounded, PartitionsGreatestLE from sage.combinat.free_module import CombinatorialFreeModule from sage.categories.realizations import Realizations, Category_realization_of_parent diff --git a/src/sage/combinat/sf/macdonald.py b/src/sage/combinat/sf/macdonald.py index d30339bc82d..8db4b595dae 100644 --- a/src/sage/combinat/sf/macdonald.py +++ b/src/sage/combinat/sf/macdonald.py @@ -53,7 +53,7 @@ from sage.categories.modules_with_basis import ModulesWithBasis from . import sfa from sage.combinat.partition import Partitions_n, _Partitions -from sage.matrix.all import MatrixSpace +from sage.matrix.matrix_space import MatrixSpace from sage.rings.rational_field import QQ from sage.misc.misc_c import prod from sage.misc.cachefunc import cached_function diff --git a/src/sage/combinat/sf/powersum.py b/src/sage/combinat/sf/powersum.py index f7019407840..4a960369214 100644 --- a/src/sage/combinat/sf/powersum.py +++ b/src/sage/combinat/sf/powersum.py @@ -19,7 +19,7 @@ #***************************************************************************** from . import sfa, multiplicative, classical from sage.combinat.partition import Partition -from sage.arith.all import divisors +from sage.arith.misc import divisors from sage.rings.infinity import infinity from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.misc.misc_c import prod diff --git a/src/sage/combinat/sf/sfa.py b/src/sage/combinat/sf/sfa.py index 040dd78f4d3..30a6086964d 100644 --- a/src/sage/combinat/sf/sfa.py +++ b/src/sage/combinat/sf/sfa.py @@ -1013,7 +1013,8 @@ def gessel_reutenauer(self, lam): m = lam.to_exp_dict() # == {i: m_i | i occurs in lam} p = self.realization_of().power() h = self.realization_of().complete() - from sage.arith.all import moebius, squarefree_divisors + from sage.arith.misc import moebius + from sage.arith.misc import squarefree_divisors mu = moebius def component(i, g): # == h_g[L_i] @@ -1802,7 +1803,7 @@ def __init__(self, Sym, basis_name=None, prefix=None, graded=True): sage: TestSuite(s).run() """ R = Sym.base_ring() - from sage.categories.all import CommutativeRings + from sage.categories.commutative_rings import CommutativeRings if R not in CommutativeRings(): raise TypeError("argument R must be a commutative ring") try: @@ -4707,7 +4708,8 @@ def arithmetic_product(self, x): parent = self.parent() if parent.has_coerce_map_from(QQ): from sage.combinat.partition import Partition - from sage.arith.all import gcd, lcm + from sage.arith.misc import GCD as gcd + from sage.arith.functions import lcm from itertools import product, repeat, chain p = parent.realization_of().power() diff --git a/src/sage/combinat/sf/witt.py b/src/sage/combinat/sf/witt.py index 2f942af97f3..51c9598d2e5 100644 --- a/src/sage/combinat/sf/witt.py +++ b/src/sage/combinat/sf/witt.py @@ -756,7 +756,7 @@ def _precompute_p(self, n): """ l = len(self._p_transition_matrices) if l <= n: - from sage.arith.all import divisors + from sage.arith.misc import divisors from sage.combinat.partition import Partition from sage.misc.cachefunc import cached_function @@ -1148,7 +1148,7 @@ def wsum(m): # expansion of h_m in w-basis, for m > 0 return result if parent_name == "powersum": - from sage.arith.all import divisors + from sage.arith.misc import divisors from sage.combinat.partition import Partition @cached_function diff --git a/src/sage/combinat/similarity_class_type.py b/src/sage/combinat/similarity_class_type.py index e7c3f972ac3..b2ca90a710b 100644 --- a/src/sage/combinat/similarity_class_type.py +++ b/src/sage/combinat/similarity_class_type.py @@ -191,7 +191,8 @@ class type, it is also possible to compute the number of classes of that type from itertools import chain, product from sage.misc.misc_c import prod from sage.arith.misc import factorial -from sage.arith.all import moebius, divisors +from sage.arith.misc import moebius +from sage.arith.misc import divisors from sage.misc.inherit_comparison import InheritComparisonClasscallMetaclass from sage.structure.element import Element, is_Matrix from sage.structure.parent import Parent diff --git a/src/sage/combinat/skew_tableau.py b/src/sage/combinat/skew_tableau.py index 3eeae3d8d56..43b34b2b008 100644 --- a/src/sage/combinat/skew_tableau.py +++ b/src/sage/combinat/skew_tableau.py @@ -36,9 +36,9 @@ from sage.rings.integer import Integer from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ -from sage.arith.all import factorial +from sage.arith.misc import factorial from sage.rings.infinity import PlusInfinity -from sage.matrix.all import zero_matrix +from sage.matrix.special import zero_matrix from sage.structure.list_clone import ClonableList from sage.combinat.partition import Partition diff --git a/src/sage/combinat/species/cycle_species.py b/src/sage/combinat/species/cycle_species.py index 7878a028265..fe5ee4a9f94 100644 --- a/src/sage/combinat/species/cycle_species.py +++ b/src/sage/combinat/species/cycle_species.py @@ -15,7 +15,8 @@ from .species import GenericCombinatorialSpecies from .structure import GenericSpeciesStructure from sage.structure.unique_representation import UniqueRepresentation -from sage.arith.all import divisors, euler_phi +from sage.arith.misc import divisors +from sage.arith.misc import euler_phi from sage.combinat.species.misc import accept_size class CycleSpeciesStructure(GenericSpeciesStructure): diff --git a/src/sage/combinat/species/generating_series.py b/src/sage/combinat/species/generating_series.py index c6c30f301b6..a893e011171 100644 --- a/src/sage/combinat/species/generating_series.py +++ b/src/sage/combinat/species/generating_series.py @@ -53,7 +53,7 @@ from sage.rings.lazy_series_ring import LazyPowerSeriesRing, LazySymmetricFunctions from sage.rings.integer import Integer from sage.rings.rational_field import QQ -from sage.arith.all import divisors +from sage.arith.misc import divisors from sage.combinat.partition import Partition, Partitions from sage.combinat.sf.sf import SymmetricFunctions from sage.misc.cachefunc import cached_function diff --git a/src/sage/combinat/subset.py b/src/sage/combinat/subset.py index 5f3d481de68..b44051020b9 100644 --- a/src/sage/combinat/subset.py +++ b/src/sage/combinat/subset.py @@ -38,7 +38,7 @@ from sage.structure.element import Element from sage.sets.set import Set, Set_object_enumerated -from sage.arith.all import binomial +from sage.arith.misc import binomial from sage.misc.misc import _stable_uniq as uniq from sage.rings.integer_ring import ZZ from sage.rings.integer import Integer @@ -1059,7 +1059,7 @@ def cardinality(self): sage: len(S.list()) 24 """ - from sage.all import prod + from sage.misc.misc_c import prod return Integer(prod(k + 1 for k in self._d.values())) def random_element(self): diff --git a/src/sage/combinat/symmetric_group_algebra.py b/src/sage/combinat/symmetric_group_algebra.py index b8a0bebab44..2b7df01dd0a 100644 --- a/src/sage/combinat/symmetric_group_algebra.py +++ b/src/sage/combinat/symmetric_group_algebra.py @@ -21,7 +21,7 @@ from sage.categories.weyl_groups import WeylGroups from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.rational_field import QQ -from sage.arith.all import factorial +from sage.arith.misc import factorial from sage.matrix.constructor import matrix from sage.modules.free_module_element import vector from sage.groups.perm_gps.permgroup_element import PermutationGroupElement diff --git a/src/sage/combinat/t_sequences.py b/src/sage/combinat/t_sequences.py index fb20500ab28..883d55c87bd 100644 --- a/src/sage/combinat/t_sequences.py +++ b/src/sage/combinat/t_sequences.py @@ -1,17 +1,17 @@ r""" T-sequences -T-sequences are tuples of four (-1, 0, 1) sequences of length `t` where -for every `i` exactly one sequence has a nonzero entry at index `i` -and for which the nonperiodic autocorrelation function is equal to zero +T-sequences are tuples of four (-1, 0, 1) sequences of length `t` where +for every `i` exactly one sequence has a nonzero entry at index `i` +and for which the nonperiodic autocorrelation function is equal to zero (i.e. they are complementary). See Definition 7.5 of [Seb2017]_. -These can be constructed from Turyn sequences. In particular, +These can be constructed from Turyn sequences. In particular, if Turyn sequences of length `l` exists, there will be T-sequences of length `4l-1` and `2l-1`. Turyn sequences are tuples of four (-1, +1) sequences `X, U, Y, V` of length -`l`, `l`, `l-1`, `l-1` with nonperiodic autocorrelation equal to zero and +`l`, `l`, `l-1`, `l-1` with nonperiodic autocorrelation equal to zero and the additional constraints that: * the first element of `X` is 1 @@ -55,15 +55,15 @@ def _nonperiodic_autocorrelation(sequences, j): N_X(j) = \sum_{i=1}^{n-j}(a_{1,i}a_{1,i+j} + a_{2,i}a_{2,i+j} + ... + a_{n,i}a_{n,i+j}) INPUT: - + - ``sequences`` -- either a single sequence or a list of sequences for which we want to compute the nonperiodic autocorrelation. - + - ``j`` -- integer, the parameter `j` used when calculating the nonperiodic autocorrelation. """ if not isinstance(sequences[0], list): sequences = [sequences] - + t = len(sequences[0]) result = 0 for i in range(t-j): @@ -75,7 +75,7 @@ def is_skew(seq, verbose=False): r""" Check if the given sequence is skew. - A sequence `X=\{x_1, x_2, ...,x_n\}` is defined skew (according to Definition + A sequence `X=\{x_1, x_2, ...,x_n\}` is defined skew (according to Definition 7.4 of [Seb2017]_) if `n` is even and `x_i = -x_{n-i+1}`. INPUT: @@ -121,11 +121,11 @@ def is_symmetric(seq, verbose=False): r""" Check if the given sequence is symmetric. - A sequence `X=\{x_1, x_2, ...,x_n\}` is defined symmetric (according to Definition + A sequence `X=\{x_1, x_2, ...,x_n\}` is defined symmetric (according to Definition 7.4 of [Seb2017]_) if `n` is odd and `x_i = x_{n-i+1}`. INPUT: - + - ``seq`` -- the sequence that should be checked. - ``verbose`` -- a boolean (default false). If true the function will be verbose @@ -169,14 +169,14 @@ def is_T_sequences_set(sequences, verbose=False): Check if a family of sequences is composed of T-sequences. Given 4 (-1, 0, +1) sequences, they will be T-sequences if - (Definition 7.4 of [Seb2017]_): + (Definition 7.4 of [Seb2017]_): * they have all the same length `t` * for each index `i`, exactly one sequence is nonzero at `i` * the nonperiodic autocorrelation is equal to `0` INPUT: - + - ``sequences`` -- a list of four sequences. - ``verbose`` -- a boolean (default false). If true the function will be verbose @@ -214,10 +214,10 @@ def is_T_sequences_set(sequences, verbose=False): if verbose: print(f"T-Sequence should contain 4 sequences, found {len(sequences)} instead") return False - - + + t = len(sequences[0]) - + for i in range(t): tot = 0 for seq in sequences: @@ -230,11 +230,11 @@ def is_T_sequences_set(sequences, verbose=False): if verbose: print(f"There should be exactly a nonzero element at every index, found {tot} such elemnents at index {i}") return False - + for j in range(1, t): autocorr = _nonperiodic_autocorrelation(sequences, j) if autocorr != 0: - if verbose: + if verbose: print(f"Nonperiodic autocorrelation should always be zero, found {autocorr} for parameter {j}") return False @@ -250,7 +250,7 @@ def turyn_sequences_smallcases(l, existence=False): - ``l`` -- integer, the length of the Turyn sequences. - - ``existence`` -- boolean (default False). If true, only return whether the + - ``existence`` -- boolean (default False). If true, only return whether the Turyn sequences are available for the given length. EXAMPLES: @@ -283,7 +283,7 @@ def turyn_sequences_smallcases(l, existence=False): 6: [[1, 1, 1, -1, -1, -1], [1, 1, -1, 1, -1, 1], [1, 1, -1, 1, 1], [1, 1, -1, 1, 1]], 7: [[1, 1, 1, -1, 1, 1, 1], [1, 1, -1, -1, -1, 1, -1], [1, 1, -1, 1, -1, -1], [1, 1, -1, 1, -1, -1]], 8: [[1, 1, -1, 1, -1, 1, -1, -1], [1, 1, 1, 1, -1, -1, -1, 1], [1, 1, 1, -1, 1, 1, 1], [1, -1, -1, 1, -1, -1, 1]], - 13: [[1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1], [1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1], + 13: [[1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1], [1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1], [1, 1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1], [1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1]], 15: [[1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, 1], [1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1], [1, 1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1], [1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1]], @@ -358,13 +358,13 @@ def T_sequences_construction_from_base_sequences(base_sequences, check=True): def seq_sum(seq1, seq2): return [(a+b)//2 for (a, b) in zip(seq1, seq2)] - + def seq_subtract(seq1, seq2): return [(a-b)//2 for (a, b) in zip(seq1, seq2)] def zero_seq(n): return [0 for _ in range(n)] - + X1 = Sequence(seq_sum(A, B) + zero_seq(n)) X2 = Sequence(seq_subtract(A, B) + zero_seq(n)) X3 = Sequence(zero_seq(n+p) + seq_sum(C, D)) @@ -451,19 +451,19 @@ def T_sequences_smallcases(t, existence=False, check=True): r""" Construct T-sequences for some small values of `t`. - This method will try to use the constructions defined in - :func:`T_sequences_construction_from_base_sequences` and - :func:`T_sequences_construction_from_turyn_sequences` - together with the Turyn sequences stored in :func:`turyn_sequences_smallcases`, + This method will try to use the constructions defined in + :func:`T_sequences_construction_from_base_sequences` and + :func:`T_sequences_construction_from_turyn_sequences` + together with the Turyn sequences stored in :func:`turyn_sequences_smallcases`, or base sequences created by :func:`base_sequences_smallcases`. - + This function contains also some T-sequences taken directly from [CRSKKY1989]_. INPUT: - ``t`` -- integer, the length of the T-sequences to construct. - - ``existence`` -- boolean (default false). If true, this method only returns whether a T-sequences of + - ``existence`` -- boolean (default false). If true, this method only returns whether a T-sequences of the given size can be constructed. - ``check`` -- boolean, if true (default) check that the sequences are T-sequences before returning them. @@ -471,7 +471,7 @@ def T_sequences_smallcases(t, existence=False, check=True): EXAMPLES: By default, this method returns the four T-sequences :: - + sage: from sage.combinat.t_sequences import T_sequences_smallcases, is_T_sequences_set sage: T_sequences_smallcases(9) [[1, 1, 0, 1, 0, 0, 0, 0, 0], @@ -479,7 +479,7 @@ def T_sequences_smallcases(t, existence=False, check=True): [0, 0, 0, 0, 0, 1, 0, 0, -1], [0, 0, 0, 0, 0, 0, 1, -1, 0]] - If the existence flag is passed, the method returns a boolean :: + If the existence flag is passed, the method returns a boolean :: sage: T_sequences_smallcases(9, existence=True) True @@ -530,7 +530,7 @@ def T_sequences_smallcases(t, existence=False, check=True): return True turyn_seqs = turyn_sequences_smallcases((t+1)//2) return T_sequences_construction_from_base_sequences(turyn_seqs, check=check) - + if (t+1)%4 == 0 and turyn_sequences_smallcases((t+1)//4, existence=True): if existence: return True @@ -552,8 +552,8 @@ def T_sequences_smallcases(t, existence=False, check=True): def base_sequences_construction(turyn_type_seqs, check=True): r"""Construct base sequences of length `2n-1, 2n-1, n, n` from Turyn type sequences of length `n,n,n,n-1`. - - Given Turyn type sequences `X, Y, Z, W` of length `n,n,n,n-1`, Theorem 1 of [KTR2005]_ shows that the + + Given Turyn type sequences `X, Y, Z, W` of length `n,n,n,n-1`, Theorem 1 of [KTR2005]_ shows that the following are base sequences of length `2n-1, 2n-1, n, n`: .. MATH:: @@ -563,13 +563,13 @@ def base_sequences_construction(turyn_type_seqs, check=True): B &= Z; -W \\ C &= X \\ D &= Y - \end{aligned} + \end{aligned} INPUT: - ``turyn_type_seqs`` -- The list of 4 Turyn type sequences that should be used to construct the base sequences. - - ``check`` -- boolean, if True (default) check that the resulting sequences are base sequences + - ``check`` -- boolean, if True (default) check that the resulting sequences are base sequences before returning them. OUTPUT: A list containing the four base sequences. @@ -610,7 +610,7 @@ def base_sequences_construction(turyn_type_seqs, check=True): if check: assert is_base_sequences_tuple([A, B, C, D]) - return [A, B, C, D] + return [A, B, C, D] def is_base_sequences_tuple(base_sequences, verbose=False): @@ -621,7 +621,7 @@ def is_base_sequences_tuple(base_sequences, verbose=False): .. MATH:: - N_A(j)+N_B(j)+N_C(j)+N_D(j) = 0 + N_A(j)+N_B(j)+N_C(j)+N_D(j) = 0 where `N_X(j)` is the nonperiodic autocorrelation (See definition in [KTR2005]_). @@ -633,7 +633,7 @@ def is_base_sequences_tuple(base_sequences, verbose=False): when the sequences do not satisfy the contraints. EXAMPLES:: - + sage: from sage.combinat.t_sequences import is_base_sequences_tuple sage: seqs = [[1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1],[1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1],[1, 1, -1, 1, -1, 1, -1, 1],[1, -1, -1, -1, -1, -1, -1, 1]] sage: is_base_sequences_tuple(seqs) @@ -647,7 +647,7 @@ def is_base_sequences_tuple(base_sequences, verbose=False): False TESTS: - + sage: seqs = [[1, -1], [1], [-1]] sage: is_base_sequences_tuple(seqs) False @@ -663,7 +663,7 @@ def is_base_sequences_tuple(base_sequences, verbose=False): .. SEEALSO:: - :func:`base_sequences_construction` + :func:`base_sequences_construction` """ if len(base_sequences) != 4: if verbose: @@ -676,19 +676,19 @@ def is_base_sequences_tuple(base_sequences, verbose=False): if verbose: print(f'Base sequences should have length n+p, n+p, n, n, found {len(A)}, {len(B)}, {len(C)}, {len(D)}') return False - + for seq in base_sequences: for el in seq: if abs(el) != 1: if verbose: print(f'Base sequences should only contiain -1, +1, found {el}') return False - + for j in range(1, n+p): - autocorr = _nonperiodic_autocorrelation(A, j) + _nonperiodic_autocorrelation(B, j) + _nonperiodic_autocorrelation(C, j) + _nonperiodic_autocorrelation(D, j) + autocorr = _nonperiodic_autocorrelation(A, j) + _nonperiodic_autocorrelation(B, j) + _nonperiodic_autocorrelation(C, j) + _nonperiodic_autocorrelation(D, j) if autocorr != 0: - if verbose: + if verbose: print(f"Nonperiodic autocorrelation should always be zero, found {autocorr} for parameter {j}") return False @@ -704,7 +704,7 @@ def turyn_type_sequences_smallcases(n, existence=False): - ``n`` -- integer, the length of the Turyn type sequences. - - ``existence`` -- boolean (default False). If true, only return whether the + - ``existence`` -- boolean (default False). If true, only return whether the Turyn type sequences are available for the given length. EXAMPLES: @@ -733,10 +733,10 @@ def turyn_type_sequences_smallcases(n, existence=False): The Turyn type sequences are stored in hexadecimal format. Given `n` hexadecimal digits `h_1, h_2,...,h_n`, it is possible to get the Turyn type sequences - by converting each `h_i` (`1 \le i \le n-1`) into a four digits binary number. Then, the j-th binary digit is + by converting each `h_i` (`1 \le i \le n-1`) into a four digits binary number. Then, the j-th binary digit is `0` if the i-th number in the j-th sequence is `1`, and it is `1` if the number in the sequence is -1. - For the n-th digit, it should be converted to a 3 digits binary number, and then the same mapping + For the n-th digit, it should be converted to a 3 digits binary number, and then the same mapping as before can be used (see also [BDKR2013]_). """ def convertLists(hexstring): @@ -755,7 +755,7 @@ def convertLists(hexstring): else: seqs[i].append(-1) return seqs - + db = { 2: '01', 4: '0161', @@ -781,17 +781,17 @@ def convertLists(hexstring): if n not in db: raise ValueError(f"Turyn type sequences of length {n} are not implemented yet.") - + return convertLists(db[n]) def base_sequences_smallcases(n, p, existence=False, check=True): r"""Construct base sequences of length `n+p, n+p, n, n` from available data. The function uses the construction :func:`base_sequences_construction`, together with - Turyn type sequences from :func:`turyn_type_sequences_smallcases` to construct base sequences + Turyn type sequences from :func:`turyn_type_sequences_smallcases` to construct base sequences with `p = n-1`. - Furthermore, this function uses also Turyn sequences (i.e. base sequences with `p=1`) from + Furthermore, this function uses also Turyn sequences (i.e. base sequences with `p=1`) from :func:`turyn_sequences_smallcases`. INPUT: @@ -803,13 +803,13 @@ def base_sequences_smallcases(n, p, existence=False, check=True): - ``existence`` -- boolean (default False). If True, the function will only check whether the base sequences can be constructed. - - ``check`` -- boolean, if True (default) check that the resulting sequences are base sequences + - ``check`` -- boolean, if True (default) check that the resulting sequences are base sequences before returning them. - OUTPUT: - + OUTPUT: + If ``existence`` is ``False``, the function returns a list containing the four base sequences, or raises - an error if the base sequences cannot be constructed. If ``existence`` is ``True``, the function returns a + an error if the base sequences cannot be constructed. If ``existence`` is ``True``, the function returns a boolean, which is ``True`` if the base sequences can be constructed and ``False`` otherwise. EXAMPLES:: @@ -843,9 +843,9 @@ def base_sequences_smallcases(n, p, existence=False, check=True): if existence: return p == n-1 and turyn_type_sequences_smallcases(n, existence=True) - + if p == n-1 and turyn_type_sequences_smallcases(n, existence=True): - if existence: + if existence: return True turyn_type_seqs = turyn_type_sequences_smallcases(n) return base_sequences_construction(turyn_type_seqs, check=check) @@ -853,5 +853,5 @@ def base_sequences_smallcases(n, p, existence=False, check=True): if existence: return True return turyn_sequences_smallcases(n+p) - + raise ValueError(f'Base sequences of order {n+p}, {n+p}, {n}, {n} not yet implemented.') diff --git a/src/sage/combinat/tableau.py b/src/sage/combinat/tableau.py index f5652f86733..deb191ea1c8 100644 --- a/src/sage/combinat/tableau.py +++ b/src/sage/combinat/tableau.py @@ -97,7 +97,8 @@ from sage.misc.inherit_comparison import InheritComparisonClasscallMetaclass from sage.rings.finite_rings.integer_mod_ring import IntegerModRing from sage.rings.infinity import PlusInfinity -from sage.arith.all import factorial, binomial +from sage.arith.misc import factorial +from sage.arith.misc import binomial from sage.arith.misc import multinomial from sage.rings.integer import Integer from sage.combinat.composition import Composition, Compositions diff --git a/src/sage/combinat/tableau_tuple.py b/src/sage/combinat/tableau_tuple.py index 3deb562bbb6..29f1aae0bd7 100644 --- a/src/sage/combinat/tableau_tuple.py +++ b/src/sage/combinat/tableau_tuple.py @@ -228,7 +228,7 @@ from sage.misc.lazy_attribute import lazy_attribute from sage.misc.misc_c import prod from sage.misc.prandom import randint -from sage.arith.all import factorial +from sage.arith.misc import factorial from sage.rings.finite_rings.integer_mod_ring import IntegerModRing from sage.rings.integer import Integer from sage.rings.semirings.non_negative_integer_semiring import NN diff --git a/src/sage/combinat/tamari_lattices.py b/src/sage/combinat/tamari_lattices.py index c08b1348e44..ba4de2ad8fb 100644 --- a/src/sage/combinat/tamari_lattices.py +++ b/src/sage/combinat/tamari_lattices.py @@ -48,7 +48,7 @@ # **************************************************************************** from __future__ import annotations from sage.combinat.posets.lattices import LatticePoset, MeetSemilattice -from sage.arith.all import gcd +from sage.arith.misc import GCD as gcd def paths_in_triangle(i, j, a, b) -> list[tuple[int, ...]]: diff --git a/src/sage/combinat/words/lyndon_word.py b/src/sage/combinat/words/lyndon_word.py index ca271c5a114..3e2987fb811 100644 --- a/src/sage/combinat/words/lyndon_word.py +++ b/src/sage/combinat/words/lyndon_word.py @@ -17,7 +17,10 @@ from sage.combinat.composition import Composition, Compositions from sage.rings.integer import Integer -from sage.arith.all import divisors, gcd, moebius, multinomial +from sage.arith.misc import divisors +from sage.arith.misc import GCD as gcd +from sage.arith.misc import moebius +from sage.arith.misc import multinomial from sage.combinat.necklace import _sfc from sage.combinat.words.words import FiniteWords diff --git a/src/sage/combinat/words/morphism.py b/src/sage/combinat/words/morphism.py index fbeb8cd749a..a9044f3cd44 100644 --- a/src/sage/combinat/words/morphism.py +++ b/src/sage/combinat/words/morphism.py @@ -3003,7 +3003,7 @@ def rauzy_fractal_plot(self, n=None, exchange=False, eig=None, # 1D plots if dim_fractal == 1: - from sage.all import plot + from sage.plot.plot import plot for a in col_dict: # We plot only the points with a color in col_dict and with positive opacity if (a in col_dict) and (opacity[a] > 0): diff --git a/src/sage/combinat/words/paths.py b/src/sage/combinat/words/paths.py index 3d0ee41a4c4..9d35fe149ee 100644 --- a/src/sage/combinat/words/paths.py +++ b/src/sage/combinat/words/paths.py @@ -1226,7 +1226,7 @@ def tikz_trajectory(self): '(0.000, 0.000) -- (1.00, 0.000) -- (1.50, 0.866) -- (1.00, 1.73) -- (0.000, 1.73) -- (-0.500, 0.866)' """ - from sage.all import n + from sage.misc.functional import N as n f = lambda x: n(x,digits=3) l = [str(tuple(map(f, pt))) for pt in self.points()] return ' -- '.join(l) diff --git a/src/sage/combinat/words/shuffle_product.py b/src/sage/combinat/words/shuffle_product.py index 101e7ca695c..7363d642126 100644 --- a/src/sage/combinat/words/shuffle_product.py +++ b/src/sage/combinat/words/shuffle_product.py @@ -22,7 +22,7 @@ # https://www.gnu.org/licenses/ # **************************************************************************** from sage.combinat.words.word import Word_class, Word -from sage.arith.all import binomial +from sage.arith.misc import binomial from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets from sage.combinat.integer_vector import IntegerVectors from sage.combinat.composition import Composition diff --git a/src/sage/combinat/words/word_generators.py b/src/sage/combinat/words/word_generators.py index b485205878f..b08766fda79 100644 --- a/src/sage/combinat/words/word_generators.py +++ b/src/sage/combinat/words/word_generators.py @@ -66,7 +66,7 @@ from sage.combinat.words.finite_word import FiniteWord_class, Factorization from sage.combinat.words.words import FiniteWords, InfiniteWords from sage.combinat.words.morphism import WordMorphism -from sage.arith.all import gcd +from sage.arith.misc import GCD as gcd from sage.misc.decorators import rename_keyword diff --git a/src/sage/matroids/basis_matroid.pyx b/src/sage/matroids/basis_matroid.pyx index ff70add1ce2..042f529fedc 100644 --- a/src/sage/matroids/basis_matroid.pyx +++ b/src/sage/matroids/basis_matroid.pyx @@ -79,7 +79,7 @@ from .basis_exchange_matroid cimport BasisExchangeMatroid from .set_system cimport SetSystem from cpython.object cimport Py_EQ, Py_NE -from sage.arith.all import binomial +from sage.arith.misc import binomial from itertools import permutations, combinations diff --git a/src/sage/matroids/constructor.py b/src/sage/matroids/constructor.py index 1fb2cd2b93e..ea3bd181f0c 100644 --- a/src/sage/matroids/constructor.py +++ b/src/sage/matroids/constructor.py @@ -107,7 +107,8 @@ from sage.structure.element import is_Matrix from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ -from sage.categories.all import Fields, Rings +from sage.categories.fields import Fields +from sage.categories.rings import Rings from sage.rings.finite_rings.finite_field_base import FiniteField import sage.matroids.matroid import sage.matroids.basis_exchange_matroid diff --git a/src/sage/matroids/extension.pyx b/src/sage/matroids/extension.pyx index 0408e60f86e..04ccf9ec61f 100644 --- a/src/sage/matroids/extension.pyx +++ b/src/sage/matroids/extension.pyx @@ -31,7 +31,7 @@ Methods from sage.data_structures.bitset_base cimport * from .basis_matroid cimport BasisMatroid -from sage.arith.all import binomial +from sage.arith.misc import binomial cdef class CutNode: diff --git a/src/sage/matroids/lean_matrix.pyx b/src/sage/matroids/lean_matrix.pyx index 6b3cf27bcf2..bb8f1012f19 100644 --- a/src/sage/matroids/lean_matrix.pyx +++ b/src/sage/matroids/lean_matrix.pyx @@ -37,7 +37,10 @@ from cysignals.signals cimport sig_on, sig_off from sage.data_structures.bitset_base cimport * from sage.matrix.matrix2 cimport Matrix -from sage.rings.all import ZZ, FiniteField, GF, QQ +from sage.rings.integer_ring import Z as ZZ +from sage.rings.finite_rings.finite_field_constructor import FiniteField +from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF +from sage.rings.rational_field import Q as QQ from sage.rings.integer cimport Integer from sage.rings.rational cimport Rational from sage.libs.gmp.mpq cimport * diff --git a/src/sage/matroids/linear_matroid.pyx b/src/sage/matroids/linear_matroid.pyx index 0c9b0a1baff..e6ae08e0e79 100644 --- a/src/sage/matroids/linear_matroid.pyx +++ b/src/sage/matroids/linear_matroid.pyx @@ -129,7 +129,10 @@ from sage.matrix.matrix2 cimport Matrix import sage.matrix.constructor from sage.matrix.constructor import matrix from copy import copy, deepcopy -from sage.rings.all import ZZ, QQ, FiniteField, GF +from sage.rings.integer_ring import Z as ZZ +from sage.rings.rational_field import Q as QQ +from sage.rings.finite_rings.finite_field_constructor import FiniteField +from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF import itertools from itertools import combinations, product From 301a0d1f4568ae4d17c44103d0d17ea93085f5f0 Mon Sep 17 00:00:00 2001 From: Alex Chandler Date: Sun, 29 Jan 2023 14:10:18 -0800 Subject: [PATCH 11/49] sage -fiximports src/sage/{topology,homology} --- src/sage/homology/chain_complex.py | 3 ++- src/sage/homology/koszul_complex.py | 2 +- src/sage/topology/delta_complex.py | 2 +- src/sage/topology/simplicial_complex.py | 4 ++-- 4 files changed, 6 insertions(+), 5 deletions(-) diff --git a/src/sage/homology/chain_complex.py b/src/sage/homology/chain_complex.py index d88389e5c6d..1a8f28b1be7 100644 --- a/src/sage/homology/chain_complex.py +++ b/src/sage/homology/chain_complex.py @@ -62,7 +62,8 @@ from sage.matrix.constructor import matrix from sage.misc.latex import latex from sage.misc.superseded import deprecation -from sage.rings.all import GF, prime_range +from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF +from sage.rings.fast_arith import prime_range from sage.homology.homology_group import HomologyGroup diff --git a/src/sage/homology/koszul_complex.py b/src/sage/homology/koszul_complex.py index 858d5a71283..af480a9c8db 100644 --- a/src/sage/homology/koszul_complex.py +++ b/src/sage/homology/koszul_complex.py @@ -14,7 +14,7 @@ from sage.structure.unique_representation import UniqueRepresentation from sage.structure.parent import Parent from sage.combinat.combination import rank -from sage.arith.all import binomial +from sage.arith.misc import binomial from sage.rings.integer_ring import ZZ from sage.matrix.constructor import matrix from sage.homology.chain_complex import ChainComplex_class diff --git a/src/sage/topology/delta_complex.py b/src/sage/topology/delta_complex.py index 420fd2fad5a..bdc16265c68 100644 --- a/src/sage/topology/delta_complex.py +++ b/src/sage/topology/delta_complex.py @@ -59,7 +59,7 @@ from .simplicial_complex import Simplex, lattice_paths, SimplicialComplex from sage.homology.chain_complex import ChainComplex from sage.graphs.graph import Graph -from sage.arith.all import binomial +from sage.arith.misc import binomial from sage.misc.cachefunc import cached_method diff --git a/src/sage/topology/simplicial_complex.py b/src/sage/topology/simplicial_complex.py index 79393f7317b..c61bde73d76 100644 --- a/src/sage/topology/simplicial_complex.py +++ b/src/sage/topology/simplicial_complex.py @@ -1452,7 +1452,7 @@ def h_vector(self): sage: octa.h_vector() [1, 3, 3, 1] """ - from sage.arith.all import binomial + from sage.arith.misc import binomial d = self.dimension() f = self.f_vector() # indexed starting at 0, since it's a Python list h = [] @@ -1573,7 +1573,7 @@ def h_triangle(self): [0, 0, 4], [1, 2, -1, 0]] """ - from sage.arith.all import binomial + from sage.arith.misc import binomial ret = [[0]*(i+1) for i in range(self.dimension() + 2)] f = self.f_triangle() for i, row in enumerate(ret): From 21148e59393ea5c503f856074b59bd27e4cec156 Mon Sep 17 00:00:00 2001 From: Alex Chandler Date: Sun, 29 Jan 2023 14:15:16 -0800 Subject: [PATCH 12/49] sage -fiximports src/sage/{functions,interfaces,symbolic} --- src/sage/functions/hypergeometric.py | 4 +++- src/sage/functions/piecewise.py | 15 +++++++++++---- src/sage/interfaces/axiom.py | 3 ++- src/sage/interfaces/fricas.py | 7 +++++-- src/sage/interfaces/genus2reduction.py | 4 +++- src/sage/interfaces/maxima_abstract.py | 2 +- src/sage/interfaces/octave.py | 4 ++-- src/sage/interfaces/scilab.py | 2 +- src/sage/interfaces/singular.py | 14 +++++++++----- src/sage/interfaces/sympy.py | 4 ++-- src/sage/symbolic/pynac_impl.pxi | 8 ++++++-- src/sage/symbolic/substitution_map_impl.pxi | 8 ++++---- 12 files changed, 49 insertions(+), 26 deletions(-) diff --git a/src/sage/functions/hypergeometric.py b/src/sage/functions/hypergeometric.py index 50c60b25638..47bff45ecdd 100644 --- a/src/sage/functions/hypergeometric.py +++ b/src/sage/functions/hypergeometric.py @@ -166,7 +166,9 @@ from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ from sage.rings.infinity import Infinity -from sage.arith.all import binomial, rising_factorial, factorial +from sage.arith.misc import binomial +from sage.arith.misc import rising_factorial +from sage.arith.misc import factorial from sage.symbolic.constants import pi from sage.symbolic.function import BuiltinFunction from sage.symbolic.ring import SR diff --git a/src/sage/functions/piecewise.py b/src/sage/functions/piecewise.py index 10d82e3709a..dacd79f2326 100644 --- a/src/sage/functions/piecewise.py +++ b/src/sage/functions/piecewise.py @@ -1089,7 +1089,9 @@ def laplace(self, parameters, variable, x='x', s='t'): sage: f.laplace(t,s) (s + 1)*e^(-s)/s^2 + 2*e^(-s)/s - 1/s^2 """ - from sage.all import assume, exp, forget + from sage.symbolic.assumptions import assume + from sage.functions.log import exp + from sage.symbolic.assumptions import forget x = SR.var(x) s = SR.var(s) assume(s>0) @@ -1180,7 +1182,8 @@ def fourier_series_cosine_coefficient(self, parameters, -3/5/pi """ - from sage.all import cos, pi + from sage.functions.trig import cos + from sage.symbolic.constants import pi L0 = (self.domain().sup() - self.domain().inf()) / 2 if not L: L = L0 @@ -1270,7 +1273,8 @@ def fourier_series_sine_coefficient(self, parameters, variable, 4/3/pi """ - from sage.all import sin, pi + from sage.functions.trig import sin + from sage.symbolic.constants import pi L0 = (self.domain().sup() - self.domain().inf()) / 2 if not L: L = L0 @@ -1358,7 +1362,10 @@ def fourier_series_partial_sum(self, parameters, variable, N, - 4/9*sin(3*pi*x)/pi^2 + 4*sin(pi*x)/pi^2 + 1/4 """ - from sage.all import pi, sin, cos, srange + from sage.symbolic.constants import pi + from sage.functions.trig import sin + from sage.functions.trig import cos + from sage.arith.srange import srange if not L: L = (self.domain().sup() - self.domain().inf()) / 2 x = self.default_variable() diff --git a/src/sage/interfaces/axiom.py b/src/sage/interfaces/axiom.py index 160fbd84c54..7e741b85f7e 100644 --- a/src/sage/interfaces/axiom.py +++ b/src/sage/interfaces/axiom.py @@ -836,7 +836,8 @@ def _sage_(self): return self._sage_domain() if type == "Float": - from sage.rings.all import RealField, ZZ + from sage.rings.real_mpfr import RealField + from sage.rings.integer_ring import Z as ZZ prec = max(self.mantissa().length()._sage_(), 53) R = RealField(prec) x,e,b = self.unparsed_input_form().lstrip('float(').rstrip(')').split(',') diff --git a/src/sage/interfaces/fricas.py b/src/sage/interfaces/fricas.py index dc2ce71f26a..d3da7d796f2 100644 --- a/src/sage/interfaces/fricas.py +++ b/src/sage/interfaces/fricas.py @@ -1217,7 +1217,9 @@ def _get_sage_type(self, domain): sage: fricas(0)._get_sage_type(m) # optional - fricas Univariate Polynomial Ring in y over Univariate Polynomial Ring in x over Algebraic Field """ - from sage.rings.all import QQbar, RDF, PolynomialRing + from sage.rings.qqbar import QQbar + from sage.rings.real_double import RDF + from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.fraction_field import FractionField from sage.rings.finite_rings.integer_mod_ring import Integers from sage.rings.finite_rings.finite_field_constructor import FiniteField @@ -1730,7 +1732,8 @@ def convert_rootOf(x, y): ex, _ = FriCASElement._parse_and_eval(fricas_InputForm) # postprocessing of rootOf - from sage.rings.all import QQbar, PolynomialRing + from sage.rings.qqbar import QQbar + from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing while rootOf: for var, poly in rootOf.items(): pvars = poly.variables() diff --git a/src/sage/interfaces/genus2reduction.py b/src/sage/interfaces/genus2reduction.py index 56ae04b2357..ea3380196c6 100644 --- a/src/sage/interfaces/genus2reduction.py +++ b/src/sage/interfaces/genus2reduction.py @@ -34,7 +34,9 @@ # **************************************************************************** from sage.structure.sage_object import SageObject -from sage.rings.all import ZZ, QQ, PolynomialRing +from sage.rings.integer_ring import Z as ZZ +from sage.rings.rational_field import Q as QQ +from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.libs.pari.all import pari roman_numeral = ["", "I", "II", "III", "IV", "V", "VI", "VII"] diff --git a/src/sage/interfaces/maxima_abstract.py b/src/sage/interfaces/maxima_abstract.py index cc1d88160bb..544e3b678a3 100644 --- a/src/sage/interfaces/maxima_abstract.py +++ b/src/sage/interfaces/maxima_abstract.py @@ -1846,7 +1846,7 @@ def _matrix_(self, R): [ 3 3/2 1 3/4] [ 4 2 4/3 1] """ - from sage.matrix.all import MatrixSpace + from sage.matrix.matrix_space import MatrixSpace self._check_valid() P = self.parent() nrows = int(P.eval('length(%s)'%self.name())) diff --git a/src/sage/interfaces/octave.py b/src/sage/interfaces/octave.py index 81d48cf3c10..f8f426c67e6 100644 --- a/src/sage/interfaces/octave.py +++ b/src/sage/interfaces/octave.py @@ -508,7 +508,7 @@ def solve_linear_system(self, A, b): m = A.nrows() if m != len(b): raise ValueError("dimensions of A and b must be compatible") - from sage.matrix.all import MatrixSpace + from sage.matrix.matrix_space import MatrixSpace from sage.rings.rational_field import QQ MS = MatrixSpace(QQ,m,1) b = MS(list(b)) # converted b to a "column vector" @@ -707,7 +707,7 @@ def _matrix_(self, R=None): if self.iscomplex(): w = [[to_complex(x,R) for x in row] for row in w] - from sage.matrix.all import MatrixSpace + from sage.matrix.matrix_space import MatrixSpace return MatrixSpace(R, nrows, ncols)(w) def _vector_(self, R=None): diff --git a/src/sage/interfaces/scilab.py b/src/sage/interfaces/scilab.py index 8349739633c..75ab263a53e 100644 --- a/src/sage/interfaces/scilab.py +++ b/src/sage/interfaces/scilab.py @@ -486,7 +486,7 @@ def _matrix_(self, R): [1.00000000000000 2.00000000000000] [3.00000000000000 4.50000000000000] """ - from sage.matrix.all import MatrixSpace + from sage.matrix.matrix_space import MatrixSpace s = str(self).strip() v = s.split('\n ') nrows = len(v) diff --git a/src/sage/interfaces/singular.py b/src/sage/interfaces/singular.py index cb93395125e..2305501a30d 100644 --- a/src/sage/interfaces/singular.py +++ b/src/sage/interfaces/singular.py @@ -1656,15 +1656,19 @@ def sage_global_ring(self): br = ZZ is_extension = False elif charstr[0] in ['0', 'QQ']: - from sage.all import QQ + from sage.rings.rational_field import Q as QQ br = QQ elif charstr[0].startswith('Float'): - from sage.all import RealField, ceil, log + from sage.rings.real_mpfr import RealField + from sage.functions.other import ceil + from sage.misc.functional import log prec = singular.eval('ringlist(basering)[1][2][1]') br = RealField(ceil((ZZ(prec)+1)/log(2,10))) is_extension = False elif charstr[0]=='complex': - from sage.all import ComplexField, ceil, log + from sage.rings.complex_mpfr import ComplexField + from sage.functions.other import ceil + from sage.misc.functional import log prec = singular.eval('ringlist(basering)[1][2][1]') br = ComplexField(ceil((ZZ(prec)+1)/log(2,10))) is_extension = False @@ -1684,7 +1688,7 @@ def sage_global_ring(self): if is_extension: minpoly = singular.eval('minpoly') if minpoly == '0': - from sage.all import Frac + from sage.rings.fraction_field import FractionField as Frac BR = Frac(br[charstr[1]]) else: is_short = singular.eval('short') @@ -1701,7 +1705,7 @@ def sage_global_ring(self): # Now, we form the polynomial ring over BR with the given variables, # using Singular's term order from sage.rings.polynomial.term_order import termorder_from_singular - from sage.all import PolynomialRing + from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing # Meanwhile Singulars quotient rings are also of 'ring' type, not 'qring' as it was in the past. # To find out if a singular ring is a quotient ring or not checking for ring type does not help # and instead of that we check if the quotient ring is zero or not: diff --git a/src/sage/interfaces/sympy.py b/src/sage/interfaces/sympy.py index 2c847d56892..aca0a43fa67 100644 --- a/src/sage/interfaces/sympy.py +++ b/src/sage/interfaces/sympy.py @@ -453,7 +453,7 @@ def _sympysage_rf(self): sage: assert rising_factorial(x,y)._sympy_() == rfxy.rewrite('gamma', piecewise=False) sage: assert rising_factorial(x,y) == rfxy._sage_() """ - from sage.arith.all import rising_factorial + from sage.arith.misc import rising_factorial return rising_factorial(self.args[0]._sage_(), self.args[1]._sage_()) def _sympysage_ff(self): @@ -466,7 +466,7 @@ def _sympysage_ff(self): sage: assert falling_factorial(x,y)._sympy_() == ffxy.rewrite('gamma') # known bug sage: assert falling_factorial(x,y) == ffxy._sage_() """ - from sage.arith.all import falling_factorial + from sage.arith.misc import falling_factorial return falling_factorial(self.args[0]._sage_(), self.args[1]._sage_()) def _sympysage_lgamma(self): diff --git a/src/sage/symbolic/pynac_impl.pxi b/src/sage/symbolic/pynac_impl.pxi index 0af6aae7fe1..53e4884a91a 100644 --- a/src/sage/symbolic/pynac_impl.pxi +++ b/src/sage/symbolic/pynac_impl.pxi @@ -45,7 +45,11 @@ from sage.libs.pari.all import pari from sage.cpython.string cimport str_to_bytes, char_to_str -from sage.arith.all import gcd, lcm, is_prime, factorial, bernoulli +from sage.arith.misc import GCD as gcd +from sage.arith.functions import lcm +from sage.arith.misc import is_prime +from sage.arith.misc import factorial +from sage.arith.misc import bernoulli from sage.structure.coerce cimport coercion_model from sage.structure.element cimport Element, parent @@ -2391,7 +2395,7 @@ def register_symbol(obj, conversions, nargs=None): this can be deduced automatically. EXAMPLES:: - + sage: from sage.symbolic.expression import register_symbol as rs sage: rs(SR(5),{'maxima':'five'}) sage: SR(maxima_calculus('five')) diff --git a/src/sage/symbolic/substitution_map_impl.pxi b/src/sage/symbolic/substitution_map_impl.pxi index d53b9971c6e..ea60e899d1a 100644 --- a/src/sage/symbolic/substitution_map_impl.pxi +++ b/src/sage/symbolic/substitution_map_impl.pxi @@ -29,13 +29,13 @@ cdef class SubstitutionMap(SageObject): Apply the substitution to a symbolic expression EXAMPLES:: - + sage: from sage.symbolic.expression import make_map sage: subs = make_map({x:x+1}) sage: subs.apply_to(x^2, 0) (x + 1)^2 """ - return new_Expression_from_GEx(expr._parent, + return new_Expression_from_GEx(expr._parent, expr._gobj.subs_map(self._gmapobj, options)) def _repr_(self): @@ -43,7 +43,7 @@ cdef class SubstitutionMap(SageObject): Return the string representation EXAMPLES:: - + sage: from sage.symbolic.expression import make_map sage: make_map({x:x+1}) SubsMap @@ -94,4 +94,4 @@ cpdef SubstitutionMap make_map(subs_dict): smap.insert(make_pair((k)._gobj, (v)._gobj)) return new_SubstitutionMap_from_GExMap(smap) - + From 1e88c12c13447aa29413bc69bbfe33cfe50a5335 Mon Sep 17 00:00:00 2001 From: Alex Chandler Date: Sun, 29 Jan 2023 16:02:21 -0800 Subject: [PATCH 13/49] sage -fiximports src/sage/{finance,interacts,libs,numerical,statistics,tests} --- src/sage/finance/fractal.pyx | 4 +- src/sage/interacts/library.py | 4 +- src/sage/libs/arb/arb_version.pyx | 2 +- src/sage/libs/coxeter3/coxeter_group.py | 4 +- src/sage/libs/eclib/homspace.pyx | 2 +- src/sage/libs/eclib/mat.pyx | 2 +- src/sage/libs/eclib/mwrank.pyx | 12 +- src/sage/libs/gap/element.pyx | 4 +- src/sage/libs/giac/auto-methods.pxi | 5810 ++++++++--------- src/sage/libs/giac/giac.pyx | 4 +- src/sage/libs/lcalc/lcalc_Lfunction.pyx | 2 +- src/sage/libs/linkages/padics/API.pxi | 4 +- .../linkages/padics/Polynomial_shared.pxi | 8 +- .../libs/linkages/padics/fmpz_poly_unram.pxi | 2 +- src/sage/libs/linkages/padics/mpz.pxi | 4 +- src/sage/libs/linkages/padics/relaxed/API.pxi | 2 +- src/sage/libs/pari/convert_sage.pyx | 4 +- .../numerical/backends/cvxopt_backend.pyx | 2 +- .../numerical/backends/cvxopt_sdp_backend.pyx | 2 +- .../numerical/backends/generic_backend.pyx | 5 +- .../numerical/backends/matrix_sdp_backend.pyx | 2 +- src/sage/numerical/gauss_legendre.pyx | 24 +- .../numerical/interactive_simplex_method.py | 14 +- src/sage/numerical/linear_tensor_element.pyx | 16 +- src/sage/numerical/sdp.pyx | 2 +- 25 files changed, 2977 insertions(+), 2964 deletions(-) diff --git a/src/sage/finance/fractal.pyx b/src/sage/finance/fractal.pyx index a3323bc6c3c..ed67ade8181 100644 --- a/src/sage/finance/fractal.pyx +++ b/src/sage/finance/fractal.pyx @@ -21,7 +21,9 @@ AUTHOR: - William Stein (2008) """ -from sage.rings.all import RDF, CDF, Integer +from sage.rings.real_double import RDF +from sage.rings.complex_double import CDF +from sage.rings.integer import Integer from sage.modules.free_module_element import vector I = CDF.gen() diff --git a/src/sage/interacts/library.py b/src/sage/interacts/library.py index bb6dfbcf8f4..da0c3a9730d 100644 --- a/src/sage/interacts/library.py +++ b/src/sage/interacts/library.py @@ -161,7 +161,7 @@ def html(obj): sage: html("

Hello world

")

Hello world

""" - from sage.all import html + from sage.misc.html import html pretty_print(html(obj)) @@ -1301,7 +1301,7 @@ def simpson_integration( else: interval = interval_g[0] def parabola(a, b, c): - from sage.all import solve + from sage.symbolic.relation import solve A, B, C = SR.var("A, B, C") K = solve([A*a[0]**2+B*a[0]+C==a[1], A*b[0]**2+B*b[0]+C==b[1], A*c[0]**2+B*c[0]+C==c[1]], [A, B, C], solution_dict=True)[0] f = K[A]*x**2+K[B]*x+K[C] diff --git a/src/sage/libs/arb/arb_version.pyx b/src/sage/libs/arb/arb_version.pyx index 6ad567e67ce..55736c392e9 100644 --- a/src/sage/libs/arb/arb_version.pyx +++ b/src/sage/libs/arb/arb_version.pyx @@ -1,5 +1,5 @@ # -*- coding: utf-8 -from sage.libs.arb.arb cimport arb_version +from sage.libs.arb.arb cimport arb_version from sage.cpython.string cimport char_to_str def version(): diff --git a/src/sage/libs/coxeter3/coxeter_group.py b/src/sage/libs/coxeter3/coxeter_group.py index ffb434f4ecd..c9aeddcee33 100644 --- a/src/sage/libs/coxeter3/coxeter_group.py +++ b/src/sage/libs/coxeter3/coxeter_group.py @@ -15,7 +15,7 @@ from sage.structure.unique_representation import UniqueRepresentation from sage.structure.element_wrapper import ElementWrapper from sage.structure.richcmp import richcmp -from sage.categories.all import CoxeterGroups +from sage.categories.coxeter_groups import CoxeterGroups from sage.structure.parent import Parent from sage.combinat.root_system.coxeter_matrix import CoxeterMatrix @@ -37,7 +37,7 @@ def __classcall__(cls, cartan_type, *args, **options): Coxeter group of type ['B', 3] relabelled by {1: 3, 2: 2, 3: 1} implemented by Coxeter3 """ - from sage.combinat.all import CartanType + from sage.combinat.root_system.cartan_type import CartanType ct = CartanType(cartan_type) return super().__classcall__(cls, ct, *args, **options) diff --git a/src/sage/libs/eclib/homspace.pyx b/src/sage/libs/eclib/homspace.pyx index 3feea84fda7..090fa3b693d 100644 --- a/src/sage/libs/eclib/homspace.pyx +++ b/src/sage/libs/eclib/homspace.pyx @@ -8,7 +8,7 @@ from libcpp.map cimport map from ..eclib cimport vec, svec, mat, smat from .mat cimport MatrixFactory -from sage.matrix.all import MatrixSpace +from sage.matrix.matrix_space import MatrixSpace from sage.matrix.matrix_integer_sparse cimport Matrix_integer_sparse from sage.rings.integer_ring import ZZ from sage.rings.integer cimport Integer diff --git a/src/sage/libs/eclib/mat.pyx b/src/sage/libs/eclib/mat.pyx index 2ad3474b221..39dee4afc94 100644 --- a/src/sage/libs/eclib/mat.pyx +++ b/src/sage/libs/eclib/mat.pyx @@ -4,7 +4,7 @@ Cremona matrices from ..eclib cimport scalar, addscalar -from sage.matrix.all import MatrixSpace +from sage.matrix.matrix_space import MatrixSpace from sage.rings.integer_ring import ZZ from sage.matrix.matrix_integer_sparse cimport Matrix_integer_sparse diff --git a/src/sage/libs/eclib/mwrank.pyx b/src/sage/libs/eclib/mwrank.pyx index 119d4d49dd4..4fa12cc10dd 100644 --- a/src/sage/libs/eclib/mwrank.pyx +++ b/src/sage/libs/eclib/mwrank.pyx @@ -593,9 +593,9 @@ cdef class _mw: Reducing saturation bound from given value 20 to computed index bound 3 Tamagawa index primes are [ 2 ] Checking saturation at [ 2 3 ] - Checking 2-saturation + Checking 2-saturation Points were proved 2-saturated (max q used = 7) - Checking 3-saturation + Checking 3-saturation Points were proved 3-saturated (max q used = 7) done P2 = [-2:3:1] is generator number 2 @@ -603,10 +603,10 @@ cdef class _mw: Reducing saturation bound from given value 20 to computed index bound 4 Tamagawa index primes are [ 2 ] Checking saturation at [ 2 3 ] - Checking 2-saturation + Checking 2-saturation possible kernel vector = [1,1] This point may be in 2E(Q): [14:-52:1] - ...and it is! + ...and it is! Replacing old generator #1 with new generator [1:-1:1] Reducing index bound from 4 to 2 Points have successfully been 2-saturated (max q used = 7) @@ -618,9 +618,9 @@ cdef class _mw: Reducing saturation bound from given value 20 to computed index bound 3 Tamagawa index primes are [ 2 ] Checking saturation at [ 2 3 ] - Checking 2-saturation + Checking 2-saturation Points were proved 2-saturated (max q used = 11) - Checking 3-saturation + Checking 3-saturation Points were proved 3-saturated (max q used = 13) done, index = 1. P4 = [-1:3:1] = -1*P1 + -1*P2 + -1*P3 (mod torsion) diff --git a/src/sage/libs/gap/element.pyx b/src/sage/libs/gap/element.pyx index c555ea0333c..7ce70bda06a 100644 --- a/src/sage/libs/gap/element.pyx +++ b/src/sage/libs/gap/element.pyx @@ -27,7 +27,9 @@ from sage.cpython.string cimport str_to_bytes, char_to_str from sage.misc.cachefunc import cached_method from sage.structure.sage_object cimport SageObject from sage.structure.parent import Parent -from sage.rings.all import ZZ, QQ, RDF +from sage.rings.integer_ring import Z as ZZ +from sage.rings.rational_field import Q as QQ +from sage.rings.real_double import RDF from sage.groups.perm_gps.permgroup_element cimport PermutationGroupElement from sage.combinat.permutation import Permutation diff --git a/src/sage/libs/giac/auto-methods.pxi b/src/sage/libs/giac/auto-methods.pxi index 9af4c0023bf..776900bcf4f 100644 --- a/src/sage/libs/giac/auto-methods.pxi +++ b/src/sage/libs/giac/auto-methods.pxi @@ -14,10 +14,10 @@ cdef class GiacMethods_base: Help for Airy_Ai: Airy_Ai(Real) Returns the value of Ai the Airy function solution of w''-xw=0. Ai(x)=Ai(0)f(z)+Ai'(0)g(z)(f and g are taylor's series sol of w''-xw=0). - See also: 1/ Airy_Bi + See also: 1/ Airy_Bi Ex1:Airy_Ai(0) Ex2:Airy_Ai(1.5) - + ''' return GiacMethods['Airy_Ai'](self,*args) @@ -26,10 +26,10 @@ cdef class GiacMethods_base: Help for Airy_Bi: Airy_Bi(Real) Returns the value of Ai the Airy function solution of w''-xw=0. Bi(x)=sqrt(3)(Bi(0)f(z)-Bi'(0)g(z))(f and g are taylor's series sol of w''-xw=0). - See also: 1/ Airy_Ai + See also: 1/ Airy_Ai Ex1:Airy_Bi(1.5) Ex2:Airy_Bi(0) - + ''' return GiacMethods['Airy_Bi'](self,*args) @@ -38,9 +38,9 @@ cdef class GiacMethods_base: Help for Archive: Archive(SeqVar) Protects the variables given as argument in an archive file. - See also: 1/ Unarchiv 2/ archive 3/ unarchive + See also: 1/ Unarchiv 2/ archive 3/ unarchive Ex1:Archive(a,b) - + ''' return GiacMethods['Archive'](self,*args) @@ -49,10 +49,10 @@ cdef class GiacMethods_base: Help for BesselJ: BesselJ(Int(p),Real(x)) BesselJ(p,x) returns the Bessel function of the first kind Jp(x). - See also: 1/ besselJ 2/ BesselY 3/ besselY + See also: 1/ besselJ 2/ BesselY 3/ besselY Ex1:BesselJ(2,sqrt(2)) Ex2:BesselJ(-2,sqrt(2)) - + ''' return GiacMethods['BesselJ'](self,*args) @@ -61,10 +61,10 @@ cdef class GiacMethods_base: Help for BesselY: BesselY(Int(p),Real(x)) BesselY(p,x) returns the Bessel function of the second kind Yp(x). - See also: 1/ besselY 2/ BesselJ 3/ besselJ + See also: 1/ besselY 2/ BesselJ 3/ besselJ Ex1:BesselY(BesselJ(2,sqrt(2))) Ex2:BesselY(BesselJ(-2,sqrt(2))) - + ''' return GiacMethods['BesselY'](self,*args) @@ -73,12 +73,12 @@ cdef class GiacMethods_base: Help for Beta: Beta(Expr,Expr,[Expr],[1]) Beta(a,b)=int(t^(a-1)*(1-t)^(b-1),t=0..1), Beta(a,b,p)=int(t^(a-1)*(1-t)^(b-1),t=0..p), Beta(a,b,p,1)=Beta(a,b,p)/Beta(a,b).(Beta(x,y) returns Gamma(x)*Gamma(y)/Gamma(x+y)). - See also: 1/ Gamma 2/ igamma + See also: 1/ Gamma 2/ igamma Ex1:Beta(x,y) Ex2:Beta(3,2) Ex3:Beta(3,2,0.5) Ex4:Beta(3,2,0.5,1) - + ''' return GiacMethods['Beta'](self,*args) @@ -87,10 +87,10 @@ cdef class GiacMethods_base: Help for BlockDiagonal: BlockDiagonal(Lst(l)||Mtrx(A)) Returns either the diagonal matrix with diagonal l or the diagonal of A. - See also: 1/ identity 2/ diag + See also: 1/ identity 2/ diag Ex1:BlockDiagonal([[1,2],[3,4]]) Ex2:BlockDiagonal([1,2,3]) - + ''' return GiacMethods['BlockDiagonal'](self,*args) @@ -99,9 +99,9 @@ cdef class GiacMethods_base: Help for Ci: Ci(Expr) Cosine integral int(cos(t)/t,t=-inf..x). - See also: 1/ Ei 2/ Si 3/ Li + See also: 1/ Ei 2/ Si 3/ Li Ex1:Ci(1.0) - + ''' return GiacMethods['Ci'](self,*args) @@ -110,11 +110,11 @@ cdef class GiacMethods_base: Help for Circle: Circle(Real(xc),Real(yc),Real(r),[Intg(option)]) Draws the circle with center (xc,yc) and radius r (by default option=1 and option=0 is to remove this circle). - See also: 1/ circle + See also: 1/ circle Ex1:Circle(0,1,1) Ex2:Circle(0,1,1,0) Ex3:Circle(0,1,1,1) - + ''' return GiacMethods['Circle'](self,*args) @@ -123,9 +123,9 @@ cdef class GiacMethods_base: Help for Col: Col(NULL) Returns the index of the column of the lightened cell in the matrixwriter. - See also: 1/ Row + See also: 1/ Row Ex1:Col() - + ''' return GiacMethods['Col'](self,*args) @@ -134,9 +134,9 @@ cdef class GiacMethods_base: Help for CopyVar: CopyVar(Var(var1),Var(var2)) Copies the storage without evaluation of var1 into var2. - See also: 1/ + See also: 1/ Ex1:CopyVar(A,B) - + ''' return GiacMethods['CopyVar'](self,*args) @@ -145,11 +145,11 @@ cdef class GiacMethods_base: Help for Dirac: Dirac(Real) Function derivative of Heaviside. - See also: 1/ Heaviside + See also: 1/ Heaviside Ex1:Dirac(1) Ex2:Dirac(-1) Ex3: int(Dirac(x)*(x-1)^2,x,-1,2) - + ''' return GiacMethods['Dirac'](self,*args) @@ -158,9 +158,9 @@ cdef class GiacMethods_base: Help for Ei: Ei(Expr) Exponential integral int(exp(t)/t,t=-inf..x). - See also: 1/ Si 2/ Ci 3/ Li + See also: 1/ Si 2/ Ci 3/ Li Ex1:Ei(1.0) - + ''' return GiacMethods['Ei'](self,*args) @@ -169,10 +169,10 @@ cdef class GiacMethods_base: Help for Factor: Factor(Expr) Factors a polynomial without evaluation. - See also: 1/ factor 2/ ifactor 3/ normal + See also: 1/ factor 2/ ifactor 3/ normal Ex1:Factor(x^4-1) Ex2:Factor(x^4+12*x^3+54*x^2+108*x+81) - + ''' return GiacMethods['Factor'](self,*args) @@ -187,7 +187,7 @@ cdef class GiacMethods_base: Ex4:GF(2,w^8+w^7+w^5+w+1) Ex5:GF(2,8,['a','G']) Ex6: G:=GF(2,a^8+a^6+a^3+a^2+1,['a','G'],undef) - + ''' return GiacMethods['GF'](self,*args) @@ -196,12 +196,12 @@ cdef class GiacMethods_base: Help for Gamma: Gamma(Real(a),[Real(b)]) Calculates Gamma at a point a (Gamma(n+1)=n! for n integer) if a>0, Gamma(a)=int(e^{-t}*t^{a-1},t=0..inf)) and Gamma(a)=Gamma(a+1)/a and Gamma(a,b)=ugamma(a,b). - See also: 1/ Psi 2/ Beta 3/ ugamma 4/ igamma + See also: 1/ Psi 2/ Beta 3/ ugamma 4/ igamma Ex1:Gamma(5) Ex2:Gamma(1/2) Ex3:Gamma(gamma(-5.1)) Ex4:Gamma(-5.1,2.1) - + ''' return GiacMethods['Gamma'](self,*args) @@ -210,11 +210,11 @@ cdef class GiacMethods_base: Help for Heaviside: Heaviside(Real) Function equal to 0 if x<0 and 1 if x>=0. - See also: 1/ Dirac 2/ laplace + See also: 1/ Dirac 2/ laplace Ex1:Heaviside(1) Ex2:Heaviside(-1) Ex3:Heaviside(0) - + ''' return GiacMethods['Heaviside'](self,*args) @@ -223,9 +223,9 @@ cdef class GiacMethods_base: Help for JordanBlock: JordanBlock(Expr(a),Intg(n)) Returns an n*n matrix with a on the diagonal, 1 above and 0 everywhere else. - See also: 1/ jordan + See also: 1/ jordan Ex1:JordanBlock(7,3) - + ''' return GiacMethods['JordanBlock'](self,*args) @@ -234,10 +234,10 @@ cdef class GiacMethods_base: Help for LU: LU(Mtrx(A),Var(L),Var(U),Var(P)) For a numerical matrix A, stores in L a lower triangular matrix, in U an upper triangular matrix and in P a permutation matrix such that P*A=L*U. - See also: 1/ lu 2/ QR + See also: 1/ lu 2/ QR Ex1:LU([[1,2],[3,4]],L,U,P) Ex2:LU([[6,12,18],[5,14,31],[3,8,18]],L,U,P) - + ''' return GiacMethods['LU'](self,*args) @@ -249,7 +249,7 @@ cdef class GiacMethods_base: Ex1:LambertW(1.0) Ex2:LambertW(ln(4)) Ex3:LambertW(-0.1,-1) - + ''' return GiacMethods['LambertW'](self,*args) @@ -258,9 +258,9 @@ cdef class GiacMethods_base: Help for Li: Li(Expr) Logarithm integral Li(x)=Ei(ln(x)) primitive of 1/ln(x). - See also: 1/ Si 2/ Ci 3/ Ei + See also: 1/ Si 2/ Ci 3/ Ei Ex1:Li(2.0) - + ''' return GiacMethods['Li'](self,*args) @@ -269,9 +269,9 @@ cdef class GiacMethods_base: Help for Line: Line(Expr(a),Expr(b),Expr(c),Expr(d)) Draws the segment [a+i*b,c+i*d]. - See also: 1/ segment + See also: 1/ segment Ex1:Line(-1,-2,1,2) - + ''' return GiacMethods['Line'](self,*args) @@ -280,9 +280,9 @@ cdef class GiacMethods_base: Help for LineHorz: LineHorz(Expr(a)) Draws the horizontal line y=a. - See also: 1/ Line 2/ LineVert + See also: 1/ Line 2/ LineVert Ex1:LineHorz(-1) - + ''' return GiacMethods['LineHorz'](self,*args) @@ -291,13 +291,13 @@ cdef class GiacMethods_base: Help for LineTan: LineTan(Expr(f(x)),[Var],Expr(a)) Draws the tangent to y=f(x) at x=a. Do not use parentheses or put the parenthesis around the entire expression. - See also: 1/ tangent 2/ droite_tangente + See also: 1/ tangent 2/ droite_tangente Ex1: LineTan sin(x),pi/4 Ex2: LineTan sin(t),t=pi/4) Ex3: LineTan sin(t),t,pi/4 Ex4: LineTan x^2-x,1 Ex5: (LineTan sin(t),t,pi/4) - + ''' return GiacMethods['LineTan'](self,*args) @@ -306,9 +306,9 @@ cdef class GiacMethods_base: Help for LineVert: LineVert(Expr(a)) Draws the vertical line x=a. - See also: 1/ Line 2/ LineHorz + See also: 1/ Line 2/ LineHorz Ex1:LineVert(2) - + ''' return GiacMethods['LineVert'](self,*args) @@ -317,10 +317,10 @@ cdef class GiacMethods_base: Help for Phi: Phi(Intg(n)) Euler's function (euler(n)=card({p1 sum(1/n^a,n,1,+infinity). - See also: 1/ sum + See also: 1/ sum Ex1:Zeta(2) - + ''' return GiacMethods['Zeta'](self,*args) @@ -507,10 +507,10 @@ cdef class GiacMethods_base: Help for a2q: a2q(Mtrx,VectVar) a2q(A,X)=the quadratic form q associated to A, X=vector of variables. - See also: 1/ q2a + See also: 1/ q2a Ex1:a2q([[1,2],[4,4]],[x,y]) Ex2:a2q([[1,3],[3,4]],[x,y]) - + ''' return GiacMethods['a2q'](self,*args) @@ -519,13 +519,13 @@ cdef class GiacMethods_base: Help for abcuv: abcuv(Poly(a),Poly(b),Poly(c),[Var]) Returns [u,v] such that au+bv=c for 3 polynomials a,b,c. - See also: 1/ egcd 2/ iabcuv + See also: 1/ egcd 2/ iabcuv Ex1:abcuv(x^2+2*x+1,x^2-1,x+1) Ex2:abcuv(X^2+2*X+1,X^2-1,X+1,X) Ex3:abcuv(x^2+2*x+1,x^2-1,x^3+1) Ex4:abcuv(X^2+2*X+1,X^2-1,X^3+1,X) Ex5:abcuv([1,2,1],[1,0,-1],[1,0,0,1]) - + ''' return GiacMethods['abcuv'](self,*args) @@ -534,10 +534,10 @@ cdef class GiacMethods_base: Help for about: about(Var(a)) Returns the hypothesis made with assume on the variable a. - See also: 1/ assume 2/ purge + See also: 1/ assume 2/ purge Ex1:about(a) Ex2:about(n) - + ''' return GiacMethods['about'](self,*args) @@ -546,12 +546,12 @@ cdef class GiacMethods_base: Help for abs: abs(Cplx||LstCplx) Returns the absolute value or the norm of its argument. - See also: 1/ arg + See also: 1/ arg Ex1:abs(-4) Ex2:abs(1+2*i) Ex3:abs((1+2*i)^2) Ex4:abs([-2,1+i,-4]) - + ''' return GiacMethods['abs'](self,*args) @@ -560,12 +560,12 @@ cdef class GiacMethods_base: Help for abscissa: abscissa(Pnt or Vect) Returns the abscissa of a point or a vector. - See also: 1/ ordinate 2/ affix 3/ cote 4/ coordinates + See also: 1/ ordinate 2/ affix 3/ cote 4/ coordinates Ex1:abscissa(point(1+2*i)) Ex2:abscissa(point(i)-point(1+2*i)) Ex3:abscissa(-1-i) Ex4:abscissa(point(1,2,3)) - + ''' return GiacMethods['abscissa'](self,*args) @@ -574,9 +574,9 @@ cdef class GiacMethods_base: Help for accumulate_head_tail: accumulate_head_tail(Lst(l),Intg(p),Intg(q)) Returns the list where the first p and the last q elements of l are replaced by their sum. - See also: 1/ + See also: 1/ Ex1:accumulate_head_tail([0,1,2,3,4,5,6,7,8,9],3,2) - + ''' return GiacMethods['accumulate_head_tail'](self,*args) @@ -585,9 +585,9 @@ cdef class GiacMethods_base: Help for acos: acos(Expr) Arccosine. - See also: 1/ cos 2/ acosh + See also: 1/ cos 2/ acosh Ex1:acos(0) - + ''' return GiacMethods['acos'](self,*args) @@ -596,10 +596,10 @@ cdef class GiacMethods_base: Help for acos2asin: acos2asin(Expr) Replaces arccos(x) by pi/2-arcsin(x) in the argument. - See also: 1/ acos2atan + See also: 1/ acos2atan Ex1:acos2asin(acos(x)+asin(x)) Ex2:acos2asin(2*acos(x)) - + ''' return GiacMethods['acos2asin'](self,*args) @@ -608,10 +608,10 @@ cdef class GiacMethods_base: Help for acos2atan: acos2atan(Expr) Replaces arccos(x) by pi/2-arctan(x/sqrt(1-x^2)) in the argument. - See also: 1/ acos2asin + See also: 1/ acos2asin Ex1:acos2atan(2*acos(x)) Ex2:acos2atan(acos(sqrt(1-x^2))+acos(x)) - + ''' return GiacMethods['acos2atan'](self,*args) @@ -620,9 +620,9 @@ cdef class GiacMethods_base: Help for acosh: acosh(Expr) Hyperbolic arccosine. - See also: 1/ cosh 2/ acos + See also: 1/ cosh 2/ acos Ex1:acosh(1) - + ''' return GiacMethods['acosh'](self,*args) @@ -631,9 +631,9 @@ cdef class GiacMethods_base: Help for acot: acot(Expr) Arccotangent. - See also: 1/ atan 2/ arccos + See also: 1/ atan 2/ arccos Ex1:acot(0) - + ''' return GiacMethods['acot'](self,*args) @@ -642,10 +642,10 @@ cdef class GiacMethods_base: Help for acsc: acsc(Expr) Arccosecant: acsc(x)=asin(1/x). - See also: 1/ asin 2/ csc + See also: 1/ asin 2/ csc Ex1:acsc(1) Ex2:acsc(2) - + ''' return GiacMethods['acsc'](self,*args) @@ -654,8 +654,8 @@ cdef class GiacMethods_base: Help for acyclic: acyclic(Opt) Option for the random_network command. - See also: 1/ random_network - + See also: 1/ random_network + ''' return GiacMethods['acyclic'](self,*args) @@ -664,7 +664,7 @@ cdef class GiacMethods_base: Help for add: add(Expr,Var,VarMin(a),VarMax(b),[VarStep(p)]) Discrete sum (with 2 or 4 arguments return then sum from a to b if a<=b or of the opposite of the sum from b+1 to a-1 if a>b+1 or 0 if a=b+1) or the discrete primitive or sum of the elements of a list or a sequence. - See also: 1/ + + See also: 1/ + Ex1:add(1/n^2,n,1,17) Ex2:add(1/n^2,n=1..17) Ex3:add(1/n^2,n,17,1) @@ -675,7 +675,7 @@ cdef class GiacMethods_base: Ex8:add([[1,2,3,4,5,6,7,8,9],[1,2,3,4,5,6,7,8,9]]) Ex9:add(1/(x*(x+1)),x) Ex10:add(cos(n*x),n) - + ''' return GiacMethods['add'](self,*args) @@ -684,9 +684,9 @@ cdef class GiacMethods_base: Help for add_arc: add_arc(Graph(G),Edge(e)||Trail(T)||Lst(E)) Returns a modified copy of digraph G with added arc e (or trail T or list of arcs E). - See also: 1/ add_edge 2/ delete_arc 3/ digraph 4/ edges 5/ has_arc 6/ trail + See also: 1/ add_edge 2/ delete_arc 3/ digraph 4/ edges 5/ has_arc 6/ trail Ex1:add_arc(digraph(trail(1,2,3,4,5,1)),[[1,3],[2,4]]) - + ''' return GiacMethods['add_arc'](self,*args) @@ -695,9 +695,9 @@ cdef class GiacMethods_base: Help for add_edge: add_edge(Graph(G),Edge(e)||Trail(T)||Lst(E)) Returns a modified copy of undirected graph G with added edge e (or trail T or list of edges E). - See also: 1/ add_arc 2/ delete_edge 3/ edges 4/ graph 5/ has_edge 6/ trail + See also: 1/ add_arc 2/ delete_edge 3/ edges 4/ graph 5/ has_edge 6/ trail Ex1:add_edge(graph(trail(1,2,3,4)),[4,1]) - + ''' return GiacMethods['add_edge'](self,*args) @@ -706,9 +706,9 @@ cdef class GiacMethods_base: Help for add_vertex: add_vertex(Graph(G),Vrtx(v)||Lst(V)) Returns a modified copy of G with added vertex v [or vertices from list V]. - See also: 1/ add_arc 2/ add_edge 3/ delete_vertex + See also: 1/ add_arc 2/ add_edge 3/ delete_vertex Ex1:add_vertex(cycle_graph(5),["a","b"]) - + ''' return GiacMethods['add_vertex'](self,*args) @@ -717,10 +717,10 @@ cdef class GiacMethods_base: Help for additionally: additionally(Expr) Makes an additionally assumption on a variable. - See also: 1/ purge 2/ about 3/ assume + See also: 1/ purge 2/ about 3/ assume Ex1: assume(n,integer);additionally(n>5) Ex2: assume(n,integer);assume(n>=2,additionally) - + ''' return GiacMethods['additionally'](self,*args) @@ -729,9 +729,9 @@ cdef class GiacMethods_base: Help for addtable: addtable(fourier||laplace,f(x),F(s),Var(x),Var(s)) Stores an unknown Fourier/Laplace transform pair (f,F). - See also: 1/ fourier 2/ laplace + See also: 1/ fourier 2/ laplace Ex1:addtable(fourier,y(x),Y(s),x,s) - + ''' return GiacMethods['addtable'](self,*args) @@ -740,9 +740,9 @@ cdef class GiacMethods_base: Help for adjacency_matrix: adjacency_matrix(Graph(G)) Returns the adjacency matrix of G (rows and columns are indexed by the vertices). - See also: 1/ neighbors + See also: 1/ neighbors Ex1:adjacency_matrix(graph(trail(1,2,3,4,2,5,1,3))) - + ''' return GiacMethods['adjacency_matrix'](self,*args) @@ -751,9 +751,9 @@ cdef class GiacMethods_base: Help for adjoint_matrix: adjoint_matrix(Mtrx) Returns the characteristic polynomial of A and the comatrix of A-xI. - See also: 1/ pcar + See also: 1/ pcar Ex1:adjoint_matrix([[1,i],[2,3]]) - + ''' return GiacMethods['adjoint_matrix'](self,*args) @@ -762,11 +762,11 @@ cdef class GiacMethods_base: Help for affix: affix(Pnt||Vect) Complex number equal to the affix of a point or of a vector. - See also: 1/ point 2/ vector + See also: 1/ point 2/ vector Ex1:affix(point(i)) Ex2:affix(point(i)-point(1+2*i)) Ex3:affix([1,2]) - + ''' return GiacMethods['affix'](self,*args) @@ -775,11 +775,11 @@ cdef class GiacMethods_base: Help for algsubs: algsubs(Equal(Xpr1=Xpr2),Expr(Xpr)) Substitutes in the expression Xpr, the algebraic expression Xpr1 by the algebraic expression Xpr2. - See also: 1/ subst 2/ subs + See also: 1/ subst 2/ subs Ex1:algsubs(x^2=u,1+x^2+x^4) Ex2:algsubs(a*b/c=d, 2*a*b^2/c) Ex3:algsubs(2a=p^2-q^2,algsubs(2c=p^2+q^2,c^2-a^2)) - + ''' return GiacMethods['algsubs'](self,*args) @@ -788,9 +788,9 @@ cdef class GiacMethods_base: Help for algvar: algvar(Expr) List of the variables by ascending algebraic extension order. - See also: 1/ lvar 2/ lname + See also: 1/ lvar 2/ lname Ex1:algvar(sqrt(x)+y) - + ''' return GiacMethods['algvar'](self,*args) @@ -799,10 +799,10 @@ cdef class GiacMethods_base: Help for all_trig_solutions: all_trig_solutions(:=Intg(0 or 1)) Pseudo-variable to return the general solution (all_trig_solutions:=1) or principal solution (all_trig_solutions:=0). - See also: 1/ cas_setup + See also: 1/ cas_setup Ex1: all_trig_solutions:=1 Ex2: all_trig_solutions:=0 - + ''' return GiacMethods['all_trig_solutions'](self,*args) @@ -811,9 +811,9 @@ cdef class GiacMethods_base: Help for allpairs_distance: allpairs_distance(Graph(G)) Returns a square matrix D of order equal to the number of vertices in G such that D(i,j) is the distance between i-th and j-th vertex of the (weighted) graph G. - See also: 1/ dijkstra 2/ graph_diameter 3/ vertex_distance + See also: 1/ dijkstra 2/ graph_diameter 3/ vertex_distance Ex1:allpairs_distance(graph(%{[1,2],[1,3],[1,4],[1,5],[2,3],[3,4],[4,5],[5,2]%})) - + ''' return GiacMethods['allpairs_distance'](self,*args) @@ -822,9 +822,9 @@ cdef class GiacMethods_base: Help for alog10: alog10(Expr) Function x->10^x. - See also: 1/ log10 + See also: 1/ log10 Ex1:alog10(3) - + ''' return GiacMethods['alog10'](self,*args) @@ -833,9 +833,9 @@ cdef class GiacMethods_base: Help for altitude: altitude((Pnt or Cplx),(Pnt or Cplx),(Pnt or Cplx)) altitude(A,B,C) draws the altitude through A of the triangle ABC. - See also: 1/ perpendicular 2/ orthogonal 3/ orthocenter 4/ common_perpendicular + See also: 1/ perpendicular 2/ orthogonal 3/ orthocenter 4/ common_perpendicular Ex1:altitude(-1,1-i,i) - + ''' return GiacMethods['altitude'](self,*args) @@ -844,13 +844,13 @@ cdef class GiacMethods_base: Help for angle: angle((Pnt or Cplx),(Pnt or Cplx),(Pnt or Cplx)) angle(A,B,C) is the value of the measure of the angle (AB,AC). - See also: 1/ triangle 2/ bissector 3/ legend 4/ labels 5/ angleat 6/ angleatraw + See also: 1/ triangle 2/ bissector 3/ legend 4/ labels 5/ angleat 6/ angleatraw Ex1:angle(point(0),point(i),point(1)) Ex2:angle(0,1,i) Ex3:angle(0,1,i,"") Ex4:angle(0,1,i,"a") Ex5:angle(i,1,1+i,"b") - + ''' return GiacMethods['angle'](self,*args) @@ -859,10 +859,10 @@ cdef class GiacMethods_base: Help for angle_radian: angle_radian(:=Intg(0 or 1)) Pseudo-variable to work with radians (angle_radian:=1) or degrees (angle_radian:=0). - See also: 1/ cas_setup + See also: 1/ cas_setup Ex1: angle_radian:=1 Ex2: angle_radian:=0 - + ''' return GiacMethods['angle_radian'](self,*args) @@ -871,9 +871,9 @@ cdef class GiacMethods_base: Help for angleat: angleat(Pnt(A),Pnt(B),Pnt(C),(Pnt or Cplx(z0))) angleat(A,B,C,z0) displays at point(z0) with a legend, the value of the measure of the angle (AB,AC). - See also: 1/ angle 2/ angleatraw 3/ legend + See also: 1/ angle 2/ angleatraw 3/ legend Ex1: A:=point(0);B:=point(1);C:=point(i);angleat(A,B,C,-2-i) - + ''' return GiacMethods['angleat'](self,*args) @@ -882,9 +882,9 @@ cdef class GiacMethods_base: Help for angleatraw: angleatraw(Pnt(A)),Pnt(B),Pnt(C),(Pnt or Cplx(z0))) angleatraw(A,B,C,z0) displays at point(z0), the value of the measure of the angle (AB,AC). - See also: 1/ angle 2/ angleat + See also: 1/ angle 2/ angleat Ex1: A:=point(0);B:=point(1);C:=point(i);angleatraw(A,B,C,-2-i) - + ''' return GiacMethods['angleatraw'](self,*args) @@ -893,11 +893,11 @@ cdef class GiacMethods_base: Help for ans: ans(Intg(n)) Returns the (n+1)th answer of the command history if n>=0 or, the (-n)th previous answer if n<0 (by default n=-1 for the previous answer). - See also: 1/ quest + See also: 1/ quest Ex1:ans() Ex2:ans(2) Ex3:ans(-2) - + ''' return GiacMethods['ans'](self,*args) @@ -906,9 +906,9 @@ cdef class GiacMethods_base: Help for antiprism_graph: antiprism_graph(Intg(n)) Returns the antiprism graph of order n. - See also: 1/ prism_graph + See also: 1/ prism_graph Ex1:antiprism_graph(5) - + ''' return GiacMethods['antiprism_graph'](self,*args) @@ -917,14 +917,14 @@ cdef class GiacMethods_base: Help for append: append((Lst||Set||Str(L),Elem)) Append an element to a set or at the end of a list or of a string (L:=append(L,a) or L.append(a)). - See also: 1/ concat 2/ prepend + See also: 1/ concat 2/ prepend Ex1:append([1,2,4],6) Ex2:append(%{1,2,4%},6) Ex3: L:=[1,2,4];L:=append(L,6) Ex4: L:=[1,2,4];L.append(6) Ex5: S:=set[1,2,4];S:=append(S,6) Ex6: S:=set[1,2,4];S.append(6) - + ''' return GiacMethods['append'](self,*args) @@ -933,10 +933,10 @@ cdef class GiacMethods_base: Help for apply: apply(Fnc(f),Lst(l)) Applies the function f at the elements of the list l (option matrix for a matrix). - See also: 1/ map 2/ unapply 3/ matrix + See also: 1/ map 2/ unapply 3/ matrix Ex1:apply(x->x^3,[1,2,3]) Ex2:apply(x->x+1,[[1,2,3],[1,2,3]],matrix) - + ''' return GiacMethods['apply'](self,*args) @@ -945,14 +945,14 @@ cdef class GiacMethods_base: Help for approx: approx(Expr,[Int]) Numerical evaluation of the first argument (we can give the number of digits as second argument). - See also: 1/ evalb 2/ eval + See also: 1/ evalb 2/ eval Ex1:approx(2/3) Ex2:approx(2/3,2) Ex3:approx(2*sin(1)) Ex4:approx(2*sin(1),40) Ex5:approx(sqrt(2)+pi) Ex6:approx(sqrt(2)+pi,30) - + ''' return GiacMethods['approx'](self,*args) @@ -961,12 +961,12 @@ cdef class GiacMethods_base: Help for arc: arc(Pnt, Pnt, Real,[Var(C)],[Var(r)],[Opt(segment)]) Draws a circular arc given by 2 vertices and the central angle [Xcas will put the center in C and the radius in r]. - See also: 1/ circle 2/ segment 3/ plotparam + See also: 1/ circle 2/ segment 3/ plotparam Ex1:arc(0,1,pi/4) Ex2:arc(i,1,pi/4,C,r) Ex3:arc(i,1,pi/4,segment) Ex4:arc(i,1,pi/4,segment,affichage=1+rempli) - + ''' return GiacMethods['arc'](self,*args) @@ -975,11 +975,11 @@ cdef class GiacMethods_base: Help for arcLen: arcLen(Expr(Xpr) or Lst([Xpr1,Xpr2]),Var,Real(a),Real(b)) Returns the length of the arc of the curve defined by y=Xpr(or by x=Xpr1,y=Xpr2) when the parameter values are between a and b. - See also: 1/ int + See also: 1/ int Ex1:arcLen(t^2,t,1,2) Ex2:arcLen([t,t^2],t,1,2) Ex3:arcLen([cos(t),sin(t)],t,1,2) - + ''' return GiacMethods['arcLen'](self,*args) @@ -988,9 +988,9 @@ cdef class GiacMethods_base: Help for arccos: arccos(Expr) Arccosine. - See also: 1/ cos 2/ acosh + See also: 1/ cos 2/ acosh Ex1:arccos(0) - + ''' return GiacMethods['arccos'](self,*args) @@ -999,9 +999,9 @@ cdef class GiacMethods_base: Help for arccosh: arccosh(Expr) Hyperbolic arccosine. - See also: 1/ cosh 2/ acos + See also: 1/ cosh 2/ acos Ex1:arccosh(1) - + ''' return GiacMethods['arccosh'](self,*args) @@ -1010,11 +1010,11 @@ cdef class GiacMethods_base: Help for arclen: arclen(Expr(Xpr) or Lst([Xpr1,Xpr2]),Var,Real(a),Real(b)) Returns the length of the arc of the curve defined by y=Xpr(or by x=Xpr1,y=Xpr2) when the parameter values are between a and b. - See also: 1/ int + See also: 1/ int Ex1:arclen(t^2,t,1,2) Ex2:arclen([t,t^2],t,1,2) Ex3:arclen([cos(t),sin(t)],t,1,2) - + ''' return GiacMethods['arclen'](self,*args) @@ -1023,9 +1023,9 @@ cdef class GiacMethods_base: Help for arcsin: arcsin(Expr) Arcsine. - See also: 1/ sin + See also: 1/ sin Ex1:arcsin(0) - + ''' return GiacMethods['arcsin'](self,*args) @@ -1034,9 +1034,9 @@ cdef class GiacMethods_base: Help for arcsinh: arcsinh(Expr) Hyperbolic arcsine. - See also: 1/ sinh 2/ asin + See also: 1/ sinh 2/ asin Ex1:arcsinh(0) - + ''' return GiacMethods['arcsinh'](self,*args) @@ -1045,9 +1045,9 @@ cdef class GiacMethods_base: Help for arctan: arctan(Expr) Arctangent. - See also: 1/ tan 2/ atanh + See also: 1/ tan 2/ atanh Ex1:arctan(0) - + ''' return GiacMethods['arctan'](self,*args) @@ -1056,9 +1056,9 @@ cdef class GiacMethods_base: Help for arctanh: arctanh(Expr) Hyperbolic arctangent. - See also: 1/ atan 2/ tanh + See also: 1/ atan 2/ tanh Ex1:arctanh(0) - + ''' return GiacMethods['arctanh'](self,*args) @@ -1067,7 +1067,7 @@ cdef class GiacMethods_base: Help for area: area(Polygone || Expr,x=a..b,[n],[Method]) Algebraic area of a circle, a circular arc or of a (star) polygon (e.g. triangle, square, ...) or of the area below a curve, optionally with a quadrature method (trapezoid,left_rectangle,right_rectangle,middle_point,simpson,rombergt,rombergm). - See also: 1/ trapezoid 2/ perimeter 3/ areaatraw 4/ areaat 5/ areaplot + See also: 1/ trapezoid 2/ perimeter 3/ areaatraw 4/ areaat 5/ areaplot Ex1:area(triangle(0,1,i)) Ex2:area(square(0,2)) Ex3:area(circle(0,2)) @@ -1075,7 +1075,7 @@ cdef class GiacMethods_base: Ex5:area(x^2,x=0..1,5,trapezoid) Ex6:area(x^2,x=0..1,5,simpson) Ex7:area(x^2,x=0..1,5,rombergm) - + ''' return GiacMethods['area'](self,*args) @@ -1084,13 +1084,13 @@ cdef class GiacMethods_base: Help for areaat: areaat(Polygone, Pnt||Cplx(z0)) Displays at point(z0), with a legend, the algebraic area of a circle or of a (star) polygon (e.g. triangle, square, ...) - See also: 1/ area 2/ areaatraw 3/ polygon 4/ perimeteratraw 5/ areaplot + See also: 1/ area 2/ areaatraw 3/ polygon 4/ perimeteratraw 5/ areaplot Ex1: t:=triangle(0,1,i);areaat(t,(1+i)/2) Ex2: c:=square(0,2);areaat(c,1+i) Ex3: c2:=circle(0,2);areaat(c2,1+i) Ex4: p:=polygon(0,1,i);areaat(p,1+i) Ex5: A:=point(0);B:=point(1+i);c:=carre(A,B);areaat(c,i) - + ''' return GiacMethods['areaat'](self,*args) @@ -1099,13 +1099,13 @@ cdef class GiacMethods_base: Help for areaatraw: areaatraw(Polygone, Pnt||Cplx(z0)) Displays at point(z0), the algebraic area of a circle or of a (star-)polygon (e.g. triangle, square, ...) - See also: 1/ area 2/ areaat 3/ polygon 4/ perimeteratraw 5/ areaplot + See also: 1/ area 2/ areaat 3/ polygon 4/ perimeteratraw 5/ areaplot Ex1:areaatraw(triangle(0,1,i),(1+i)/2) Ex2:areaatraw(square(0,2),1+i) Ex3:areaatraw(circle(0,2),1+i) Ex4:areaatraw(polygon(0,1,i),1+i) Ex5: A:=point(0);B:=point(1+i);c:=carre(A,B);areaatraw(c,i) - + ''' return GiacMethods['areaatraw'](self,*args) @@ -1114,11 +1114,11 @@ cdef class GiacMethods_base: Help for areaplot: areaplot(Expr,x=a..b,[n],[Method]) Displays the area below a curve, optionally with a quadrature method (trapezoid,left_rectangle,right_rectangle,middle_point). - See also: 1/ integrate 2/ plot 3/ area 4/ areaat 5/ areaatraw + See also: 1/ integrate 2/ plot 3/ area 4/ areaat 5/ areaatraw Ex1:areaplot(sin(x),x=0..pi) Ex2:areaplot(x^2,x=0..1,5,trapezoid) Ex3:areaplot(x^2,x=0..1,5,middle_point) - + ''' return GiacMethods['areaplot'](self,*args) @@ -1127,11 +1127,11 @@ cdef class GiacMethods_base: Help for arg: arg(Expr) Returns the argument of a complex number. - See also: 1/ abs + See also: 1/ abs Ex1:arg(1+i) Ex2:arg(1+2*i) Ex3:arg((1+2*i)^2) - + ''' return GiacMethods['arg'](self,*args) @@ -1140,10 +1140,10 @@ cdef class GiacMethods_base: Help for array: array(Opt) Option for convert for definitions of sparse matrices. - See also: 1/ convert 2/ table + See also: 1/ convert 2/ table Ex1: A[0..2,0..2]:=1;A[0..1,1..2]:=2;convert(A,array) Ex2: B[0..1,1..2]:=1;B[2,2]:=2;convert(B,array) - + ''' return GiacMethods['array'](self,*args) @@ -1152,9 +1152,9 @@ cdef class GiacMethods_base: Help for arrivals: arrivals(Graph(G),[Vrtx(v)]) Returns the list of vertices in digraph G which are connected by v with arcs such that heads are in v. If v is omitted, a list of arrivals is computed for every vertex in G. - See also: 1/ in_degree + See also: 1/ in_degree Ex1:arrivals(digraph(%{[1,2],[1,3],[2,3]%}),1) - + ''' return GiacMethods['arrivals'](self,*args) @@ -1163,10 +1163,10 @@ cdef class GiacMethods_base: Help for articulation_points: articulation_points(Graph(G)) Returns the list of articulation points (cut vertices) of G. - See also: 1/ biconnected_components 2/ is_biconnected 3/ is_connected 4/ is_triconnected + See also: 1/ biconnected_components 2/ is_biconnected 3/ is_connected 4/ is_triconnected Ex1:articulation_points(path_graph(5)) Ex2:articulation_points(cycle_graph(5)) - + ''' return GiacMethods['articulation_points'](self,*args) @@ -1175,9 +1175,9 @@ cdef class GiacMethods_base: Help for asin: asin(Expr) Arcsine. - See also: 1/ sin + See also: 1/ sin Ex1:asin(0) - + ''' return GiacMethods['asin'](self,*args) @@ -1186,10 +1186,10 @@ cdef class GiacMethods_base: Help for asin2acos: asin2acos(Expr) Replaces arcsin(x) by pi/2-arccos(x) in the argument. - See also: 1/ asin2atan + See also: 1/ asin2atan Ex1:asin2acos(acos(x)+asin(x)) Ex2:asin2acos(2*asin(x)) - + ''' return GiacMethods['asin2acos'](self,*args) @@ -1198,10 +1198,10 @@ cdef class GiacMethods_base: Help for asin2atan: asin2atan(Expr) Replaces arcsin(x) by arctan(x/sqrt(1-x^2)) in the argument. - See also: 1/ asin2acos + See also: 1/ asin2acos Ex1:asin2atan(2*asin(x)) Ex2:asin2atan(asin(sqrt(1-x^2))+asin(x)) - + ''' return GiacMethods['asin2atan'](self,*args) @@ -1210,9 +1210,9 @@ cdef class GiacMethods_base: Help for asinh: asinh(Expr) Hyperbolic arcsine. - See also: 1/ sinh 2/ asin + See also: 1/ sinh 2/ asin Ex1:asinh(0) - + ''' return GiacMethods['asinh'](self,*args) @@ -1221,10 +1221,10 @@ cdef class GiacMethods_base: Help for assign_edge_weights: assign_edge_weights(Graph(G),Seq(m,n)||Intrv(a..b)) Assigns random edge weights to the edges of G and returns a modified copy of G. If integers n and m such that n>=m are specified, weights are integers randomly chosen in [m,n]. If an interval a..b is specified, weights are uniformly distributed in the interval [a,b). - See also: 1/ set_edge_weight 2/ get_edge_weight 3/ weight_matrix 4/ random_digraph 5/ random_tournament + See also: 1/ set_edge_weight 2/ get_edge_weight 3/ weight_matrix 4/ random_digraph 5/ random_tournament Ex1:assign_edge_weights(digraph(trail(1,2,3,4,1)),1,9) Ex2:assign_edge_weights(digraph(trail(1,2,3,4,1)),0..1) - + ''' return GiacMethods['assign_edge_weights'](self,*args) @@ -1233,7 +1233,7 @@ cdef class GiacMethods_base: Help for assume: assume(Expr) Makes an assumption on a variable. - See also: 1/ purge 2/ about 3/ additionally + See also: 1/ purge 2/ about 3/ additionally Ex1:assume(a>0) Ex2:assume(a=0.3) Ex3:assume(a:=[pi/4,0,pi/2]) @@ -1244,7 +1244,7 @@ cdef class GiacMethods_base: Ex8:assume((a>=2 and a<4) or a>6) Ex9:assume(a>=2);additionally(a<6) Ex10:assume(a) - + ''' return GiacMethods['assume'](self,*args) @@ -1253,10 +1253,10 @@ cdef class GiacMethods_base: Help for at: at(Lst(l)||Mtrx(m),Index(j)||Lst([j,k])) at(l,j) (or at(m,[j,k])) is the element of the list l (or matrix m) for index=j (or for index j,k). - See also: 1/ of + See also: 1/ of Ex1:at([10,11,12],1) Ex2:at([[1,2],[3,4]],[1,0]) - + ''' return GiacMethods['at'](self,*args) @@ -1265,9 +1265,9 @@ cdef class GiacMethods_base: Help for atan: atan(Expr) Arctangent. - See also: 1/ tan 2/ atanh + See also: 1/ tan 2/ atanh Ex1:atan(0) - + ''' return GiacMethods['atan'](self,*args) @@ -1276,8 +1276,8 @@ cdef class GiacMethods_base: Help for atan2acos: atan2acos(Expr) Replaces arctan(x) by pi/2-arccos(x/sqrt(1+x^2)) in the argument. - See also: 1/ atan2acos(atan(x)) - + See also: 1/ atan2acos(atan(x)) + ''' return GiacMethods['atan2acos'](self,*args) @@ -1286,8 +1286,8 @@ cdef class GiacMethods_base: Help for atan2asin: atan2asin(Expr) Replaces arctan(x) by arcsin(x/sqrt(1+x^2)) in the argument. - See also: 1/ atan2asin(atan(x)) - + See also: 1/ atan2asin(atan(x)) + ''' return GiacMethods['atan2asin'](self,*args) @@ -1296,9 +1296,9 @@ cdef class GiacMethods_base: Help for atanh: atanh(Expr) Hyperbolic arctangent. - See also: 1/ atan 2/ tanh + See also: 1/ atan 2/ tanh Ex1:atanh(0) - + ''' return GiacMethods['atanh'](self,*args) @@ -1307,11 +1307,11 @@ cdef class GiacMethods_base: Help for atrig2ln: atrig2ln(Expr) Rewrites the expression containing inverse trigonometric functions into logarithmic functions. - See also: 1/ trig2exp 2/ exp2trig + See also: 1/ trig2exp 2/ exp2trig Ex1:atrig2ln(atan(x)) Ex2:atrig2ln(asin(x)) Ex3:atrig2ln(acos(x)) - + ''' return GiacMethods['atrig2ln'](self,*args) @@ -1320,13 +1320,13 @@ cdef class GiacMethods_base: Help for augment: augment(Lst,Lst||Seq,Seq||Str,Str||Mtrx,Mtrx) Concatenates two lists or two strings or two sequences or 2 matrices; L:=concat(L,L1) or L.concat(L1). - See also: 1/ append 2/ cat 3/ semi_augment 4/ border 5/ + + See also: 1/ append 2/ cat 3/ semi_augment 4/ border 5/ + Ex1:augment([1,2],[3,4,5]) Ex2:augment("bon","jour") Ex3:augment([[1,2],[3,4]],[[4,5,6],[6,7,8]]) Ex4: L:=[1,2];L.concat([3,4,5]) Ex5: S:="abcd";S.concat("efghi") - + ''' return GiacMethods['augment'](self,*args) @@ -1335,9 +1335,9 @@ cdef class GiacMethods_base: Help for auto_correlation: auto_correlation(Lst) Returns the cross-correlation of the given signal with itself. - See also: 1/ cross_correlation 2/ correlation + See also: 1/ cross_correlation 2/ correlation Ex1:auto_correlation([1,-1,0,2,1]) - + ''' return GiacMethods['auto_correlation'](self,*args) @@ -1346,14 +1346,14 @@ cdef class GiacMethods_base: Help for autosimplify: autosimplify(Cmds) The argument is a command that Xcas will use to rewrite answers (initial value is regroup and for no simplification it is nop or 0). - See also: 1/ simplify 2/ factor 3/ regroup + See also: 1/ simplify 2/ factor 3/ regroup Ex1:autosimplify(nop) Ex2:autosimplify(0) Ex3:autosimplify(regroup) Ex4:autosimplify(1) Ex5:autosimplify(factor) Ex6:autosimplify(simplify) - + ''' return GiacMethods['autosimplify'](self,*args) @@ -1362,10 +1362,10 @@ cdef class GiacMethods_base: Help for avance: avance(NULL or Real(n)) The turtle takes n steps forward (by default n=10). - See also: 1/ recule 2/ saute + See also: 1/ recule 2/ saute Ex1: avance 30 Ex2:avance(30) - + ''' return GiacMethods['avance'](self,*args) @@ -1374,11 +1374,11 @@ cdef class GiacMethods_base: Help for avgRC: avgRC(Expr(Xpr),Var(Var),[Real(h)]) Returns (Xpr(var+h)-Xpr(Var))/h (by default h=0.001). - See also: 1/ nDeriv + See also: 1/ nDeriv Ex1:avgRC(f(x),x,h) Ex2:avgRC(x^2,x,0.1) Ex3:avgRC(x^2,x) - + ''' return GiacMethods['avgRC'](self,*args) @@ -1387,10 +1387,10 @@ cdef class GiacMethods_base: Help for axes: axes(Opt) Global option (Maple compatibility) of a graphic command to put or not the axes. - See also: 1/ line_width 2/ gl_showaxes 3/ switch_axes + See also: 1/ line_width 2/ gl_showaxes 3/ switch_axes Ex1: axes=0;segment(0,point(1,1)) Ex2: axes=1;segment(0,point(1,1),epaisseur=5) - + ''' return GiacMethods['axes'](self,*args) @@ -1400,7 +1400,7 @@ cdef class GiacMethods_base: axis(xmin,xmax,ymin,ymax,[zmin,zmaz]) Defines the graphic display Ex1:axis(-2,4,-1,6) - + ''' return GiacMethods['axis'](self,*args) @@ -1409,11 +1409,11 @@ cdef class GiacMethods_base: Help for back: back(Vect or Seq or Str) Returns the last element of a vector or a sequence or a string. - See also: 1/ inter 2/ head 3/ mid 4/ left 5/ right + See also: 1/ inter 2/ head 3/ mid 4/ left 5/ right Ex1:back(1,2,3) Ex2:back([1,2,3]) Ex3:back("bonjour") - + ''' return GiacMethods['back'](self,*args) @@ -1422,10 +1422,10 @@ cdef class GiacMethods_base: Help for backward: backward(NULL or Real(n)) The turtle takes n steps back (by default n=10). - See also: 1/ avance 2/ saute + See also: 1/ avance 2/ saute Ex1: recule 30 Ex2:backward(30) - + ''' return GiacMethods['backward'](self,*args) @@ -1434,9 +1434,9 @@ cdef class GiacMethods_base: Help for baisse_crayon: baisse_crayon(NULL) Presses the pencil down so that the turtle move with traces. - See also: 1/ leve_crayon 2/ crayon + See also: 1/ leve_crayon 2/ crayon Ex1:baisse_crayon() - + ''' return GiacMethods['baisse_crayon'](self,*args) @@ -1445,8 +1445,8 @@ cdef class GiacMethods_base: Help for bandwidth: bandwidth(Opt) Option for the kernel_density command. - See also: 1/ kernel_density 2/ bins - + See also: 1/ kernel_density 2/ bins + ''' return GiacMethods['bandwidth'](self,*args) @@ -1455,11 +1455,11 @@ cdef class GiacMethods_base: Help for bar_plot: bar_plot(Mtrx) Draws a barplot of a one variable statistical series. - See also: 1/ camembert 2/ histogram 3/ frequencies + See also: 1/ camembert 2/ histogram 3/ frequencies Ex1:bar_plot([["France",6],["Allemagne",12],["Suisse",5]]) Ex2:bar_plot([3/2,2/3,5/4,4/5,7/6,6/7,9/8,8/9,11/10]) Ex3:bar_plot([[2,"xyz","abc"],["A",2,5],["B",5,6],["C",7,7]]) - + ''' return GiacMethods['bar_plot'](self,*args) @@ -1468,11 +1468,11 @@ cdef class GiacMethods_base: Help for barplot: barplot(Mtrx) Draws a barplot of a one variable statistical series. - See also: 1/ camembert 2/ histogram 3/ frequencies + See also: 1/ camembert 2/ histogram 3/ frequencies Ex1:barplot([["France",6],["Allemagne",12],["Suisse",5]]) Ex2:barplot([3/2,2/3,5/4,4/5,7/6,6/7,9/8,8/9,11/10]) Ex3:barplot([[2,"xyz","abc"],["A",2,5],["B",5,6],["C",7,7]]) - + ''' return GiacMethods['barplot'](self,*args) @@ -1481,9 +1481,9 @@ cdef class GiacMethods_base: Help for bartlett_hann_window: bartlett_hann_window(Lst,[Interval(n1..n2)]) Applies the Bartlett-Hann windowing function to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(bartlett_hann_window(randvector(1000,0..1))) - + ''' return GiacMethods['bartlett_hann_window'](self,*args) @@ -1492,11 +1492,11 @@ cdef class GiacMethods_base: Help for barycenter: barycenter([Pnt,Real],[Pnt,Real],[Pnt,Real]) barycenter([point1,coeff1],...) draws the barycenter of point1 with weight coeff1... - See also: 1/ isobarycenter 2/ midpoint + See also: 1/ isobarycenter 2/ midpoint Ex1:barycenter([point(-1),1],[point(1+i),2],[point(1-i),1]) Ex2:barycenter([[point(-1),1],[point(1+i),2],[point(1-i),1]]) Ex3:barycenter([point(-1),point(1+i),point(1-i)],[1,2,1]) - + ''' return GiacMethods['barycenter'](self,*args) @@ -1505,11 +1505,11 @@ cdef class GiacMethods_base: Help for base: base(Opt) Option for convert : convert(p,base,b)= [a0,a1,..an] or convert([a0,a1,..an],base,b)=p with p=a0+a1*b+....an*b^(n-1). - See also: 1/ convert 2/ horner 3/ revlist + See also: 1/ convert 2/ horner 3/ revlist Ex1: convert(123,base,8) Ex2: convert([3,7,1],base,8) Ex3: horner(revlist([3,7,1]),8) - + ''' return GiacMethods['base'](self,*args) @@ -1518,9 +1518,9 @@ cdef class GiacMethods_base: Help for basis: basis(Lst(vector1,..,vectorn)) Extracts a basis from a spanning set of vectors. - See also: 1/ ker 2/ ibasis + See also: 1/ ker 2/ ibasis Ex1:basis([[1,2,3],[4,5,6],[7,8,9],[10,11,12]]) - + ''' return GiacMethods['basis'](self,*args) @@ -1529,11 +1529,11 @@ cdef class GiacMethods_base: Help for batons: batons(Mtrx) Draws for k=0..nrows, the segments (xk,0)-(xk,yk) where xk=element row k column 0 and yk=element row k column j (j=1..ncols). - See also: 1/ polygonplot 2/ scatterplot 3/ listplot + See also: 1/ polygonplot 2/ scatterplot 3/ listplot Ex1:batons([1,3],[2,5],[3,2]) Ex2:batons([[1,3],[2,5],[3,2]]) Ex3:batons([1,2,3],[3,5,2]) - + ''' return GiacMethods['batons'](self,*args) @@ -1542,9 +1542,9 @@ cdef class GiacMethods_base: Help for bellman_ford: bellman_ford(Graph(G),Vrtx(s),Vrtx(t)||Lst(T)) Returns the length of the shortest path resp. paths from s to vertex t resp. vertices in T in weighted graph G. - See also: 1/ dijkstra 2/ shortest_path + See also: 1/ dijkstra 2/ shortest_path Ex1:bellman_ford(graph(%{[[1,2],-1],[[2,3],-3],[[3,4],-7],[[4,5],-3],[[5,6],-3],[[1,6],-3]%}),1,4) - + ''' return GiacMethods['bellman_ford'](self,*args) @@ -1553,10 +1553,10 @@ cdef class GiacMethods_base: Help for bernoulli: bernoulli(Intg||(Intg,Var)) bernoulli(n) is the n-th number of Bernoulli and bernoulli(n,x) is the n-th polynomial of Bernoulli and the second argument is the variable. - See also: 1/ + See also: 1/ Ex1:bernoulli(6) Ex2:bernoulli(6,x) - + ''' return GiacMethods['bernoulli'](self,*args) @@ -1565,10 +1565,10 @@ cdef class GiacMethods_base: Help for besselJ: besselJ(Real(x),Int(p)) besselJ(x,p) returns the Bessel function of the first kind Jp(x). - See also: 1/ BesselJ 2/ BesselY 3/ besselY + See also: 1/ BesselJ 2/ BesselY 3/ besselY Ex1:besselJ(sqrt(2),2) Ex2:besselJ(sqrt(2),-2) - + ''' return GiacMethods['besselJ'](self,*args) @@ -1577,10 +1577,10 @@ cdef class GiacMethods_base: Help for besselY: besselY(Real(x),Int(p)) besselY(x,p) returns the Bessel function of the second kind Yp(x). - See also: 1/ BesselY 2/ BesselJ 3/ besselJ + See also: 1/ BesselY 2/ BesselJ 3/ besselJ Ex1:besselY(sqrt(2),2) Ex2:besselY(sqrt(2),-2) - + ''' return GiacMethods['besselY'](self,*args) @@ -1589,9 +1589,9 @@ cdef class GiacMethods_base: Help for betad: betad(Real(a>0),Real(b>0),Real(0<=x<=1)) Returns the probability density of the Beta law (=Gamma(a+b)*x^(a-1)*(1-x)^(b-1)/(Gamma(a)*Gamma(b))). - See also: 1/ betad_cdf 2/ betad_icdf + See also: 1/ betad_cdf 2/ betad_icdf Ex1:betad(2.2,1.5,0.8) - + ''' return GiacMethods['betad'](self,*args) @@ -1600,10 +1600,10 @@ cdef class GiacMethods_base: Help for betad_cdf: betad_cdf(Real(a>0),Real(b>0),Real(0<=x0<=1),[Real(0<=y0<=1)]) Returns the probability that a Beta random variable (with a and b as parameters) is less than x0 or between x0 and y0. - See also: 1/ betad 2/ betad_icdf + See also: 1/ betad 2/ betad_icdf Ex1:betad_cdf(2,1,0.2) Ex2:betad_cdf(2,1,0.1,0.3) - + ''' return GiacMethods['betad_cdf'](self,*args) @@ -1612,10 +1612,10 @@ cdef class GiacMethods_base: Help for betad_icdf: betad_icdf(Real(a>0),Real(b>0),Real(0<=p<=1)) Returns h such that the probability that a Beta random variable is less than h is p (0<=p<=1). - See also: 1/ betad_cdf 2/ betad + See also: 1/ betad_cdf 2/ betad Ex1:betad_icdf(2,1,0.95) Ex2:betad_icdf(2,1,0.5) - + ''' return GiacMethods['betad_icdf'](self,*args) @@ -1624,10 +1624,10 @@ cdef class GiacMethods_base: Help for betavariate: betavariate(Real(a),Real(b)) Returns a random real according to the Beta distribution with parameters a>0 and b>0. - See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector + See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector Ex1:betavariate(1,2) Ex2:betavariate(1.5,4) - + ''' return GiacMethods['betavariate'](self,*args) @@ -1636,12 +1636,12 @@ cdef class GiacMethods_base: Help for bezier: bezier(Lst,[plot]) Bezier curve defined by control points. - See also: 1/ parameq + See also: 1/ parameq Ex1:bezier(1,1+i,2+i,3-i,plot) Ex2:bezier(point([0,0,0]),point([1,1,0]),point([0,1,1]),plot) Ex3: parameq(bezier(1,1+i,2+i,3-i)) Ex4: parameq(bezier(point([0,0,0]),point([1,1,0]),point([0,1,1]))) - + ''' return GiacMethods['bezier'](self,*args) @@ -1650,11 +1650,11 @@ cdef class GiacMethods_base: Help for bezout_entiers: bezout_entiers(Intg,Intg) Extended greatest common divisor of 2 integers. - See also: 1/ gcd 2/ iabcuv 3/ egcd + See also: 1/ gcd 2/ iabcuv 3/ egcd Ex1:bezout_entiers(45,75) Ex2:bezout_entiers(21,28) Ex3:bezout_entiers(30,49) - + ''' return GiacMethods['bezout_entiers'](self,*args) @@ -1663,9 +1663,9 @@ cdef class GiacMethods_base: Help for biconnected_components: biconnected_components(Graph(G)) Returns the biconnected components of G as a list of lists of vertices. - See also: 1/ articulation_points 2/ is_biconnected 3/ is_connected 4/ trail + See also: 1/ articulation_points 2/ is_biconnected 3/ is_connected 4/ trail Ex1:biconnected_components(graph(trail(1,2,3,4,2),trail(4,5,6,7,5))) - + ''' return GiacMethods['biconnected_components'](self,*args) @@ -1674,7 +1674,7 @@ cdef class GiacMethods_base: Help for binomial: binomial(Intg(n),Intg(k),[Real(p in 0..1)]) Returns comb(n,k)*p^k*(1-p)^(n-k) or comb(n,k) if no 3rd argument. - See also: 1/ binomial_cdf 2/ binomial_icdf 3/ multinomial 4/ randvector 5/ ranm + See also: 1/ binomial_cdf 2/ binomial_icdf 3/ multinomial 4/ randvector 5/ ranm Ex1:binomial(4,2) Ex2:binomial(4,0,0.5) Ex3:binomial(4,2,0.5) @@ -1682,7 +1682,7 @@ cdef class GiacMethods_base: Ex5: assume(p>=0 and p<=1);binomial(4,p,2) Ex6: randvector(6,binomial,4,0.2) Ex7: ranm(4,6,binomial,4,0.7) - + ''' return GiacMethods['binomial'](self,*args) @@ -1691,11 +1691,11 @@ cdef class GiacMethods_base: Help for binomial_cdf: binomial_cdf(Intg(n),Real(p),Real(x),[Real(y)]) Returns Proba(X<=x) or Proba(x<=X<=y) when X follows the B(n,p) law. - See also: 1/ binomial 2/ binomial_icdf + See also: 1/ binomial 2/ binomial_icdf Ex1:binomial_cdf(4,0.5,2) Ex2:binomial_cdf(4,0.1,2) Ex3:binomial_cdf(4,0.5,2,3) - + ''' return GiacMethods['binomial_cdf'](self,*args) @@ -1704,10 +1704,10 @@ cdef class GiacMethods_base: Help for binomial_icdf: binomial_icdf(Intg(n),Real(p),Real(t)) Returns h such as Proba(X<=h)=t when X follows the B(n,p) law. - See also: 1/ binomial 2/ binomial_cdf + See also: 1/ binomial 2/ binomial_cdf Ex1:binomial_icdf(4,0.5,0.68) Ex2:binomial_icdf(4,0.1,0.95) - + ''' return GiacMethods['binomial_icdf'](self,*args) @@ -1716,8 +1716,8 @@ cdef class GiacMethods_base: Help for bins: bins(Opt) Option for the kernel_density command. - See also: 1/ kernel_density 2/ bandwidth - + See also: 1/ kernel_density 2/ bandwidth + ''' return GiacMethods['bins'](self,*args) @@ -1726,8 +1726,8 @@ cdef class GiacMethods_base: Help for bipartite: bipartite(Opt) Option for the draw_graph command - See also: 1/ draw_graph - + See also: 1/ draw_graph + ''' return GiacMethods['bipartite'](self,*args) @@ -1736,9 +1736,9 @@ cdef class GiacMethods_base: Help for bipartite_matching: bipartite_matching(Graph(G)) Returns the list of edges in a maximum matching of the undirected unweighted bipartite graph G. - See also: 1/ is_bipartite 2/ maximum_matching + See also: 1/ is_bipartite 2/ maximum_matching Ex1:bipartite_matching(graph("desargues")) - + ''' return GiacMethods['bipartite_matching'](self,*args) @@ -1747,14 +1747,14 @@ cdef class GiacMethods_base: Help for bisection_solver: bisection_solver(Opt) Argument for fsolve giving the method for solving a numerical equation. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve(cos(x)=x,x,0..1,bisection_solver) Ex2: fsolve(cos(x)=x,x,0..1,brent_solver) Ex3: fsolve(cos(x)=x,x,0..1,falsepos_solver) Ex4: fsolve(cos(x)=x,x,0,newton_solver) Ex5: fsolve(cos(x)=x,x,0,secant_solver) Ex6: fsolve(cos(x)=x,x,0,steffenson_solver) - + ''' return GiacMethods['bisection_solver'](self,*args) @@ -1763,9 +1763,9 @@ cdef class GiacMethods_base: Help for bisector: bisector((Pnt(A) or Cplx),(Pnt(B) or Cplx),(Pnt(C) or Cplx)) Draws the bisector of the angle (AB,AC) given by 3 points A,B,C. - See also: 1/ angle 2/ exbisector + See also: 1/ angle 2/ exbisector Ex1:bisector(0,1,i) - + ''' return GiacMethods['bisector'](self,*args) @@ -1774,9 +1774,9 @@ cdef class GiacMethods_base: Help for bit_depth: bit_depth(Lst(clip)) Returns the bit depth of an audio clip. - See also: 1/ channels 2/ channel_data 3/ duration 4/ samplerate + See also: 1/ channels 2/ channel_data 3/ duration 4/ samplerate Ex1:bit_depth(readwav("/some/file")) - + ''' return GiacMethods['bit_depth'](self,*args) @@ -1785,9 +1785,9 @@ cdef class GiacMethods_base: Help for bitand: bitand(Intg,Intg) Logical bit and. - See also: 1/ bitxor 2/ bitor + See also: 1/ bitxor 2/ bitor Ex1:bitand(0x12,0x38) - + ''' return GiacMethods['bitand'](self,*args) @@ -1796,9 +1796,9 @@ cdef class GiacMethods_base: Help for bitor: bitor(Intg,Intg) Inclusive logical bit or. - See also: 1/ bitxor 2/ bitand + See also: 1/ bitxor 2/ bitand Ex1:bitor(0x12,0x38) - + ''' return GiacMethods['bitor'](self,*args) @@ -1807,9 +1807,9 @@ cdef class GiacMethods_base: Help for bitxor: bitxor(Intg,Intg) Exclusive logical bit or. - See also: 1/ bitor 2/ bitand + See also: 1/ bitor 2/ bitand Ex1:bitxor(0x12,0x38) - + ''' return GiacMethods['bitxor'](self,*args) @@ -1818,9 +1818,9 @@ cdef class GiacMethods_base: Help for blackman_harris_window: blackman_harris_window(Lst,[Interval(n1..n2)]) Applies the Blackman-Harris windowing function to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ bartlett_hann_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window + See also: 1/ bartlett_hann_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(blackman_harris_window(randvector(1000,0..1))) - + ''' return GiacMethods['blackman_harris_window'](self,*args) @@ -1829,9 +1829,9 @@ cdef class GiacMethods_base: Help for blackman_window: blackman_window(Lst,[Real(a)],[Interval(n1..n2)]) Applies the Blackman windowing function with parameter a (by default a=0.16) to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ bartlett_harris_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ bartlett_harris_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(blackman_window(randvector(1000,0..1))) - + ''' return GiacMethods['blackman_window'](self,*args) @@ -1840,10 +1840,10 @@ cdef class GiacMethods_base: Help for blockmatrix: blockmatrix(Intg(n),Intg(m),Lst) Returns the matrix obtained from the list divided into n lists of dimension m. - See also: 1/ list2mat + See also: 1/ list2mat Ex1:blockmatrix(2,3,[idn(2),idn(2),idn(2),idn(2),idn(2),idn(2)]) Ex2:blockmatrix(2,2,[idn(2),newMat(2,3),newMat(3,2),idn(3)]) - + ''' return GiacMethods['blockmatrix'](self,*args) @@ -1852,9 +1852,9 @@ cdef class GiacMethods_base: Help for bohman_window: bohman_window(Lst,[Interval(n1..n2)]) Applies the Bohman windowing function to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bartlett_hann_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bartlett_hann_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(bohman_window(randvector(1000,0..1))) - + ''' return GiacMethods['bohman_window'](self,*args) @@ -1863,10 +1863,10 @@ cdef class GiacMethods_base: Help for border: border(Mtrx(A),Lst(b)) Returns the matrix obtained by augmenting A with b as the last column, if nrows(A)=size(b), border(A,b)=tran(append(tran(A),b)). - See also: 1/ tran 2/ append 3/ augment + See also: 1/ tran 2/ append 3/ augment Ex1:border([[1,2,3,4],[4,5,6,8],[7,8,9,10]],[1,3,5]) Ex2:border([[1,2,3],[4,5,6],[7,8,9]],[1,0,1]) - + ''' return GiacMethods['border'](self,*args) @@ -1875,9 +1875,9 @@ cdef class GiacMethods_base: Help for boxcar: boxcar(Real(a),Real(b),Expr(x)) Returns the value at x of the boxcar function corresponding to a and b. - See also: 1/ rect 2/ Heaviside + See also: 1/ rect 2/ Heaviside Ex1:boxcar(1,2,x) - + ''' return GiacMethods['boxcar'](self,*args) @@ -1886,12 +1886,12 @@ cdef class GiacMethods_base: Help for boxwhisker: boxwhisker(Lst,[Lst],[x=a..b||y=a..b]) Box and Whisker plot for a statistical series. - See also: 1/ quartiles + See also: 1/ quartiles Ex1:boxwhisker([-1,1,2,2.2,3,4,-2,5]) Ex2:boxwhisker([1,2,3,5,10,4],x=1..2) Ex3:boxwhisker([1,2,3,5,10,4],[1,2,3,1,2,3]) Ex4:boxwhisker([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],[1,3,4,2,5,6,0],[3,4,2,5,6,0,1],[4,2,5,6,0,1,3],[2,5,6,0,1,3,4]]) - + ''' return GiacMethods['boxwhisker'](self,*args) @@ -1900,14 +1900,14 @@ cdef class GiacMethods_base: Help for brent_solver: brent_solver(Opt) Argument for fsolve giving the method for solving a numerical equation. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve(cos(x)=x,x,0..1,bisection_solver) Ex2: fsolve(cos(x)=x,x,0..1,brent_solver) Ex3: fsolve(cos(x)=x,x,0..1,falsepos_solver) Ex4: fsolve(cos(x)=x,x,0,newton_solver) Ex5: fsolve(cos(x)=x,x,0,secant_solver) Ex6: fsolve(cos(x)=x,x,0,steffenson_solver) - + ''' return GiacMethods['brent_solver'](self,*args) @@ -1916,10 +1916,10 @@ cdef class GiacMethods_base: Help for bvpsolve: bvpsolve(Expr(f(x,y,y')),Lst(x=a..b,y),Lst(y(a),y(b),[y'(1)]),[options]) Returns an approximation of the function y (and optionally of y') on the interval a..b. - See also: 1/ odesolve + See also: 1/ odesolve Ex1:bvpsolve((32+2x^3-y*diff(y(x),x))/8,[x=1..3,y],[17,43/3],20) Ex2:bvpsolve((x^2*diff(y(x),x)^2-9y^2+4x^6)/x^5,[x=1..2,y],[0,ln(256),1],10,output=spline) - + ''' return GiacMethods['bvpsolve'](self,*args) @@ -1928,11 +1928,11 @@ cdef class GiacMethods_base: Help for cFactor: cFactor(Expr) Factorization of the expression in ℂ (on the Gaussian integers if there are more than 2 variables). - See also: 1/ factor + See also: 1/ factor Ex1:cFactor(x^2*y+y) Ex2:cFactor(x^2*y^2+y^2+4*x^2+4) Ex3:cFactor(x^2*y^2+y^2+2*x^2+2) - + ''' return GiacMethods['cFactor'](self,*args) @@ -1941,12 +1941,12 @@ cdef class GiacMethods_base: Help for cSolve: cSolve(LstEq,LstVar) Returns the list of complex solutions of an equation or a matrix where the rows are ℂ-solutions of a system of polynomial equations. - See also: 1/ cZeros 2/ solve 3/ fslove + See also: 1/ cZeros 2/ solve 3/ fslove Ex1:cSolve(x^4-1,x) Ex2:cSolve(x^4-y^4 and x+y=2,[x,y]) Ex3:cSolve(x^4-y^4 and x+y=0 and x^2=2*x,[x,y]) Ex4:cSolve(u*v-u=v and v^2=u,[u,v]) - + ''' return GiacMethods['cSolve'](self,*args) @@ -1955,10 +1955,10 @@ cdef class GiacMethods_base: Help for cZeros: cZeros(Expr(Xpr)||LstExpr, [Var||LstVar]) Returns the list of complex solutions of Xpr=0 or the matrix where the rows are the solutions of the system : Xpr1=0,Xpr2=0... - See also: 1/ solve + See also: 1/ solve Ex1:cZeros(x^2-1) Ex2:cZeros([x^2-1,x^2-y^2],[x,y]) - + ''' return GiacMethods['cZeros'](self,*args) @@ -1967,11 +1967,11 @@ cdef class GiacMethods_base: Help for camembert: camembert(Mtrx) Draws pie chart of a one variable statistical series. - See also: 1/ bar_plot + See also: 1/ bar_plot Ex1:camembert([["France",6],["Allemagne",12],["Suisse",5]]) Ex2:camembert([3/2,2/3,5/4,4/5,7/6,6/7,9/8,8/9,11/10]) Ex3:camembert([[2,"xyz","abc"],["A",2,5],["B",5,6],["C",7,7]]) - + ''' return GiacMethods['camembert'](self,*args) @@ -1980,10 +1980,10 @@ cdef class GiacMethods_base: Help for canonical_form: canonical_form(Trinom(a*x^2+b*x+c),[Var]) Canonical_form of a 2nd degree polynomial. - See also: 1/ + See also: 1/ Ex1:canonical_form(2*x^2-12*x+1) Ex2:canonical_form(2*a^2-12*a+1,a) - + ''' return GiacMethods['canonical_form'](self,*args) @@ -1992,9 +1992,9 @@ cdef class GiacMethods_base: Help for canonical_labeling: canonical_labeling(Graph(G)) Returns the permutation representing the canonical labeling of G. - See also: 1/ isomorphic_copy 2/ relabel_vertices + See also: 1/ isomorphic_copy 2/ relabel_vertices Ex1:canonical_labeling(graph("petersen")) - + ''' return GiacMethods['canonical_labeling'](self,*args) @@ -2003,9 +2003,9 @@ cdef class GiacMethods_base: Help for cartesian_product: cartesian_product(Seq(G1,G2,..)) Returns the Cartesian product of graphs G1, G2, ... with vertices labelled as "u:v:..." where u, v, ... are vertices from G1, G2, ..., respectively. - See also: 1/ tensor_product + See also: 1/ tensor_product Ex1:cartesian_product(graph(trail(1,2,3,4,5,2)),star_graph(3)) - + ''' return GiacMethods['cartesian_product'](self,*args) @@ -2014,9 +2014,9 @@ cdef class GiacMethods_base: Help for cauchy: cauchy(Real(x0),Real(a),Real(x)) Returns the density of probability at x of the Cauchy law with parameters x0 and a (by default x0=0 and a=1). - See also: 1/ cauchy_cdf 2/ cauchy_icdf + See also: 1/ cauchy_cdf 2/ cauchy_icdf Ex1:cauchy(0.0,2.0,1.0) - + ''' return GiacMethods['cauchy'](self,*args) @@ -2025,10 +2025,10 @@ cdef class GiacMethods_base: Help for cauchy_cdf: cauchy_cdf(Real(x0),Real(a),Real(x),[Real(y)]) Returns the probability that a Cauchy random variable is less than x. - See also: 1/ cauchyd 2/ cauchy_icdf + See also: 1/ cauchyd 2/ cauchy_icdf Ex1:cauchy_cdf(0.0,2.0,2.1) Ex2:cauchy_cdf(2,3,-1.9,1.4) - + ''' return GiacMethods['cauchy_cdf'](self,*args) @@ -2037,9 +2037,9 @@ cdef class GiacMethods_base: Help for cauchy_icdf: cauchy_icdf(Real(x0),Real(a),Real(p)) Returns h such that the probability that a Cauchy random variable is less than h is p (0<=p<=1). - See also: 1/ cauchy_cdf 2/ cauchy + See also: 1/ cauchy_cdf 2/ cauchy Ex1:cauchy_icdf(0.0,2.0,0.95) - + ''' return GiacMethods['cauchy_icdf'](self,*args) @@ -2048,9 +2048,9 @@ cdef class GiacMethods_base: Help for cauchyd: cauchyd(Real(x0),Real(a),Real(x)) Returns the density of probability at x of the Cauchy law with parameters x0 and a (by default x0=0 and a=1). - See also: 1/ cauchy_cdf 2/ cauchy_icdf + See also: 1/ cauchy_cdf 2/ cauchy_icdf Ex1:cauchyd(0.0,2.0,1.0) - + ''' return GiacMethods['cauchyd'](self,*args) @@ -2059,10 +2059,10 @@ cdef class GiacMethods_base: Help for cauchyd_cdf: cauchyd_cdf(Real(x0),Real(a),Real(x),[Real(y)]) Returns the probability that a Cauchy random variable is less than x. - See also: 1/ cauchyd 2/ cauchy_icdf + See also: 1/ cauchyd 2/ cauchy_icdf Ex1:cauchyd_cdf(0.0,2.0,2.1) Ex2:cauchyd_cdf(2,3,-1.9,1.4) - + ''' return GiacMethods['cauchyd_cdf'](self,*args) @@ -2071,9 +2071,9 @@ cdef class GiacMethods_base: Help for cauchyd_icdf: cauchyd_icdf(Real(x0),Real(a),Real(p)) Returns h such that the probability that a Cauchy random variable is less than h is p (0<=p<=1). - See also: 1/ cauchy_cdf 2/ cauchy + See also: 1/ cauchy_cdf 2/ cauchy Ex1:cauchyd_icdf(0.0,2.0,0.95) - + ''' return GiacMethods['cauchyd_icdf'](self,*args) @@ -2082,12 +2082,12 @@ cdef class GiacMethods_base: Help for cdf: cdf(Func,FuncParams) Cumulative distribution function. - See also: 1/ icdf 2/ binomial_cdf 3/ normald_cdf 4/ plotcdf + See also: 1/ icdf 2/ binomial_cdf 3/ normald_cdf 4/ plotcdf Ex1:cdf(binomial,10,0.5,4) Ex2:cdf(normald,0.0,1.0,2.0) Ex3:cdf([1,3,4,3,5,6],4) Ex4:cdf([1,3,4,3,5,6],plot) - + ''' return GiacMethods['cdf'](self,*args) @@ -2096,10 +2096,10 @@ cdef class GiacMethods_base: Help for ceil: ceil(Real or Cplx) Returns the smallest integer >= to the argument. - See also: 1/ floor 2/ round + See also: 1/ floor 2/ round Ex1:ceil(-4.2) Ex2:ceil(4.3+2.4*i) - + ''' return GiacMethods['ceil'](self,*args) @@ -2108,10 +2108,10 @@ cdef class GiacMethods_base: Help for ceiling: ceiling(Real or Cplx) Returns the smallest integer >= to the argument. - See also: 1/ floor 2/ round + See also: 1/ floor 2/ round Ex1:ceiling(-4.2) Ex2:ceiling(4.3+2.4*i) - + ''' return GiacMethods['ceiling'](self,*args) @@ -2120,10 +2120,10 @@ cdef class GiacMethods_base: Help for center: center(Crcle) Shows the center of a circle. - See also: 1/ circle 2/ radius + See also: 1/ circle 2/ radius Ex1:center(circle(1+i,2)) Ex2:center(circumcircle(0,1,1+i)) - + ''' return GiacMethods['center'](self,*args) @@ -2132,10 +2132,10 @@ cdef class GiacMethods_base: Help for center2interval: center2interval(LstVal(l),[Real(a0)]) Returns the list of intervals beginning with a0 and with l as centers. - See also: 1/ interval2center + See also: 1/ interval2center Ex1:center2interval([2,5,9],1) Ex2:center2interval([2,5,8]) - + ''' return GiacMethods['center2interval'](self,*args) @@ -2144,10 +2144,10 @@ cdef class GiacMethods_base: Help for centered_cube: centered_cube(Pnt(A),Pnt(B),Pnt(C)) Draws the direct cube with center A, vertex B and such that the plane ABC contains an axis of symmetry of the cube. - See also: 1/ parallelepiped 2/ cube 3/ icosahedron 4/ dodecahedron 5/ octahedron 6/ centered_tetrahedron + See also: 1/ parallelepiped 2/ cube 3/ icosahedron 4/ dodecahedron 5/ octahedron 6/ centered_tetrahedron Ex1:centered_cube([0,0,0],[3,0,0],[0,0,1]) Ex2:centered_cube(evalf([0,0,0],[3,2,4],[1,1,0])) - + ''' return GiacMethods['centered_cube'](self,*args) @@ -2156,10 +2156,10 @@ cdef class GiacMethods_base: Help for centered_tetrahedron: centered_tetrahedron(Pnt(A),Pnt(B),Pnt(C)) Draws the regular direct pyramid with center A, vertex B and a vertex in the plane (A,B,C). - See also: 1/ cube 2/ tetrahedron 3/ icosahedron 4/ dodecahedron 5/ octahedron + See also: 1/ cube 2/ tetrahedron 3/ icosahedron 4/ dodecahedron 5/ octahedron Ex1:centered_tetrahedron([0,0,0],[3,0,0],[0,1,0]) Ex2:centered_tetrahedron(evalf([0,0,0],[3,2,4],[1,1,0])) - + ''' return GiacMethods['centered_tetrahedron'](self,*args) @@ -2168,11 +2168,11 @@ cdef class GiacMethods_base: Help for cfactor: cfactor(Expr) Factorization of the expression in ℂ (on the Gaussian integers if there are more than 2 variables). - See also: 1/ factor + See also: 1/ factor Ex1:cfactor(x^2*y+y) Ex2:cfactor(x^2*y^2+y^2+4*x^2+4) Ex3:cfactor(x^2*y^2+y^2+2*x^2+2) - + ''' return GiacMethods['cfactor'](self,*args) @@ -2181,10 +2181,10 @@ cdef class GiacMethods_base: Help for cfsolve: cfsolve(Expr,Var,[Guess or Interval],[Method]) Numerical solution of an equation or a system of equations on ℂ. - See also: 1/ fsolve 2/ nSolve 3/ csolve 4/ solve + See also: 1/ fsolve 2/ nSolve 3/ csolve 4/ solve Ex1:cfsolve(cos(x)=2) Ex2:cfsolve([x^2+y+2,x+y^2+2],[x,y]) - + ''' return GiacMethods['cfsolve'](self,*args) @@ -2193,10 +2193,10 @@ cdef class GiacMethods_base: Help for changebase: changebase(Mtrx(A),Mtrx(P)) Returns the matrix B=inv(P)*A*P. - See also: 1/ + See also: 1/ Ex1:changebase([[1,2],[1,3]],[[1,1],[0,1]]) Ex2:changebase([[1,2],[1,3]],[[1,0],[1,1]]) - + ''' return GiacMethods['changebase'](self,*args) @@ -2205,12 +2205,12 @@ cdef class GiacMethods_base: Help for channel_data: channel_data(Lst(clip),[Intg(chn) or matrix],[range=a..b]) Extracts the data from an audio clip (optionally specifying the channel and range). - See also: 1/ bit_depth 2/ channels 3/ duration 4/ samplerate + See also: 1/ bit_depth 2/ channels 3/ duration 4/ samplerate Ex1:channel_data(readwav("/some/file")) Ex2:channel_data(readwav("/some/file"),matrix) Ex3:channel_data(readwav("/some/file"),2) Ex4:channel_data(readwav("/some/file"),matrix,range=1.0..2.5) - + ''' return GiacMethods['channel_data'](self,*args) @@ -2219,9 +2219,9 @@ cdef class GiacMethods_base: Help for channels: channels(Lst(clip)) Returns the number of channels in audio clip. - See also: 1/ bit_depth 2/ channel_data 3/ duration 4/ samplerate + See also: 1/ bit_depth 2/ channel_data 3/ duration 4/ samplerate Ex1:channels(readwav("/some/file")) - + ''' return GiacMethods['channels'](self,*args) @@ -2230,10 +2230,10 @@ cdef class GiacMethods_base: Help for char: char(Intg or Lst(Intg)) Returns the string corresponding to the character code of the argument. - See also: 1/ asc 2/ ord + See also: 1/ asc 2/ ord Ex1:char(65) Ex2:char([65,66,67]) - + ''' return GiacMethods['char'](self,*args) @@ -2242,12 +2242,12 @@ cdef class GiacMethods_base: Help for charpoly: charpoly(Mtrx,[Var]) List of the coefficients of the characteristic polynomial of a matrix or characteristic polynomial of a matrix with the second argument as variable. - See also: 1/ jordan 2/ egv 3/ egvl 4/ companion 5/ rat_jordan 6/ pmin 7/ adjoint_matrix + See also: 1/ jordan 2/ egv 3/ egvl 4/ companion 5/ rat_jordan 6/ pmin 7/ adjoint_matrix Ex1:charpoly([[1,2],[3,4]]) Ex2:charpoly([[1,2],[3,4]],x) Ex3:charpoly([[1,2,3],[1,3,6],[2,5,7]]) Ex4:charpoly([[1,2,3],[1,3,6],[2,5,7]],z) - + ''' return GiacMethods['charpoly'](self,*args) @@ -2256,10 +2256,10 @@ cdef class GiacMethods_base: Help for chinrem: chinrem([Lst||Expr,Lst||Expr],[Lst||Expr,Lst||Expr]) Chinese remainder for polynomials written as lists or no. - See also: 1/ ichinrem + See also: 1/ ichinrem Ex1:chinrem([x+2,x^2+1],[x+1,x^2+x+1]) Ex2:chinrem([[1,2],[1,0,1]],[[1,1],[1,1,1]]) - + ''' return GiacMethods['chinrem'](self,*args) @@ -2268,12 +2268,12 @@ cdef class GiacMethods_base: Help for chisquare: chisquare(Intg(n),Real(x0)) Returns the probability density of the Chi^2 law at x0 (n is the number of degrees of freedom). - See also: 1/ chisquare_cdf 2/ chisquare_icdf 3/ randvector 4/ ranm + See also: 1/ chisquare_cdf 2/ chisquare_icdf 3/ randvector 4/ ranm Ex1:chisquare(2,3.2) Ex2:chisquare(4,10.5) Ex3: randvector(3,chisquare,2) Ex4: ranm(4,3,chisquare,2) - + ''' return GiacMethods['chisquare'](self,*args) @@ -2282,10 +2282,10 @@ cdef class GiacMethods_base: Help for chisquare_cdf: chisquare_cdf(Intg(n),Real(x0)) Returns the probability that a Chi^2 random variable is less than x0 (n is the number of degrees of freedom). - See also: 1/ UTPC 2/ chisquare_icdf 3/ chisquared + See also: 1/ UTPC 2/ chisquare_icdf 3/ chisquared Ex1:chisquare_cdf(2,6.1) Ex2:chisquare_cdf(4,6.1) - + ''' return GiacMethods['chisquare_cdf'](self,*args) @@ -2294,10 +2294,10 @@ cdef class GiacMethods_base: Help for chisquare_icdf: chisquare_icdf(Intg(n),Real(p)) Returns h such as the probability that a Chi^2 random variable is less than h is p (n is the number of degrees of freedom and 0<=p<=1). - See also: 1/ chisquare_cdf 2/ chisquared + See also: 1/ chisquare_cdf 2/ chisquared Ex1:chisquare_icdf(2,0.95) Ex2:chisquare_icdf(4,0.05) - + ''' return GiacMethods['chisquare_icdf'](self,*args) @@ -2306,12 +2306,12 @@ cdef class GiacMethods_base: Help for chisquared: chisquared(Intg(n),Real(x0)) Returns the probability density of the Chi^2 law at x0 (n is the number of degrees of freedom). - See also: 1/ chisquare_cdf 2/ chisquare_icdf 3/ randvector 4/ ranm + See also: 1/ chisquare_cdf 2/ chisquare_icdf 3/ randvector 4/ ranm Ex1:chisquared(2,3.2) Ex2:chisquared(4,10.5) Ex3: randvector(3,chisquare,2) Ex4: ranm(4,3,chisquare,2) - + ''' return GiacMethods['chisquared'](self,*args) @@ -2320,10 +2320,10 @@ cdef class GiacMethods_base: Help for chisquared_cdf: chisquared_cdf(Intg(n),Real(x0)) Returns the probability that a Chi^2 random variable is less than x0 (n is the number of degrees of freedom). - See also: 1/ UTPC 2/ chisquare_icdf 3/ chisquared + See also: 1/ UTPC 2/ chisquare_icdf 3/ chisquared Ex1:chisquared_cdf(2,6.1) Ex2:chisquared_cdf(4,6.1) - + ''' return GiacMethods['chisquared_cdf'](self,*args) @@ -2332,10 +2332,10 @@ cdef class GiacMethods_base: Help for chisquared_icdf: chisquared_icdf(Intg(n),Real(p)) Returns h such as the probability that a Chi^2 random variable is less than h is p (n is the number of degrees of freedom and 0<=p<=1). - See also: 1/ chisquare_cdf 2/ chisquared + See also: 1/ chisquare_cdf 2/ chisquared Ex1:chisquared_icdf(2,0.95) Ex2:chisquared_icdf(4,0.05) - + ''' return GiacMethods['chisquared_icdf'](self,*args) @@ -2344,7 +2344,7 @@ cdef class GiacMethods_base: Help for chisquaret: chisquaret(Data,[Func],[FuncParams]) Chi^2 test : fitness between 2 (or n) samples or between 1 sample and a distribution law (multinomial or given by a law). - See also: 1/ normalt 2/ studentt 3/ kolmogorovt + See also: 1/ normalt 2/ studentt 3/ kolmogorovt Ex1:chisquaret([57,54]) Ex2:chisquaret([1,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,0,1,1,0,0,0,0],[.4,.6]) Ex3:chisquaret([57,30],[.6,.4]) @@ -2354,7 +2354,7 @@ cdef class GiacMethods_base: Ex7:chisquaret(ranv(1000,normald,0,.2),normald) Ex8:chisquaret([11,16,17,22,14,10],[1/6,1/6,1/6,1/6,1/6,1/6]) Ex9:chisquaret([11,16,17,22,14,10],[(1/6)$6]) - + ''' return GiacMethods['chisquaret'](self,*args) @@ -2363,12 +2363,12 @@ cdef class GiacMethods_base: Help for choice: choice(Lst(L)) choice(L)=rand(L)=one extracted element of L. - See also: 1/ rand 2/ sample + See also: 1/ rand 2/ sample Ex1:choice([1,2,3,4,5,6]) Ex2:choice(["r","r","r","b","n"]) Ex3: L:=[1,2,3,4,5,6];L:=choice(L) Ex4: L:=[1,2,3,4,5,6];L.choice() - + ''' return GiacMethods['choice'](self,*args) @@ -2377,9 +2377,9 @@ cdef class GiacMethods_base: Help for cholesky: cholesky(Mtrx) For a numerical symmetric matrix A, returns L matrix such that A=L*tran(L). - See also: 1/ lu 2/ qr 3/ gauss + See also: 1/ lu 2/ qr 3/ gauss Ex1:cholesky([[3,1],[1,4]]) - + ''' return GiacMethods['cholesky'](self,*args) @@ -2388,10 +2388,10 @@ cdef class GiacMethods_base: Help for chr: chr(Intg or Lst(Intg)) Returns the string corresponding to the character code of the argument. - See also: 1/ asc 2/ ord + See also: 1/ asc 2/ ord Ex1:chr(65) Ex2:chr([65,66,67]) - + ''' return GiacMethods['chr'](self,*args) @@ -2400,13 +2400,13 @@ cdef class GiacMethods_base: Help for chrem: chrem(LstIntg(a,b,c....),LstIntg(p,q,r,....)) Chinese remainders for integers or for polynomials. - See also: 1/ gcd 2/ fracmod 3/ chinrem 4/ ichinrem + See also: 1/ gcd 2/ fracmod 3/ chinrem 4/ ichinrem Ex1:chrem(symbolique.) Ex2:chrem([2,3],[7,5]) Ex3:chrem([2,4,6],[3,5,7]) Ex4:chrem([2,4,6,7],[3,5,7,11]) Ex5:chrem([2*x+1,4*x+2,6*x-1,x+1],[3,5,7,11]) - + ''' return GiacMethods['chrem'](self,*args) @@ -2415,10 +2415,10 @@ cdef class GiacMethods_base: Help for chromatic_index: chromatic_index(Graph(G),[Lst(cols)]) Returns the number of colors in the minimal edge coloring of G. If an unassigned identifier cols is given, the coloring is stored to it. - See also: 1/ minimal_edge_coloring 2/ chromatic_number + See also: 1/ minimal_edge_coloring 2/ chromatic_number Ex1:chromatic_index(graph("petersen")) Ex2:chromatic_index(graph("dodecahedron"),colors) - + ''' return GiacMethods['chromatic_index'](self,*args) @@ -2428,7 +2428,7 @@ cdef class GiacMethods_base: chromatic_number(Graph(G)) Returns the chromatic number of G. Ex1:chromatic_number(graph("petersen")) - + ''' return GiacMethods['chromatic_number'](self,*args) @@ -2437,10 +2437,10 @@ cdef class GiacMethods_base: Help for chromatic_polynomial: chromatic_polynomial(Graph(G),[Var(t)]) Returns the chromatic polynomial [or its value at point t] of undirected unweighted graph G. - See also: 1/ flow_polynomial 2/ reliability_polynomial 3/ tutte_polynomial + See also: 1/ flow_polynomial 2/ reliability_polynomial 3/ tutte_polynomial Ex1:chromatic_polynomial(graph("petersen")) Ex2:chromatic_polynomial(graph("petersen"),3) - + ''' return GiacMethods['chromatic_polynomial'](self,*args) @@ -2449,7 +2449,7 @@ cdef class GiacMethods_base: Help for circle: circle((Pnt(M) or Cplx(M),(Pnt(N) or Cplx(zN)),[Real(a)],[Real(b)],[Var(A)],[Var(B)]) Define for 2-d a circle with a diameter MN (arg1=M or zM,arg2=N) or with center and radius (arg1=M or zM,arg2=zN) and (center=M and radius=abs(zN)) [or the arc AB, A angle a, B angle b, (MN=angle 0) or M(M+zN)=angle 0] or by its equation and for 3-d with a diameter and a third point. - See also: 1/ circumcircle 2/ incircle 3/ excircle 4/ center 5/ radius 6/ sphere 7/ Circle + See also: 1/ circumcircle 2/ incircle 3/ excircle 4/ center 5/ radius 6/ sphere 7/ Circle Ex1:circle(0,point(2*i)) Ex2:circle(i,i) Ex3:circle(i,1) @@ -2458,7 +2458,7 @@ cdef class GiacMethods_base: Ex6:circle(x^2+y^2-x-y) Ex7:circle(cercle(point([-1,0,0]),point([1,0,0]),point([0,2,0]))) Ex8:circle(cercle([-1,0,0],point([1,0,0]),[0,2,0])) - + ''' return GiacMethods['circle'](self,*args) @@ -2467,9 +2467,9 @@ cdef class GiacMethods_base: Help for circumcircle: circumcircle((Pnt or Cplx),(Pnt or Cplx),((Pnt or Cplx)) circumcircle(A,B,C)=circumcircle of the triangle ABC. - See also: 1/ circle 2/ incircle 3/ excircle + See also: 1/ circle 2/ incircle 3/ excircle Ex1:circumcircle(0,1,1+i) - + ''' return GiacMethods['circumcircle'](self,*args) @@ -2478,13 +2478,13 @@ cdef class GiacMethods_base: Help for classes: classes(Lst(l),[ClassMin],[ClassSize||Lst(Center)]) Returns the matrix [[class,number],...] obtained with class_min and class_size: see init of geo or argument 2 and 3 or with the list of centers. - See also: 1/ histogram 2/ cumulated_frequencies 3/ bar_plot 4/ frequencies + See also: 1/ histogram 2/ cumulated_frequencies 3/ bar_plot 4/ frequencies Ex1:classes([1,1.2,1.4,1.6,1.8,2,2.5]) Ex2:classes([1,1.2,1.4,1.6,1.8,2,2.5],1.2,0.5) Ex3:classes([1,1.2,1.4,1.6,1.8,2,2.5],1,[1.2,1.6,2,2.4]) Ex4:classes([1,1.2,1.4,1.6,1.8,2,2.5],1,[1.2,1.6,2.2]) Ex5:classes([0,0.5,1,1.5,2,2.5,3,3.5,4],[0..2,2..4,4..6]) - + ''' return GiacMethods['classes'](self,*args) @@ -2493,9 +2493,9 @@ cdef class GiacMethods_base: Help for clear: clear(NULL) Clears the list of pixels. - See also: 1/ set_pixel 2/ show_pixels + See also: 1/ set_pixel 2/ show_pixels Ex1:clear() - + ''' return GiacMethods['clear'](self,*args) @@ -2504,11 +2504,11 @@ cdef class GiacMethods_base: Help for clique_cover: clique_cover(Graph(G),[Intg(k)]) Returns a clique vertex cover of G [containing at most k cliques]. - See also: 1/ clique_cover_number 2/ maximal_cliques + See also: 1/ clique_cover_number 2/ maximal_cliques Ex1:clique_cover(graph("petersen")) Ex2:clique_cover(cycle_graph(5)) Ex3:clique_cover(graph_complement(complete_graph(3,4))) - + ''' return GiacMethods['clique_cover'](self,*args) @@ -2517,11 +2517,11 @@ cdef class GiacMethods_base: Help for clique_cover_number: clique_cover_number(Graph(G)) Returns the clique cover number of G. - See also: 1/ clique_cover 3/ maximal_cliques + See also: 1/ clique_cover 3/ maximal_cliques Ex1:clique_cover_number(graph("petersen")) Ex2:clique_cover_number(cycle_graph(5)) Ex3:clique_cover_number(graph_complement(complete_graph(3,4))) - + ''' return GiacMethods['clique_cover_number'](self,*args) @@ -2530,9 +2530,9 @@ cdef class GiacMethods_base: Help for clique_number: clique_number(Graph(G)) Returns the clique number of G, which is equal to the size of a maximum clique in G. - See also: 1/ maximum_clique + See also: 1/ maximum_clique Ex1:clique_number(graph_complement(complete_graph(3,4))) - + ''' return GiacMethods['clique_number'](self,*args) @@ -2541,11 +2541,11 @@ cdef class GiacMethods_base: Help for clique_stats: clique_stats(Graph(G),[Intg(k)||Intrv(m..n)]) Returns the list of numbers of maximal cliques of size s in G for each s. If parameter k is given, the number of k-cliques is returned. If an interval m..n is given, only cliques with size between m and n (inclusive) are counted (m also may be +infinity). - See also: 1/ maximum_clique 2/ clique_cover + See also: 1/ maximum_clique 2/ clique_cover Ex1:clique_stats(random_graph(50,0.5)) Ex2:clique_stats(random_graph(50,0.5),5) Ex3:clique_stats(random_graph(50,0.5),3..5) - + ''' return GiacMethods['clique_stats'](self,*args) @@ -2554,10 +2554,10 @@ cdef class GiacMethods_base: Help for clustering_coefficient: clustering_coefficient(Graph(G),[Vrtx(v)]) Returns the average clustering coefficient of undirected graph G, or the local clustering coefficient of the vertex v in G. - See also: 1/ network_transitivity 2/ number_of_triangles + See also: 1/ network_transitivity 2/ number_of_triangles Ex1:clustering_coefficient(graph(%{[1,2],[2,3],[2,4],[3,4],[4,1]%})) Ex2:clustering_coefficient(graph(%{[1,2],[2,3],[2,4],[3,4],[4,1]%}),2) - + ''' return GiacMethods['clustering_coefficient'](self,*args) @@ -2566,11 +2566,11 @@ cdef class GiacMethods_base: Help for coeff: coeff(Expr(P),[Var]) Returns the list of coefficients of a polynomial with respect to the 2nd argument or the coefficient of degree the 3rd argument. - See also: 1/ pcoeff 2/ fcoeff + See also: 1/ pcoeff 2/ fcoeff Ex1:coeff(x*3+2) Ex2:coeff(5*y^2-3,y) Ex3:coeff(5*y^2-3,y,2) - + ''' return GiacMethods['coeff'](self,*args) @@ -2579,11 +2579,11 @@ cdef class GiacMethods_base: Help for coeffs: coeffs(Expr(P),[Var]) Returns the list of coefficients of a polynomial with respect to the 2nd argument or the coefficient of degree the 3rd argument. - See also: 1/ pcoeff 2/ fcoeff + See also: 1/ pcoeff 2/ fcoeff Ex1:coeffs(x*3+2) Ex2:coeffs(5*y^2-3,y) Ex3:coeffs(5*y^2-3,y,2) - + ''' return GiacMethods['coeffs'](self,*args) @@ -2592,11 +2592,11 @@ cdef class GiacMethods_base: Help for col: col(Mtrx(A),Intg(n)||Interval(n1..n2)) Returns column n or the sequence of the columns n1..n2 of the matrix A, or optional argument of count,count_eq,count_inf,count_sup. - See also: 1/ row 2/ count 3/ count_eq 4/ count_inf 5/ count_sup + See also: 1/ row 2/ count 3/ count_eq 4/ count_inf 5/ count_sup Ex1:col([[1,2,3],[4,5,6],[7,8,9]],1) Ex2:col([[1,2,3],[4,5,6],[7,8,9]],0..1) Ex3: count_eq(3,[[3,2,3],[4,3,2],[3,2,1]],col) - + ''' return GiacMethods['col'](self,*args) @@ -2605,10 +2605,10 @@ cdef class GiacMethods_base: Help for colDim: colDim(Mtrx) Number of columns of a matrix. - See also: 1/ rowdim + See also: 1/ rowdim Ex1:colDim([[1,2,3],[4,5,6]]) Ex2:colDim([[1,2],[3,4],[5,6]]) - + ''' return GiacMethods['colDim'](self,*args) @@ -2617,10 +2617,10 @@ cdef class GiacMethods_base: Help for colNorm: colNorm(Vect or Mtrx) Returns the max of the l1_norm of the columns of a matrix: colNorm(a_{j,k})=max_k(sum_j(|a_{j,k}|)). - See also: 1/ norm + See also: 1/ norm Ex1:colNorm([[1,2],[3,-4]]) Ex2:colNorm([[1,2,3,-4],[-5,3,2,1]]) - + ''' return GiacMethods['colNorm'](self,*args) @@ -2629,9 +2629,9 @@ cdef class GiacMethods_base: Help for colSwap: colSwap(Mtrx(A),Intg(n1),Intg(n2)) Returns the matrix obtained from A by swapping the n1-th column and the n2-th column. - See also: 1/ rowSwap + See also: 1/ rowSwap Ex1:colSwap([[1,2],[3,4],[5,6]],0,1) - + ''' return GiacMethods['colSwap'](self,*args) @@ -2640,10 +2640,10 @@ cdef class GiacMethods_base: Help for coldim: coldim(Mtrx) Number of columns of a matrix. - See also: 1/ rowdim + See also: 1/ rowdim Ex1:coldim([[1,2,3],[4,5,6]]) Ex2:coldim([[1,2],[3,4],[5,6]]) - + ''' return GiacMethods['coldim'](self,*args) @@ -2652,11 +2652,11 @@ cdef class GiacMethods_base: Help for collect: collect(Poly or LstPoly) Integer factorization of a polynomial (or of a list of poly). - See also: 1/ factor 2/ factors + See also: 1/ factor 2/ factors Ex1:collect(x^2-4) Ex2:collect(x^2-2) Ex3:collect([x^2-2,x^2-4]) - + ''' return GiacMethods['collect'](self,*args) @@ -2665,10 +2665,10 @@ cdef class GiacMethods_base: Help for colnorm: colnorm(Vect or Mtrx) Returns the max of the l1_norm of the columns of a matrix: colNorm(a_{j,k})=max_k(sum_j(|a_{j,k}|)). - See also: 1/ norm + See also: 1/ norm Ex1:colnorm([[1,2],[3,-4]]) Ex2:colnorm([[1,2,3,-4],[-5,3,2,1]]) - + ''' return GiacMethods['colnorm'](self,*args) @@ -2677,7 +2677,7 @@ cdef class GiacMethods_base: Help for color: color([GeoObj or legende],Intg) Draws a geometrical object with colors black=0 red=1 green=2 yellow=3 blue=4, filled with the color in the interior of a closed curve,line_width_n (00 (by default a=1 for sine window) to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ bartlett_hann_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ bartlett_hann_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(cosine_window(randvector(1000,0..1),1.5)) - + ''' return GiacMethods['cosine_window'](self,*args) @@ -3260,9 +3260,9 @@ cdef class GiacMethods_base: Help for cot: cot(Expr) Cotangent. - See also: 1/ acot 2/ tan + See also: 1/ acot 2/ tan Ex1:cot(pi/2) - + ''' return GiacMethods['cot'](self,*args) @@ -3271,10 +3271,10 @@ cdef class GiacMethods_base: Help for cote: cote(Vect) Third coordinate (z) of a 3-d point. - See also: 1/ abscissa 2/ ordinate 3/ coordinates + See also: 1/ abscissa 2/ ordinate 3/ coordinates Ex1:cote(point[1,2,3]) Ex2:cote(point(1,2,3)) - + ''' return GiacMethods['cote'](self,*args) @@ -3283,7 +3283,7 @@ cdef class GiacMethods_base: Help for count: count(Fnc(f)||LstIntg,(Lst||Mtrx)(l),[Opt(row||col)]) Returns f(l[0])+f(l[1])+...+f(l[size(l)-1]) or counts the number of occurrences if the argument is a vector of integers. - See also: 1/ count_eq 2/ count_inf 3/ count_sup + See also: 1/ count_eq 2/ count_inf 3/ count_sup Ex1:count(id,[-2/5,-1,0,1,2,3/5]) Ex2:count(1,[-2,-1,0,1,2,3]) Ex3:count([1,3,1,1,2,10,3]) @@ -3294,7 +3294,7 @@ cdef class GiacMethods_base: Ex8:count((x)->x>2,[[3,5/2],[4,1]],col) Ex9:count((x)->x>2 && x<4,[[3,9/2],[4,1]]) Ex10:count((x)->x<2 || x>4,[[3,9/2],[4,1]]) - + ''' return GiacMethods['count'](self,*args) @@ -3303,12 +3303,12 @@ cdef class GiacMethods_base: Help for count_eq: count_eq(Real(a),(Lst||Mtrx)(L),[Opt(row||col)]) Returns the number of elements of L equal to a. - See also: 1/ count 2/ count_inf 3/ count_sup + See also: 1/ count 2/ count_inf 3/ count_sup Ex1:count_eq(1,[-2,1,0,1,2,-3]) Ex2:count_eq(4,[[3,4],[4,1]]) Ex3:count_eq(4,[[3,4],[4,1]],row) Ex4:count_eq(4,[[3,4],[4,1]],col) - + ''' return GiacMethods['count_eq'](self,*args) @@ -3317,12 +3317,12 @@ cdef class GiacMethods_base: Help for count_inf: count_inf(Real(a),(Lst||Mtrx)(L),[Opt(row||col)]) Returns the number of elements of L strictly less than a. - See also: 1/ count 2/ count_eq 3/ count_sup + See also: 1/ count 2/ count_eq 3/ count_sup Ex1:count_inf(1,[-2,-1,0,1,2,3]) Ex2:count_inf(4,[[3,5],[4,1]]) Ex3:count_inf(4,[[3,5],[4,1]],row) Ex4:count_inf(4,[[3,5],[4,1]],col) - + ''' return GiacMethods['count_inf'](self,*args) @@ -3331,12 +3331,12 @@ cdef class GiacMethods_base: Help for count_sup: count_sup(Real(a),(Lst||Mtrx)(L),[Opt(row||col)]) Returns the number of elements of L strictly greater than a. - See also: 1/ count 2/ count_inf 3/ count_eq + See also: 1/ count 2/ count_inf 3/ count_eq Ex1:count_sup(1,[-2,-1,0,1,2,3]) Ex2:count_sup(3,[[3,5],[4,1]]) Ex3:count_sup(3,[[3,5],[4,1]],row) Ex4:count_sup(3,[[3,5],[4,1]],col) - + ''' return GiacMethods['count_sup'](self,*args) @@ -3345,7 +3345,7 @@ cdef class GiacMethods_base: Help for courbe_parametrique: courbe_parametrique(Cplx||Lst,Var||Lst(Var)) plotparam(a(x)+i*b(x),x=x0..x1) draws the curve X=a(x),Y=b(x) x=x0..x1 or plotparam([a(u,v),b(u,v),c(u,v)],[u=u0..u1,v=v0..v1]) draws the surface X=a(u,v),Y=b(u,v),Z=c(u,v) u=u0..u1 and v=v0..v1. - See also: 1/ plotfunc 2/ plotpolar 3/ arc + See also: 1/ plotfunc 2/ plotpolar 3/ arc Ex1:courbe_parametrique(sin(t)+i*cos(t),t) Ex2:courbe_parametrique(exp(i*t),t=0..pi/2,affichage=1) Ex3:courbe_parametrique(exp(i*t),t=0..pi/2,affichage=1+rempli) @@ -3354,7 +3354,7 @@ cdef class GiacMethods_base: Ex6:courbe_parametrique(sin(x)+i*cos(x),x=0..1,tstep=0.01) Ex7:courbe_parametrique([v*cos(u),v*sin(u),v],[u,v]) Ex8:courbe_parametrique([v*cos(u),v*sin(u),v],[u=0..pi,v=0..3],ustep=0.1,vstep=0.2) - + ''' return GiacMethods['courbe_parametrique'](self,*args) @@ -3363,10 +3363,10 @@ cdef class GiacMethods_base: Help for courbe_polaire: courbe_polaire(Expr,Var,VarMin,VarMax) plotpolar(f(x),x,a,b) draws the polar curve r=f(x) for x in [a,b]. - See also: 1/ plotparam 2/ plotfunc 3/ plotpolar + See also: 1/ plotparam 2/ plotfunc 3/ plotpolar Ex1:courbe_polaire(sin(2*x),x,0,pi) Ex2:courbe_polaire(sin(2*x),x,0,pi,tstep=0.1) - + ''' return GiacMethods['courbe_polaire'](self,*args) @@ -3375,9 +3375,9 @@ cdef class GiacMethods_base: Help for covariance: covariance(Lst||Mtrx,[Lst]) Returns the covariance of the elements of its argument. - See also: 1/ correlation 2/ covariance_correlation + See also: 1/ correlation 2/ covariance_correlation Ex1:covariance([[1,2],[1,1],[4,7]]) - + ''' return GiacMethods['covariance'](self,*args) @@ -3386,9 +3386,9 @@ cdef class GiacMethods_base: Help for covariance_correlation: covariance_correlation(Lst||Mtrx,[Lst]) Returns the list of the covariance and the correlation of the elements of its argument. - See also: 1/ covariance 2/ correlation + See also: 1/ covariance 2/ correlation Ex1:covariance_correlation([[1,2],[1,1],[4,7]]) - + ''' return GiacMethods['covariance_correlation'](self,*args) @@ -3397,11 +3397,11 @@ cdef class GiacMethods_base: Help for cpartfrac: cpartfrac(RatFrac) Performs partial fraction decomposition in ℂ of a fraction. - See also: 1/ factor 2/ normal + See also: 1/ factor 2/ normal Ex1:cpartfrac((x)/(4-x^2)) Ex2:cpartfrac((x^2-2*x+3)/(x^2-3*x+2)) Ex3:cpartfrac(a/(z*(z-b)),z) - + ''' return GiacMethods['cpartfrac'](self,*args) @@ -3410,9 +3410,9 @@ cdef class GiacMethods_base: Help for crationalroot: crationalroot(Poly(P)) Returns the list of complex rational roots of P without indicating the multiplicity. - See also: 1/ proot 2/ froot 3/ complexroot 4/ rationalroot 5/ realroot + See also: 1/ proot 2/ froot 3/ complexroot 4/ rationalroot 5/ realroot Ex1:crationalroot(2*x^3+(-5-7*i)*x^2+(-4+14*i)*x+8-4*i) - + ''' return GiacMethods['crationalroot'](self,*args) @@ -3421,12 +3421,12 @@ cdef class GiacMethods_base: Help for crayon: crayon(Color) Changes the color of the pencil (without parameter, returns the current color). - See also: 1/ leve_crayon 2/ baisse_crayon + See also: 1/ leve_crayon 2/ baisse_crayon Ex1: crayon vert Ex2:crayon(rouge) Ex3:crayon(5) Ex4:crayon(gomme) - + ''' return GiacMethods['crayon'](self,*args) @@ -3435,13 +3435,13 @@ cdef class GiacMethods_base: Help for createwav: createwav(Lst(data),[opts]) Returns an audio clip from data, optionally setting channel count, bit depth, sample rate, duration and normalization level. - See also: 1/ readwav 2/ writewav 3/ playsnd + See also: 1/ readwav 2/ writewav 3/ playsnd Ex1:createwav(duration=3.5) Ex2:createwav(sin(2*pi*440*soundsec(2)),samplerate=48000) Ex3:createwav(sin(2*pi*440*soundsec(2)),bit_depth=8) Ex4:createwav(10*sin(2*pi*440*soundsec(2)),normalize=-3) Ex5: t:=soundsec(3):;L,R:=sin(2*pi*440*t),sin(2*pi*445*t):;createwav([L,R]) - + ''' return GiacMethods['createwav'](self,*args) @@ -3450,10 +3450,10 @@ cdef class GiacMethods_base: Help for cross: cross(Vect(v1),Vect(v2)) Wedge product. - See also: 1/ dot + See also: 1/ dot Ex1:cross([1,2],[3,4]) Ex2:cross([1,2,3],[4,5,6]) - + ''' return GiacMethods['cross'](self,*args) @@ -3462,10 +3462,10 @@ cdef class GiacMethods_base: Help for crossP: crossP(Vect(v1),Vect(v2)) Wedge product. - See also: 1/ dot + See also: 1/ dot Ex1:crossP([1,2],[3,4]) Ex2:crossP([1,2,3],[4,5,6]) - + ''' return GiacMethods['crossP'](self,*args) @@ -3474,9 +3474,9 @@ cdef class GiacMethods_base: Help for cross_correlation: cross_correlation(cross_correlation(Lst(u),Lst(v))) Returns the cross_correlation of two signals u and v. - See also: 1/ auto_correlation 2/ correlation + See also: 1/ auto_correlation 2/ correlation Ex1:cross_correlation([1,2],[3,4,5]) - + ''' return GiacMethods['cross_correlation'](self,*args) @@ -3485,10 +3485,10 @@ cdef class GiacMethods_base: Help for cross_point: cross_point(Opt) Option of the display command for a point. - See also: 1/ display + See also: 1/ display Ex1: F:=display(point(2+1.5*i),point_point) Ex2: F:=display(point(2+1.5*i),rhombus_point) - + ''' return GiacMethods['cross_point'](self,*args) @@ -3497,11 +3497,11 @@ cdef class GiacMethods_base: Help for cross_ratio: cross_ratio(Pnt or Cplx(a),Pnt or Cplx(b),Pnt or Cplx(c),Pnt or Cplx(d)) Returns the complex number equal to ((c-a)/(c-b))/((d-a)/(d-b)). - See also: 1/ harmonic_conjugate 2/ is_conjugate + See also: 1/ harmonic_conjugate 2/ is_conjugate Ex1:cross_ratio(i,2+i,3/2+i,3+i) Ex2:cross_ratio(0,1+i,1,i) Ex3:cross_ratio(0,1,2,3) - + ''' return GiacMethods['cross_ratio'](self,*args) @@ -3510,10 +3510,10 @@ cdef class GiacMethods_base: Help for crossproduct: crossproduct(Vect(v1),Vect(v2)) Wedge product. - See also: 1/ dot + See also: 1/ dot Ex1:crossproduct([1,2],[3,4]) Ex2:crossproduct([1,2,3],[4,5,6]) - + ''' return GiacMethods['crossproduct'](self,*args) @@ -3522,9 +3522,9 @@ cdef class GiacMethods_base: Help for csc: csc(Expr) Cosecant: csc(x)=1/sin(x). - See also: 1/ sin 2/ acsc + See also: 1/ sin 2/ acsc Ex1:csc(pi/2) - + ''' return GiacMethods['csc'](self,*args) @@ -3533,12 +3533,12 @@ cdef class GiacMethods_base: Help for csolve: csolve(LstEq,LstVar) Returns the list of complex solutions of an equation or a matrix where the rows are ℂ-solutions of a system of polynomial equations. - See also: 1/ cZeros 2/ solve 3/ fslove + See also: 1/ cZeros 2/ solve 3/ fslove Ex1:csolve(x^4-1,x) Ex2:csolve(x^4-y^4 and x+y=2,[x,y]) Ex3:csolve(x^4-y^4 and x+y=0 and x^2=2*x,[x,y]) Ex4:csolve(u*v-u=v and v^2=u,[u,v]) - + ''' return GiacMethods['csolve'](self,*args) @@ -3547,9 +3547,9 @@ cdef class GiacMethods_base: Help for csv2gen: csv2gen(Strng(filename),Strng(sep),Strng(nl),Strng(decsep),Strng(eof),[string]) Reads a file (or string) in CSV format. - See also: 1/ read + See also: 1/ read Ex1:csv2gen("mat.txt",",",char(10),".") - + ''' return GiacMethods['csv2gen'](self,*args) @@ -3558,13 +3558,13 @@ cdef class GiacMethods_base: Help for cube: cube(Pnt(A),Pnt(B),Pnt(C)) Draws the direct cube with vertices A,B with a face in the plane (A,B,C). - See also: 1/ parallelepiped 2/ cylinder 3/ icosahedron 4/ dodecahedron 5/ octahedron 6/ tetrahedron 7/ centered_cube - Ex1:cube([0,0,0],[3,0,0],[0,0,1]) - Ex2: A,B,C:=point(1,0,0),point(1,1,0),point(0,1,0);c:=cube(A,B,C);A,B,C,D,E,F,G,H:=sommets(c); - Ex3: A,B,K:=point(1,0,0),point(1,1,0),point(0,2,0);c:=cube(A,B,C);A,B,C,D,E,F,G,H:=sommets(c); - Ex4: c:=cube([0,0,0],[1,0,0],[0,1,0]);c1,c2,c4,c3,c5,c6,c7,c8:=sommets(c); - Ex5: c:=cube([0,0,0],[0,2,0],[0,0,1]);c1,c2,c4,c3,c5,c6,c7,c8:=sommets(c); - + See also: 1/ parallelepiped 2/ cylinder 3/ icosahedron 4/ dodecahedron 5/ octahedron 6/ tetrahedron 7/ centered_cube + Ex1:cube([0,0,0],[3,0,0],[0,0,1]) + Ex2: A,B,C:=point(1,0,0),point(1,1,0),point(0,1,0);c:=cube(A,B,C);A,B,C,D,E,F,G,H:=sommets(c); + Ex3: A,B,K:=point(1,0,0),point(1,1,0),point(0,2,0);c:=cube(A,B,C);A,B,C,D,E,F,G,H:=sommets(c); + Ex4: c:=cube([0,0,0],[1,0,0],[0,1,0]);c1,c2,c4,c3,c5,c6,c7,c8:=sommets(c); + Ex5: c:=cube([0,0,0],[0,2,0],[0,0,1]);c1,c2,c4,c3,c5,c6,c7,c8:=sommets(c); + ''' return GiacMethods['cube'](self,*args) @@ -3573,11 +3573,11 @@ cdef class GiacMethods_base: Help for cumSum: cumSum(Lst(l)||Seq||Str) Returns the list (or the sequence or the string) lr where the elements are the cumulative sum of the list l: lr[k]=sum(l[j],j=0..k) (or lr=sum(l[j],j=0..k)$(k=0..size(l)-1)). - See also: 1/ sum + See also: 1/ sum Ex1:cumSum([0,1,2,3,4]) Ex2:cumSum(1.2,3,4.5,6) Ex3:cumSum("a","b","c","d") - + ''' return GiacMethods['cumSum'](self,*args) @@ -3586,11 +3586,11 @@ cdef class GiacMethods_base: Help for cumsum: cumsum(Lst(l)||Seq||Str) Returns the list (or the sequence or the string) lr where the elements are the cumulative sum of the list l: lr[k]=sum(l[j],j=0..k) (or lr=sum(l[j],j=0..k)$(k=0..size(l)-1)). - See also: 1/ sum + See also: 1/ sum Ex1:cumsum([0,1,2,3,4]) Ex2:cumsum(1.2,3,4.5,6) Ex3:cumsum("a","b","c","d") - + ''' return GiacMethods['cumsum'](self,*args) @@ -3599,13 +3599,13 @@ cdef class GiacMethods_base: Help for cumulated_frequencies: cumulated_frequencies(Lst || Mtrx) Draws the diagram of the cumulated frequencies (rows=[value,frequencies]) - See also: 1/ histogram 2/ classes 3/ bar_plot + See also: 1/ histogram 2/ classes 3/ bar_plot Ex1:cumulated_frequencies([1,2,1,1,2,1,2,4,3,3]) Ex2:cumulated_frequencies([(rand(6)+1)$(k=1..100)]) Ex3:cumulated_frequencies([[1,0.3],[2,0.5],[3,0.2]]) Ex4:cumulated_frequencies([[1..2,0.3],[2..3,0.5],[3..4,0.2]]) Ex5:cumulated_frequencies([[1..2,0.3,0.5],[2..3,0.5,0.2],[3..4,0.2,0.3]]) - + ''' return GiacMethods['cumulated_frequencies'](self,*args) @@ -3614,9 +3614,9 @@ cdef class GiacMethods_base: Help for curl: curl(Lst(A,B,C),Lst(x,y,z)) curl([A,B,C],[x,y,z])=[dC/dy-dB/dz,dA/dz-dC/dx,dB/dx-dA/dy]. - See also: 1/ derive 2/ divergence + See also: 1/ derive 2/ divergence Ex1:curl([2*x*y,x*z,y*z],[x,y,z]) - + ''' return GiacMethods['curl'](self,*args) @@ -3627,7 +3627,7 @@ cdef class GiacMethods_base: Content of the matrix editor or spreadsheet. Ex1:current_sheet(1,2) Ex2:current_sheet(A1..A5,B,G) - + ''' return GiacMethods['current_sheet'](self,*args) @@ -3636,7 +3636,7 @@ cdef class GiacMethods_base: Help for curvature: curvature(Curve,Point) Curvature of curve C at point M. - See also: 1/ osculating_circle 2/ evolute + See also: 1/ osculating_circle 2/ evolute Ex1:curvature(plot(x^2),point(1,1)) Ex2:curvature([5*cos(t),5*sin(t)],t) Ex3:curvature([t,t^2],t) @@ -3644,7 +3644,7 @@ cdef class GiacMethods_base: Ex5:curvature([3*exp(t/2)*cos(t),3*exp(t/2)*sin(t)],t) Ex6:curvature([3*exp(t/2)*cos(t),3*exp(t/2)*sin(t)],t,7) Ex7: trigcos(curvature([2*cos(t),2*sin(t),3*t],t)) - + ''' return GiacMethods['curvature'](self,*args) @@ -3653,8 +3653,8 @@ cdef class GiacMethods_base: Help for curve: curve(Expr) Reserved word. - See also: 1/ - + See also: 1/ + ''' return GiacMethods['curve'](self,*args) @@ -3663,10 +3663,10 @@ cdef class GiacMethods_base: Help for cyan: cyan(Opt) Option of the display command to display with color. - See also: 1/ display + See also: 1/ display Ex1: F:=display(point(2+1.5*i),red) Ex2: F:=display(point(2+1.5*i),point_point+green) - + ''' return GiacMethods['cyan'](self,*args) @@ -3675,9 +3675,9 @@ cdef class GiacMethods_base: Help for cycle2perm: cycle2perm(Cycle) Converts the cycle c to a permutation. - See also: 1/ cycles2permu 2/ permu2cycles + See also: 1/ cycles2permu 2/ permu2cycles Ex1:cycle2perm([1,3,5]) - + ''' return GiacMethods['cycle2perm'](self,*args) @@ -3686,10 +3686,10 @@ cdef class GiacMethods_base: Help for cycle_graph: cycle_graph(Intg(n)||Lst(V)) Returns a cyclic graph with n vertices (or with vertices from list V). - See also: 1/ graph 2/ path_graph + See also: 1/ graph 2/ path_graph Ex1:cycle_graph(4) Ex2:cycle_graph(["one","two","three","four","five"]) - + ''' return GiacMethods['cycle_graph'](self,*args) @@ -3698,9 +3698,9 @@ cdef class GiacMethods_base: Help for cycleinv: cycleinv(Cycle(c)) Returns the inverse cycle of the cycle c. - See also: 1/ perminv + See also: 1/ perminv Ex1:cycleinv([1,3,5]) - + ''' return GiacMethods['cycleinv'](self,*args) @@ -3709,9 +3709,9 @@ cdef class GiacMethods_base: Help for cycles2permu: cycles2permu(Lst(Cycle)) Converts a product of cycles into a permutation. - See also: 1/ permu2cycles 2/ cycle2perm + See also: 1/ permu2cycles 2/ cycle2perm Ex1:cycles2permu([[1,3,5],[3,4]]) - + ''' return GiacMethods['cycles2permu'](self,*args) @@ -3720,9 +3720,9 @@ cdef class GiacMethods_base: Help for cyclotomic: cyclotomic(Expr) N-th cyclotomic polynomial. - See also: 1/ none + See also: 1/ none Ex1:cyclotomic(20) - + ''' return GiacMethods['cyclotomic'](self,*args) @@ -3731,10 +3731,10 @@ cdef class GiacMethods_base: Help for cylinder: cylinder(Pnt(A),Vect(v),Real(r),[Real(h)]) Draws a cylinder with axis (A,v), with radius r [and with altitude h]. - See also: 1/ half_cone 2/ cone + See also: 1/ half_cone 2/ cone Ex1:cylinder([0,0,0],[0,1,0],2) Ex2:cylinder([0,0,0],[0,1,0],2,-3) - + ''' return GiacMethods['cylinder'](self,*args) @@ -3743,10 +3743,10 @@ cdef class GiacMethods_base: Help for dash_line: dash_line(Opt) Option of the display command for a line. - See also: 1/ display + See also: 1/ display Ex1: display(line(y=x),green+dash_line+line_width_2) Ex2: d:=display(line(2+i,1),cap_round_line) - + ''' return GiacMethods['dash_line'](self,*args) @@ -3755,10 +3755,10 @@ cdef class GiacMethods_base: Help for dashdot_line: dashdot_line(Opt) Option of the display command for a line. - See also: 1/ display + See also: 1/ display Ex1: display(line(y=x),green+dash_line+line_width_2) Ex2: d:=display(line(2+i,1),cap_round_line) - + ''' return GiacMethods['dashdot_line'](self,*args) @@ -3767,10 +3767,10 @@ cdef class GiacMethods_base: Help for dashdotdot_line: dashdotdot_line(Opt) Option of the display command for a line. - See also: 1/ display + See also: 1/ display Ex1: display(line(y=x),green+dash_line+line_width_2) Ex2: d:=display(line(2+i,1),cap_round_line) - + ''' return GiacMethods['dashdotdot_line'](self,*args) @@ -3781,7 +3781,7 @@ cdef class GiacMethods_base: dayofweek(d,m,y) returns the day of the given date (day,month,year) : 0 for sunday, 1 for monday ...6 for saturday. Ex1:dayofweek(21,4,2014) Ex2:dayofweek(15,10,1582) - + ''' return GiacMethods['dayofweek'](self,*args) @@ -3790,12 +3790,12 @@ cdef class GiacMethods_base: Help for deSolve: deSolve(Eq,[TimeVar],FncVar) Solves a differential equation or a differential linear system with constant coefficients. - See also: 1/ integrate 2/ diff 3/ odesolve 4/ plotode 5/ plotfiefd + See also: 1/ integrate 2/ diff 3/ odesolve 4/ plotode 5/ plotfiefd Ex1:deSolve(y'+x*y=0) Ex2:deSolve(y'+x*y=0,y) Ex3:deSolve(y'+x*y=0,[0,1]) Ex4:deSolve([y'+x*y=0,y(0)=1],y) - Ex5:deSolve([y'=[[1,2],[2,1]]*y+[x,x+1],y(0)=[1,2]]) + Ex5:deSolve([y'=[[1,2],[2,1]]*y+[x,x+1],y(0)=[1,2]]) Ex6:deSolve(y''+y=0,y) Ex7:deSolve([y''+y=sin(x),y(0)=1,y'(0)=2],y) Ex8:deSolve([y''+y=sin(x),y(0)=1,y'(0)=2],x,y) @@ -3807,7 +3807,7 @@ cdef class GiacMethods_base: Ex14:deSolve([z''+2*z'+z,z(0)=1,z'(0)=0],z(u)) Ex15:deSolve([z'=[[1,2],[2,1]]*z+[t,t+1],z(0)=[1,2]],t,z) Ex16:deSolve([z'=[[1,2],[2,1]]*z+[t,t+1],z(0)=[1,2]],z(t)) - + ''' return GiacMethods['deSolve'](self,*args) @@ -3816,10 +3816,10 @@ cdef class GiacMethods_base: Help for debut_enregistrement: debut_enregistrement(Var(nom_du_dessin)) Begins recording the commands making up the drawing; the name of the resulting procedure is the argument. - See also: 1/ fin_enregistrement + See also: 1/ fin_enregistrement Ex1:debut_enregistrement(maison) Ex2:debut_enregistrement(arbre) - + ''' return GiacMethods['debut_enregistrement'](self,*args) @@ -3828,11 +3828,11 @@ cdef class GiacMethods_base: Help for degree: degree(Poly(P),Var(Var)) Degree of the polynomial P with respect to the second argument. - See also: 1/ valuation 2/ size 3/ total_degree + See also: 1/ valuation 2/ size 3/ total_degree Ex1:degree(x^3+x) Ex2:degree([1,0,1,0]) Ex3:degree(x^3+x*y,y) - + ''' return GiacMethods['degree'](self,*args) @@ -3841,9 +3841,9 @@ cdef class GiacMethods_base: Help for degree_sequence: degree_sequence(Graph(G)) Returns the list of degrees of vertices of G (arc directions are ignored). - See also: 1/ is_graphic_sequence 2/ is_regular 2/ sequence_graph 3/ vertex_degree + See also: 1/ is_graphic_sequence 2/ is_regular 2/ sequence_graph 3/ vertex_degree Ex1:degree_sequence(graph(trail(1,2,3,4,2))) - + ''' return GiacMethods['degree_sequence'](self,*args) @@ -3852,11 +3852,11 @@ cdef class GiacMethods_base: Help for delcols: delcols(Mtrx(A),Interval(n1..n2)||n1) Returns the matrix where the columns n1..n2 (or n1) of the matrix A are deleted. - See also: 1/ delrows + See also: 1/ delrows Ex1:delcols([[1,2,3],[4,5,6],[7,8,9]],1..1) Ex2:delcols([[1,2,3],[4,5,6],[7,8,9]],0..1) Ex3:delcols([[1,2,3],[4,5,6],[7,8,9]],1) - + ''' return GiacMethods['delcols'](self,*args) @@ -3865,9 +3865,9 @@ cdef class GiacMethods_base: Help for delete_arc: delete_arc(Graph(G),Edge(e)||Trail(T)||Lst(E)) Returns a modified copy of digraph G with arc e (or trail T or list of arcs E) removed. - See also: 1/ add_arc 2/ delete_edge 3/ digraph 4/ edges 5/ has_arc 6/ trail + See also: 1/ add_arc 2/ delete_edge 3/ digraph 4/ edges 5/ has_arc 6/ trail Ex1:delete_arc(digraph(trail(1,2,3,4,5,1)),[5,1]) - + ''' return GiacMethods['delete_arc'](self,*args) @@ -3876,9 +3876,9 @@ cdef class GiacMethods_base: Help for delete_edge: delete_edge(Graph(G),Edge(e)||Trail(T)||Lst(E)) Returns a modified copy of undirected graph G with edge e (or trail T or list of edges E) removed. - See also: 1/ add_edge 2/ delete_arc 3/ edges 4/ graph 5/ has_edge 6/ trail + See also: 1/ add_edge 2/ delete_arc 3/ edges 4/ graph 5/ has_edge 6/ trail Ex1:delete_edge(cycle_graph(4),[1,2]) - + ''' return GiacMethods['delete_edge'](self,*args) @@ -3887,9 +3887,9 @@ cdef class GiacMethods_base: Help for delete_vertex: delete_vertex(Graph(G),Vrtx(v)||Lst(V)) Returns a modified copy of G with vertex v (or vertices from V) removed. - See also: 1/ add_vertex 2/ induced_subgraph + See also: 1/ add_vertex 2/ induced_subgraph Ex1:delete_vertex(cycle_graph(5),[1,4]) - + ''' return GiacMethods['delete_vertex'](self,*args) @@ -3898,11 +3898,11 @@ cdef class GiacMethods_base: Help for delrows: delrows(Mtrx(A),Interval(n1..n2)||n1) Returns the matrix where the rows n1..n2 (or n1) of the matrix A are deleted. - See also: 1/ delcols + See also: 1/ delcols Ex1:delrows([[1,2,3],[4,5,6],[7,8,9]],1..1) Ex2:delrows([[1,2,3],[4,5,6],[7,8,9]],0..1) Ex3:delrows([[1,2,3],[4,5,6],[7,8,9]],1) - + ''' return GiacMethods['delrows'](self,*args) @@ -3911,10 +3911,10 @@ cdef class GiacMethods_base: Help for deltalist: deltalist(Lst) Returns the list of the differences of two terms in succession. - See also: 1/ + See also: 1/ Ex1:deltalist([1,4,8,9]) Ex2:deltalist([1,8,4,9]) - + ''' return GiacMethods['deltalist'](self,*args) @@ -3923,11 +3923,11 @@ cdef class GiacMethods_base: Help for denom: denom(Frac(a/b) or RatFrac) Returns the denominator of the simplified fraction. - See also: 1/ getDenom 2/ getNum 3/ numer 4/ f2nd + See also: 1/ getDenom 2/ getNum 3/ numer 4/ f2nd Ex1:denom(25/15) Ex2:denom((x^3-1)/(x^2-1)) Ex3:denom(1+(x^3-1)/x^2) - + ''' return GiacMethods['denom'](self,*args) @@ -3936,10 +3936,10 @@ cdef class GiacMethods_base: Help for densityplot: densityplot(Expr,[x=xrange,y=yrange],[z],[xstep],[ystep]) Shows in the plane with colors the graph of an expression of 2 variables. - See also: 1/ plotfunc 2/ plotcontour + See also: 1/ plotfunc 2/ plotcontour Ex1:densityplot(x^2-y^2,[x=-2..2,y=-2..2],xstep=0.1,ystep=0.1) Ex2:densityplot(x^2-y^2,[x=-2..2,y=-2..2],z=-2..2,xstep=0.1,ystep=0.1) - + ''' return GiacMethods['densityplot'](self,*args) @@ -3948,9 +3948,9 @@ cdef class GiacMethods_base: Help for departures: departures(Graph(G),[Vrtx(v)]) Returns the list of vertices of digraph G which are connected by v with arcs such that tails are in v. If v is omitted, a list of departures is computed for every vertex in G. - See also: 1/ out_degree + See also: 1/ out_degree Ex1:departures(digraph(%{[1,2],[1,3],[2,3]%}),1) - + ''' return GiacMethods['departures'](self,*args) @@ -3959,7 +3959,7 @@ cdef class GiacMethods_base: Help for derive: derive(Expr or Fnc,[SeqVar or LstVar],[n]) Returns the derivative with respect to the 2nd argument. - See also: 1/ ' 2/ function_diff 3/ integrate 4/ taux_accroissement 5/ implicitdiff + See also: 1/ ' 2/ function_diff 3/ integrate 4/ taux_accroissement 5/ implicitdiff Ex1:derive(x^3-x) Ex2:derive(x^3-x,x,3) Ex3:derive(x^3-x,quote(x)$3) @@ -3968,7 +3968,7 @@ cdef class GiacMethods_base: Ex6:derive(x*y+z*y,y,z) Ex7:derive(x*y+z*y,[y,z]) Ex8: f(x):=sin(2x);g:=diff(f);h:=diff(diff(f)) - + ''' return GiacMethods['derive'](self,*args) @@ -3977,7 +3977,7 @@ cdef class GiacMethods_base: Help for deriver: deriver(Expr or Fnc,[SeqVar or LstVar],[n]) Returns the derivative with respect to the 2nd argument. - See also: 1/ ' 2/ function_diff 3/ integrate 4/ taux_accroissement 5/ implicitdiff + See also: 1/ ' 2/ function_diff 3/ integrate 4/ taux_accroissement 5/ implicitdiff Ex1:deriver(x^3-x) Ex2:deriver(x^3-x,x,3) Ex3:deriver(x^3-x,quote(x)$3) @@ -3986,7 +3986,7 @@ cdef class GiacMethods_base: Ex6:deriver(x*y+z*y,y,z) Ex7:deriver(x*y+z*y,[y,z]) Ex8: f(x):=sin(2x);g:=diff(f);h:=diff(diff(f)) - + ''' return GiacMethods['deriver'](self,*args) @@ -3995,12 +3995,12 @@ cdef class GiacMethods_base: Help for desolve: desolve(Eq,[TimeVar],FncVar) Solves a differential equation or a differential linear system with constant coefficients. - See also: 1/ integrate 2/ diff 3/ odesolve 4/ plotode 5/ plotfiefd + See also: 1/ integrate 2/ diff 3/ odesolve 4/ plotode 5/ plotfiefd Ex1:desolve(y'+x*y=0) Ex2:desolve(y'+x*y=0,y) Ex3:desolve(y'+x*y=0,[0,1]) Ex4:desolve([y'+x*y=0,y(0)=1],y) - Ex5:desolve([y'=[[1,2],[2,1]]*y+[x,x+1],y(0)=[1,2]]) + Ex5:desolve([y'=[[1,2],[2,1]]*y+[x,x+1],y(0)=[1,2]]) Ex6:desolve(y''+y=0,y) Ex7:desolve([y''+y=sin(x),y(0)=1,y'(0)=2],y) Ex8:desolve([y''+y=sin(x),y(0)=1,y'(0)=2],x,y) @@ -4012,7 +4012,7 @@ cdef class GiacMethods_base: Ex14:desolve([z''+2*z'+z,z(0)=1,z'(0)=0],z(u)) Ex15:desolve([z'=[[1,2],[2,1]]*z+[t,t+1],z(0)=[1,2]],t,z) Ex16:desolve([z'=[[1,2],[2,1]]*z+[t,t+1],z(0)=[1,2]],z(t)) - + ''' return GiacMethods['desolve'](self,*args) @@ -4021,11 +4021,11 @@ cdef class GiacMethods_base: Help for dessine_tortue: dessine_tortue([Intg(n)]) Draws the full (or not full if n=1) triangle representing the turtle. - See also: 1/ crayon + See also: 1/ crayon Ex1:dessine_tortue() Ex2:dessine_tortue(0) Ex3:dessine_tortue(1) - + ''' return GiacMethods['dessine_tortue'](self,*args) @@ -4034,10 +4034,10 @@ cdef class GiacMethods_base: Help for det: det(Mtrx) Determinant of a square matrix M. - See also: 1/ rref 2/ det_minor 3/ Det + See also: 1/ rref 2/ det_minor 3/ Det Ex1:det([[1,2],[3,4]]) Ex2:det([[1,2,3],[1,3,6],[2,5,7]]) - + ''' return GiacMethods['det'](self,*args) @@ -4046,9 +4046,9 @@ cdef class GiacMethods_base: Help for det_minor: det_minor(Mtrx(A)) Returns the determinant calculated with the calculus of minors. - See also: 1/ det + See also: 1/ det Ex1:det_minor([[1,2],[3,4]]) - + ''' return GiacMethods['det_minor'](self,*args) @@ -4057,13 +4057,13 @@ cdef class GiacMethods_base: Help for developper: developper(Expr) Full distribution of * and / over + and -. - See also: 1/ texpand 2/ normal 3/ simplify 4/ ratnormal + See also: 1/ texpand 2/ normal 3/ simplify 4/ ratnormal Ex1:developper((x+y)*(z+1)) Ex2:developper((a+b+c)/d) Ex3:developper((y+x)*(z+y)*(x+z)) Ex4:developper((x+3)^4) Ex5:developper((2*x-2*1)*(x^2-3*x+2)+(x^2-2*x+3)*(2*x-3*1)) - + ''' return GiacMethods['developper'](self,*args) @@ -4072,11 +4072,11 @@ cdef class GiacMethods_base: Help for developper_transcendant: developper_transcendant(Expr) Expands transcendental expressions. - See also: 1/ tcollect 2/ tlin 3/ lin 4/ trigexpand + See also: 1/ tcollect 2/ tlin 3/ lin 4/ trigexpand Ex1:developper_transcendant(sin(2*x)+exp(x+y)) Ex2:developper_transcendant(cos(x+y)) Ex3:developper_transcendant(cos(3*x)) - + ''' return GiacMethods['developper_transcendant'](self,*args) @@ -4085,13 +4085,13 @@ cdef class GiacMethods_base: Help for dfc: dfc(Real(x0),Int(n)||Real(eps)) Returns the continued fraction development at x0 of order n or with precision eps. - See also: 1/ dfc2f 2/ convert + See also: 1/ dfc2f 2/ convert Ex1:dfc(sqrt(2),5) Ex2:dfc(pi,4) Ex3:dfc(evalf(pi),1e-09) Ex4: convert(sqrt(2),confrac,'dev');dev Ex5: convert(9976/6961,confrac,'l');l - + ''' return GiacMethods['dfc'](self,*args) @@ -4100,10 +4100,10 @@ cdef class GiacMethods_base: Help for dfc2f: dfc2f(LstFrac_Cont)) Converts a continued fraction into a real. - See also: 1/ dfc 2/ convert + See also: 1/ dfc 2/ convert Ex1:dfc2f([1,1,1]) Ex2:dfc2f([1,2,[2]]) - + ''' return GiacMethods['dfc2f'](self,*args) @@ -4112,14 +4112,14 @@ cdef class GiacMethods_base: Help for diag: diag(Lst(l)||(Mtrx(A),[left||right||lu])||Lst(l),Lst(d),Lst(u)) With 1 argument returns either the diagonal matrix with diagonal l or the diagonal of A, with 2 arguments returns the large left (lower) triangular part of A or the large right (upper) triangular part of A or factors A into 3 parts : strict left (lower) triangular, diagonal, strict right (upper) triangular and with 3 arguments returns the tridiagonal matrix with diagonals l,d,u. - See also: 1/ identity 2/ lu 3/ BlockDiagonal 4/ upper 5/ lower + See also: 1/ identity 2/ lu 3/ BlockDiagonal 4/ upper 5/ lower Ex1:diag([[1,2],[3,4]]) Ex2:diag([1,2,3]) Ex3:diag([[1,2],[3,4]],left) Ex4:diag([[1,2],[3,4]],right) Ex5:diag([[1,2],[3,4]],lu) Ex6:diag([1,2],[3,4,5],[6,7]) - + ''' return GiacMethods['diag'](self,*args) @@ -4128,7 +4128,7 @@ cdef class GiacMethods_base: Help for diff: diff(Expr or Fnc,[SeqVar or LstVar],[n]) Returns the derivative with respect to the 2nd argument. - See also: 1/ ' 2/ function_diff 3/ integrate 4/ taux_accroissement 5/ implicitdiff + See also: 1/ ' 2/ function_diff 3/ integrate 4/ taux_accroissement 5/ implicitdiff Ex1:diff(x^3-x) Ex2:diff(x^3-x,x,3) Ex3:diff(x^3-x,quote(x)$3) @@ -4137,7 +4137,7 @@ cdef class GiacMethods_base: Ex6:diff(x*y+z*y,y,z) Ex7:diff(x*y+z*y,[y,z]) Ex8: f(x):=sin(2x);g:=diff(f);h:=diff(diff(f)) - + ''' return GiacMethods['diff'](self,*args) @@ -4146,10 +4146,10 @@ cdef class GiacMethods_base: Help for digraph: digraph([Lst(V)],[Set(E)],[Mtrx(A)],[options]) Create a directed (un)weighted graph from vertices V, edges E and/or adjacency or weight matrix A. All parameters are optional. - See also: 1/ graph 2/ trail + See also: 1/ graph 2/ trail Ex1:digraph(%{[1,2],[2,3],[3,4],[4,1]%}) Ex2:digraph([a,b,c,d],%{[[a,b],1.0],[[a,c],2.3],[[b,d],3.1],[[c,d],4]%}) - + ''' return GiacMethods['digraph'](self,*args) @@ -4158,9 +4158,9 @@ cdef class GiacMethods_base: Help for dijkstra: dijkstra(Graph(G),Vrtx(v),[Vrtx(w)||Lst(W)]) Returns the cheapest weighted path from vertex v to w (or to vertices from W) in undirected graph G. Output is in the form [[v1,v2,...,vk],d] (or list of these) where v1,v2,...,vk are vertices along each path and d is the weight of the path. - See also: 1/ allpairs_distance 2/ shortest_path + See also: 1/ allpairs_distance 2/ shortest_path Ex1:dijkstra(graph(%{[[1,2],1],[[2,3],3],[[3,4],7],[[4,5],3],[[5,6],3],[[1,6],3]%}),1,4) - + ''' return GiacMethods['dijkstra'](self,*args) @@ -4169,9 +4169,9 @@ cdef class GiacMethods_base: Help for dim: dim(Mtrx) Returns the list which gives the dimension of the matrix specified as argument. - See also: 1/ rowdim 2/ coldim 3/ sizes 4/ size + See also: 1/ rowdim 2/ coldim 3/ sizes 4/ size Ex1:dim([[1,2,3],[4,5,6]]) - + ''' return GiacMethods['dim'](self,*args) @@ -4180,8 +4180,8 @@ cdef class GiacMethods_base: Help for directed: directed(Opt) Option for graph and digraph commands. - See also: 1/ weighted 2/ graph 3/ digraph - + See also: 1/ weighted 2/ graph 3/ digraph + ''' return GiacMethods['directed'](self,*args) @@ -4190,9 +4190,9 @@ cdef class GiacMethods_base: Help for discard_edge_attribute: discard_edge_attribute(Graph(G),Edge(e),Seq(tag1=value1,tag2=value2,..)) Discards the attributes with tags tag1, tag2, ... assigned to edge e in G and returns the modified copy of G. - See also: 1/ get_edge_attribute 2/ set_edge_attribute 3/ list_edge_attributes + See also: 1/ get_edge_attribute 2/ set_edge_attribute 3/ list_edge_attributes Ex1:discard_edge_attribute(cycle_graph(3),[1,2],"cost") - + ''' return GiacMethods['discard_edge_attribute'](self,*args) @@ -4201,9 +4201,9 @@ cdef class GiacMethods_base: Help for discard_graph_attribute: discard_graph_attribute(Graph(G),Seq(tag1=value1,tag2=value2,..)) Discards the graph attributes with tags tag1, tag2, ... and returns the modified copy of G. - See also: 1/ get_graph_attribute 2/ set_graph_attribute 3/ list_graph_attributes + See also: 1/ get_graph_attribute 2/ set_graph_attribute 3/ list_graph_attributes Ex1:discard_graph_attribute(cycle_graph(3),"name") - + ''' return GiacMethods['discard_graph_attribute'](self,*args) @@ -4212,9 +4212,9 @@ cdef class GiacMethods_base: Help for discard_vertex_attribute: discard_vertex_attribute(Graph(G),Vrtx(v),Seq(tag1=value1,tag2=value2,..)) Discards the attributes with tags tag1, tag2, ... assigned to vertex v in G and returns the modified copy of G. - See also: 1/ get_vertex_attribute 2/ set_vertex_attribute 3/ list_vertex_attributes + See also: 1/ get_vertex_attribute 2/ set_vertex_attribute 3/ list_vertex_attributes Ex1:discard_vertex_attribute(cycle_graph(3),1,"supply") - + ''' return GiacMethods['discard_vertex_attribute'](self,*args) @@ -4223,9 +4223,9 @@ cdef class GiacMethods_base: Help for disjoint_union: disjoint_union(Seq(G1,G2,...)) Returns the disjoint union of the graphs G1, G2, ... Vertices in the resulting graph are labelled with "k:v", where k is index of the corresponding k-th graph Gk and v is vertex in Gk. - See also: 1/ graph_join 2/ graph_union + See also: 1/ graph_join 2/ graph_union Ex1:disjoint_union(is_connected(disjoint_union(cycle_graph(5),path_graph(4)))) - + ''' return GiacMethods['disjoint_union'](self,*args) @@ -4234,7 +4234,7 @@ cdef class GiacMethods_base: Help for display: display([GeoObj or legende],Intg) Draws a geometrical object with colors black=0 red=1 green=2 yellow=3 blue=4, filled with the color in the interior of a closed curve,line_width_n (0=0 or, the (-n)th previous question if n<0 (by default n=-1 for the previous question). - See also: 1/ ans + See also: 1/ ans Ex1:entry() Ex2:entry(2) Ex3:entry(-2) - + ''' return GiacMethods['entry'](self,*args) @@ -4916,10 +4916,10 @@ cdef class GiacMethods_base: Help for envelope: envelope(Expr(Xpr),Var(t)||[x,y,t]) Returns the envelope of the curves with equation Xpr=0 as t varies. - See also: 1/ tangent 2/ locus + See also: 1/ tangent 2/ locus Ex1:envelope(y+x*tan(t)-2*sin(t),t) Ex2:envelope(v+u*tan(t)-3*sin(t),[u,v,t]) - + ''' return GiacMethods['envelope'](self,*args) @@ -4928,9 +4928,9 @@ cdef class GiacMethods_base: Help for epsilon: epsilon(NULL) Returns the value of epsilon of the CAS configuration. - See also: 1/ epsilon2zero + See also: 1/ epsilon2zero Ex1:epsilon() - + ''' return GiacMethods['epsilon'](self,*args) @@ -4939,9 +4939,9 @@ cdef class GiacMethods_base: Help for epsilon2zero: epsilon2zero(Expr) Values < epsilon are replaced by zero. - See also: 1/ evalf + See also: 1/ evalf Ex1:epsilon2zero(1e-13+x+5) - + ''' return GiacMethods['epsilon2zero'](self,*args) @@ -4950,11 +4950,11 @@ cdef class GiacMethods_base: Help for equal: equal(Expr,Expr) Prefixed version of =. - See also: 1/ = 2/ equal2diff 3/ equal2list 4/ left 5/ right + See also: 1/ = 2/ equal2diff 3/ equal2list 4/ left 5/ right Ex1: 2*x=4 Ex2:equal(2*x,4) Ex3:equal(x^2-3x+2,0) - + ''' return GiacMethods['equal'](self,*args) @@ -4963,10 +4963,10 @@ cdef class GiacMethods_base: Help for equal2diff: equal2diff(Equal) A=B or equal(A,B) is converted into the difference A-B. - See also: 1/ left 2/ right 3/ equal2list 4/ equal 5/ = + See also: 1/ left 2/ right 3/ equal2list 4/ equal 5/ = Ex1:equal2diff(x=2) Ex2:equal2diff(equal(x,2)) - + ''' return GiacMethods['equal2diff'](self,*args) @@ -4975,10 +4975,10 @@ cdef class GiacMethods_base: Help for equal2list: equal2list(Equal) A=B or equal(A,B) is converted into the list [A,B]. - See also: 1/ left 2/ right 3/ equal2diff 4/ equal 5/ = + See also: 1/ left 2/ right 3/ equal2diff 4/ equal 5/ = Ex1:equal2list(x=2) Ex2:equal2list(equal(x,2)) - + ''' return GiacMethods['equal2list'](self,*args) @@ -4987,9 +4987,9 @@ cdef class GiacMethods_base: Help for equation: equation(GeoObj, VectParam) equation returns the cartesian equation of a curve. - See also: 1/ parameq + See also: 1/ parameq Ex1:equation(line(1-i,i),[x,y]) - + ''' return GiacMethods['equation'](self,*args) @@ -4998,12 +4998,12 @@ cdef class GiacMethods_base: Help for equilateral_triangle: equilateral_triangle((Pnt(A) or Cplx),(Pnt(B) or Cplx),[Pnt(P)],[Var(C)]) equilateral_triangle(A,B) (resp equilateral_triangle(A,B,P)) draws the direct equilateral triangle ABC with side AB (resp in the half-plane ABP). - See also: 1/ triangle + See also: 1/ triangle Ex1:equilateral_triangle(point(1+i),0) Ex2:equilateral_triangle(0,1+i,C) Ex3:equilateral_triangle(point(0,0,0),point(3,3,3),point(0,0,3)) Ex4:equilateral_triangle(point(0,0,0),point(3,3,3),point(0,0,3),C) - + ''' return GiacMethods['equilateral_triangle'](self,*args) @@ -5012,10 +5012,10 @@ cdef class GiacMethods_base: Help for erf: erf(Real(x0)) Returns the approximate value of 2/sqrt(pi)*int(exp(-t^2),t,0,x0). - See also: 1/ erfc + See also: 1/ erfc Ex1:erf(1) Ex2:erf(1/(sqrt(2)))*1/2 - + ''' return GiacMethods['erf'](self,*args) @@ -5024,10 +5024,10 @@ cdef class GiacMethods_base: Help for erfc: erfc(Real(x0)) Returns the approximate value of 2/sqrt(pi)*int(exp(-t^2),t,x0,+infinity). - See also: 1/ erf + See also: 1/ erf Ex1:erfc(1) Ex2:erfc(1/(sqrt(2)))*1/2 - + ''' return GiacMethods['erfc'](self,*args) @@ -5036,10 +5036,10 @@ cdef class GiacMethods_base: Help for error: error(Str) Generates the display of an error in a program. - See also: 1/ try 2/ catch + See also: 1/ try 2/ catch Ex1:error("Argument should be integer") Ex2:error("je provoque une erreur") - + ''' return GiacMethods['error'](self,*args) @@ -5048,10 +5048,10 @@ cdef class GiacMethods_base: Help for est_permu: est_permu(Lst) Returns 1 if the argument is a permutation and 0 otherwise. - See also: 1/ is_cycle 2/ permu2cycles + See also: 1/ is_cycle 2/ permu2cycles Ex1:est_permu([4,2,3,1]) Ex2:est_permu([4,2,3,1,0]) - + ''' return GiacMethods['est_permu'](self,*args) @@ -5060,10 +5060,10 @@ cdef class GiacMethods_base: Help for euler: euler(Intg(n)) Euler's function (euler(n)=card({p=0):; euler_lagrange(sqrt((1+y'^2)/y),t,y) - + ''' return GiacMethods['euler_lagrange'](self,*args) @@ -5100,7 +5100,7 @@ cdef class GiacMethods_base: Ex3: purge(a,b,c);eval_level(1);a:=b+1; b:=c+1;c:=3; Ex4: purge(a,b,c);eval_level(2);a:=b+1; b:=c+1;c:=3; Ex5: purge(a,b,c);eval_level(3);a:=b+1; b:=c+1;c:=3; - + ''' return GiacMethods['eval_level'](self,*args) @@ -5109,11 +5109,11 @@ cdef class GiacMethods_base: Help for evala: evala(Expr) Simplifies the expression. - See also: 1/ simplify + See also: 1/ simplify Ex1:evala(2*x+y=1) Ex2:evala(2*x*2) Ex3:evala((2*x+1)^2) - + ''' return GiacMethods['evala'](self,*args) @@ -5122,10 +5122,10 @@ cdef class GiacMethods_base: Help for evalb: evalb(Expr) Boolean evaluation of the argument. - See also: 1/ evalf 2/ eval + See also: 1/ evalf 2/ eval Ex1:evalb(a==2) Ex2:evalb(sqrt(2)+pi>a) - + ''' return GiacMethods['evalb'](self,*args) @@ -5134,10 +5134,10 @@ cdef class GiacMethods_base: Help for evalc: evalc(Expr) Returns a complex expression simplified to the format real+i*imag. - See also: 1/ normal + See also: 1/ normal Ex1:evalc(-3+4*i+exp(i)) Ex2:evalc(1/(x+y*i)) - + ''' return GiacMethods['evalc'](self,*args) @@ -5146,14 +5146,14 @@ cdef class GiacMethods_base: Help for evalf: evalf(Expr,[Int]) Numerical evaluation of the first argument (we can give the number of digits as second argument). - See also: 1/ evalb 2/ eval + See also: 1/ evalb 2/ eval Ex1:evalf(2/3) Ex2:evalf(2/3,2) Ex3:evalf(2*sin(1)) Ex4:evalf(2*sin(1),40) Ex5:evalf(sqrt(2)+pi) Ex6:evalf(sqrt(2)+pi,30) - + ''' return GiacMethods['evalf'](self,*args) @@ -5162,9 +5162,9 @@ cdef class GiacMethods_base: Help for evalm: evalm(Expr) Evaluates its argument. - See also: 1/ evalf + See also: 1/ evalf Ex1:evalm(2*sin(pi)) - + ''' return GiacMethods['evalm'](self,*args) @@ -5173,10 +5173,10 @@ cdef class GiacMethods_base: Help for even: even(Intg(n)) Returns 1 if the integer is even, else returns 0. - See also: 1/ odd + See also: 1/ odd Ex1:even(6) Ex2:even(1251) - + ''' return GiacMethods['even'](self,*args) @@ -5185,11 +5185,11 @@ cdef class GiacMethods_base: Help for evolute: evolute(Curve) Evolute of a curve C. - See also: 1/ curvature 2/ osculating_circle + See also: 1/ curvature 2/ osculating_circle Ex1:evolute(plot(x^2)) Ex2:evolute([t,t^2],t) Ex3:evolute([3*exp(t/2)*cos(t),3*exp(t/2)*sin(t)],t) - + ''' return GiacMethods['evolute'](self,*args) @@ -5198,12 +5198,12 @@ cdef class GiacMethods_base: Help for exact: exact(Expr) Converts the expression to a rational or real expression. - See also: 1/ + See also: 1/ Ex1:exact(-2) Ex2:exact(1.5) Ex3:exact(1.4141) Ex4:exact(0.156381102937) - + ''' return GiacMethods['exact'](self,*args) @@ -5212,9 +5212,9 @@ cdef class GiacMethods_base: Help for exbisector: exbisector((Pnt(A) or Cplx),(Pnt(B) or Cplx),(Pnt(C) or Cplx)) Draws the exterior bisector of the angle (AB,AC) given by 3 points A,B,C. - See also: 1/ angle 2/ bisector + See also: 1/ angle 2/ bisector Ex1:exbisector(0,1,i) - + ''' return GiacMethods['exbisector'](self,*args) @@ -5223,9 +5223,9 @@ cdef class GiacMethods_base: Help for excircle: excircle((Pnt or Cplx),(Pnt or Cplx),(Pnt or Cplx)) excircle(A,B,C) draws the A-excircle of the triangle ABC. - See also: 1/ incircle 2/ circumcircle + See also: 1/ incircle 2/ circumcircle Ex1:excircle(0,1,1+i) - + ''' return GiacMethods['excircle'](self,*args) @@ -5234,12 +5234,12 @@ cdef class GiacMethods_base: Help for execute: execute(Str) Instruction transforming a string into a command or into a number. - See also: 1/ string + See also: 1/ string Ex1:execute("ifactor(54)") Ex2:execute("123") Ex3:execute("0123") Ex4:execute(sin,x) - + ''' return GiacMethods['execute'](self,*args) @@ -5248,10 +5248,10 @@ cdef class GiacMethods_base: Help for exp: exp(Expr or Opt) Exponential or option of the convert or convertir command (id trig2exp). - See also: 1/ ln 2/ convert 3/ trig2exp + See also: 1/ ln 2/ convert 3/ trig2exp Ex1:exp(0) Ex2: convert(cos(x),exp) - + ''' return GiacMethods['exp'](self,*args) @@ -5260,10 +5260,10 @@ cdef class GiacMethods_base: Help for exp2list: exp2list(Expr) Returns the list made with the righthand member of (var=expr0 or var=expr1), to be used after solve in TI mode. - See also: 1/ list2exp + See also: 1/ list2exp Ex1:exp2list((x=2) or (x=0)) Ex2:exp2list((x=3 and y=9) or (x=-1 and y=1) ) - + ''' return GiacMethods['exp2list'](self,*args) @@ -5272,10 +5272,10 @@ cdef class GiacMethods_base: Help for exp2pow: exp2pow(Expr) Transforms exp(n*ln(x)) to x^n. - See also: 1/ pow2exp + See also: 1/ pow2exp Ex1:exp2pow(exp(3*ln(x))) Ex2:exp2pow(exp(x*ln(x))) - + ''' return GiacMethods['exp2pow'](self,*args) @@ -5284,10 +5284,10 @@ cdef class GiacMethods_base: Help for exp2trig: exp2trig(Expr) Transforms the complex exponential into sine and cosine. - See also: 1/ trig2exp 2/ atrig2ln + See also: 1/ trig2exp 2/ atrig2ln Ex1:exp2trig(exp(i*x)) Ex2:exp2trig(exp(-i*x)) - + ''' return GiacMethods['exp2trig'](self,*args) @@ -5296,13 +5296,13 @@ cdef class GiacMethods_base: Help for expand: expand(Expr) Full distribution of * and / over + and -. - See also: 1/ texpand 2/ normal 3/ simplify 4/ ratnormal + See also: 1/ texpand 2/ normal 3/ simplify 4/ ratnormal Ex1:expand((x+y)*(z+1)) Ex2:expand((a+b+c)/d) Ex3:expand((y+x)*(z+y)*(x+z)) Ex4:expand((x+3)^4) Ex5:expand((2*x-2*1)*(x^2-3*x+2)+(x^2-2*x+3)*(2*x-3*1)) - + ''' return GiacMethods['expand'](self,*args) @@ -5311,9 +5311,9 @@ cdef class GiacMethods_base: Help for expexpand: expexpand(Expr) Expands exponentials. - See also: 1/ texpand 2/ lnexpand 3/ trigexpand + See also: 1/ texpand 2/ lnexpand 3/ trigexpand Ex1:expexpand(exp(3*x)) - + ''' return GiacMethods['expexpand'](self,*args) @@ -5322,9 +5322,9 @@ cdef class GiacMethods_base: Help for expln: expln(Opt) Option of the convert or convertir command (id trig2exp). - See also: 1/ exp 2/ ln 3/ convert 4/ trig2exp + See also: 1/ exp 2/ ln 3/ convert 4/ trig2exp Ex1: convert(cos(x),expln) - + ''' return GiacMethods['expln'](self,*args) @@ -5333,12 +5333,12 @@ cdef class GiacMethods_base: Help for exponential: exponential(Real(lambda),Real(x)) Returns the probability density at x of the exponential law of parameter lambda. - See also: 1/ exponential_cdf 2/ exponential_icdf 3/ randvector 4/ ranm + See also: 1/ exponential_cdf 2/ exponential_icdf 3/ randvector 4/ ranm Ex1:exponential(2.1,3.5) Ex2:exponential(2.1,0.5) Ex3: randvector(3,exponential,1.2) Ex4: ranm(4,3,exponential,1.2) - + ''' return GiacMethods['exponential'](self,*args) @@ -5347,10 +5347,10 @@ cdef class GiacMethods_base: Help for exponential_cdf: exponential_cdf(Real(lambda),Real(x0),[Real(y0)]) Returns the probability that a exponential random variable of parameter lambda is less than x0 (or between x0 and y0). - See also: 1/ exponentiald 2/ exponential_icdf + See also: 1/ exponentiald 2/ exponential_icdf Ex1:exponential_cdf(4.2,2.1) Ex2:exponential_cdf(4.2,2.1,3.2) - + ''' return GiacMethods['exponential_cdf'](self,*args) @@ -5359,10 +5359,10 @@ cdef class GiacMethods_base: Help for exponential_icdf: exponential_icdf(Real(lambda),Real(x0),Real(p)) Returns h such that the probability that a exponential random variable of parameter lambda is less than h is p (0<=p<=1). - See also: 1/ exponential_cdf 2/ exponentiald + See also: 1/ exponential_cdf 2/ exponentiald Ex1:exponential_icdf(4.2,0.95) Ex2:exponential_icdf(4.2,0.6) - + ''' return GiacMethods['exponential_icdf'](self,*args) @@ -5371,10 +5371,10 @@ cdef class GiacMethods_base: Help for exponential_regression: exponential_regression(Lst||Mtrx(A),[Lst]) Returns the coefficients (a,b) of y=b*a^x : it is the best exponential which approx the points where the coordinates are the rows of A (or the 2 lists). - See also: 1/ logarithmic_regression + See also: 1/ logarithmic_regression Ex1:exponential_regression([[1.0,2.0],[0.0,1.0],[4.0,7.0]]) Ex2:exponential_regression([1.0,0.0,4.0],[2.0,1.0,7.0]) - + ''' return GiacMethods['exponential_regression'](self,*args) @@ -5383,10 +5383,10 @@ cdef class GiacMethods_base: Help for exponential_regression_plot: exponential_regression_plot(Lst||Mtrx(A),[Lst]) Returns the plot of y=b*a^x : it is the best exponential which approx the points where the coordinates are the rows of A (or the 2 lists). - See also: 1/ logarithmic_regression_plot + See also: 1/ logarithmic_regression_plot Ex1:exponential_regression_plot([[1.0,2.0],[0.0,1.0],[4.0,7.0]]) Ex2:exponential_regression_plot([1.0,0.0,4.0],[2.0,1.0,7.0]) - + ''' return GiacMethods['exponential_regression_plot'](self,*args) @@ -5395,12 +5395,12 @@ cdef class GiacMethods_base: Help for exponentiald: exponentiald(Real(lambda),Real(x)) Returns the probability density at x of the exponential law of parameter lambda. - See also: 1/ exponential_cdf 2/ exponential_icdf 3/ randvector 4/ ranm + See also: 1/ exponential_cdf 2/ exponential_icdf 3/ randvector 4/ ranm Ex1:exponentiald(2.1,3.5) Ex2:exponentiald(2.1,0.5) Ex3: randvector(3,exponential,1.2) Ex4: ranm(4,3,exponential,1.2) - + ''' return GiacMethods['exponentiald'](self,*args) @@ -5409,10 +5409,10 @@ cdef class GiacMethods_base: Help for exponentiald_cdf: exponentiald_cdf(Real(lambda),Real(x0),[Real(y0)]) Returns the probability that a exponential random variable of parameter lambda is less than x0 (or between x0 and y0). - See also: 1/ exponentiald 2/ exponential_icdf + See also: 1/ exponentiald 2/ exponential_icdf Ex1:exponentiald_cdf(4.2,2.1) Ex2:exponentiald_cdf(4.2,2.1,3.2) - + ''' return GiacMethods['exponentiald_cdf'](self,*args) @@ -5421,10 +5421,10 @@ cdef class GiacMethods_base: Help for exponentiald_icdf: exponentiald_icdf(Real(lambda),Real(x0),Real(p)) Returns h such that the probability that a exponential random variable of parameter lambda is less than h is p (0<=p<=1). - See also: 1/ exponential_cdf 2/ exponentiald + See also: 1/ exponential_cdf 2/ exponentiald Ex1:exponentiald_icdf(4.2,0.95) Ex2:exponentiald_icdf(4.2,0.6) - + ''' return GiacMethods['exponentiald_icdf'](self,*args) @@ -5433,9 +5433,9 @@ cdef class GiacMethods_base: Help for export_graph: export_graph(Graph(G),Str("path/to/graphname")) Writes G to the file 'graphname.dot' in directory 'path/to' in dot format, returns 1 on success and 0 on failure. - See also: 1/ import_graph + See also: 1/ import_graph Ex1:export_graph(complete_graph(5),"K5") - + ''' return GiacMethods['export_graph'](self,*args) @@ -5444,11 +5444,11 @@ cdef class GiacMethods_base: Help for export_mathml: export_mathml(Expr,[display||content]) Converts an expression to presentation or content MathML block. - See also: 1/ mathml 2/ latex + See also: 1/ mathml 2/ latex Ex1:export_mathml(a+2*b) Ex2:export_mathml(a+2*b,display) Ex3:export_mathml(a+2*b,content) - + ''' return GiacMethods['export_mathml'](self,*args) @@ -5457,10 +5457,10 @@ cdef class GiacMethods_base: Help for expovariate: expovariate(Real(a)) Returns a random real according to the exponential distribution with parameter a>0. - See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector + See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector Ex1:expovariate(1) Ex2:expovariate(2) - + ''' return GiacMethods['expovariate'](self,*args) @@ -5469,12 +5469,12 @@ cdef class GiacMethods_base: Help for expr: expr(Str) Instruction transforming a string into a command or into a number. - See also: 1/ string + See also: 1/ string Ex1:expr("ifactor(54)") Ex2:expr("123") Ex3:expr("0123") Ex4:expr(sin,x) - + ''' return GiacMethods['expr'](self,*args) @@ -5483,13 +5483,13 @@ cdef class GiacMethods_base: Help for extend: extend(Lst,Lst||Seq,Seq||Str,Str||Mtrx,Mtrx) Concatenates two lists or two strings or two sequences or 2 matrices; L:=concat(L,L1) or L.concat(L1). - See also: 1/ append 2/ cat 3/ semi_augment 4/ border 5/ + + See also: 1/ append 2/ cat 3/ semi_augment 4/ border 5/ + Ex1:extend([1,2],[3,4,5]) Ex2:extend("bon","jour") Ex3:extend([[1,2],[3,4]],[[4,5,6],[6,7,8]]) Ex4: L:=[1,2];L.concat([3,4,5]) Ex5: S:="abcd";S.concat("efghi") - + ''' return GiacMethods['extend'](self,*args) @@ -5498,11 +5498,11 @@ cdef class GiacMethods_base: Help for extract_measure: extract_measure(Var) extract_measure gives as answer the value calculated by the argument. - See also: 1/ angleatraw 2/ distanceatraw 3/ angleat 4/ distanceat 5/ slopeatraw 6/ areaatraw 7/ perimeteratraw 8/ slopeat 5/ areaat 10/ perimeterat + See also: 1/ angleatraw 2/ distanceatraw 3/ angleat 4/ distanceat 5/ slopeatraw 6/ areaatraw 7/ perimeteratraw 8/ slopeat 5/ areaat 10/ perimeterat Ex1:extract_measure(distanceatraw(0,1+i,(1+i)/2)) Ex2:extract_measure(angleatraw(0,1,1+i,1)) Ex3: A:=point(0);B:=point(1+i);a:=distanceatraw(A,B,(1+i)/2);extract_measure(a) - + ''' return GiacMethods['extract_measure'](self,*args) @@ -5556,7 +5556,7 @@ cdef class GiacMethods_base: Ex43:extrema(4x*y-x^4-y^4,[x,y]) Ex44:extrema(x*sin(y),[x,y]) Ex45:extrema(x^4+y^4,[x,y]) - Ex46:extrema(x^3*y-x*y^3,[x,y]) + Ex46:extrema(x^3*y-x*y^3,[x,y]) Ex47:extrema(x^2+y^2+z^2,x^4+y^4+z^4=1,[x,y,z]) Ex48:extrema(3x+3y+8z,[x^2+z^2=1,y^2+z^2=1],[x,y,z]) Ex49:extrema(2x^2+y^2,x^4-x^2+y^2=5,[x,y]) @@ -5565,10 +5565,10 @@ cdef class GiacMethods_base: Ex52:extrema(ln(x)+2*ln(y)+3*ln(z)+4*ln(u)+5*ln(v),x+y+z+u+v=1,[x,y,z,u,v]) Ex53:extrema(x*y*z,-2x^3+15x^2*y+11y^3-24y=0,[x,y,z]) Ex54:extrema(x+y-exp(x)-exp(y)-exp(x+y),[x,y]) - Ex55:extrema(x^2*sin(y)-4*x,[x,y]) + Ex55:extrema(x^2*sin(y)-4*x,[x,y]) Ex56:extrema((1+y*sinh(x))/(1+y^2+tanh(x)^2),[x,y]) Ex57:extrema((1+y*sinh(x))/(1+y^2+tanh(x)^2),y=x^2,[x,y]) - + ''' return GiacMethods['extrema'](self,*args) @@ -5577,11 +5577,11 @@ cdef class GiacMethods_base: Help for ezgcd: ezgcd(Poly,Poly) GCD of 2 polynomials with at least 2 variables, with the ezgcd algorithm. - See also: 1/ gcd 2/ modgcd 3/ heugcd 4/ psrgcd + See also: 1/ gcd 2/ modgcd 3/ heugcd 4/ psrgcd Ex1:ezgcd(x^2-2*xy+y^2-1,x-y) Ex2:ezgcd((x+1)^4-y^4,(x+1-y)^2) Ex3:ezgcd((x+y-1)*(x+y+1),(x+y+1)^2) - + ''' return GiacMethods['ezgcd'](self,*args) @@ -5590,10 +5590,10 @@ cdef class GiacMethods_base: Help for f2nd: f2nd(Frac or RatFrac) Returns the list built with the numerator and the denominator of the simplified fraction. - See also: 1/ simp2 2/ numer 3/ denom 4/ getNum 5/ getDenom + See also: 1/ simp2 2/ numer 3/ denom 4/ getNum 5/ getDenom Ex1:f2nd(42/12) Ex2:f2nd((x^2+2*x+1)/(x^2-1)) - + ''' return GiacMethods['f2nd'](self,*args) @@ -5602,10 +5602,10 @@ cdef class GiacMethods_base: Help for fMax: fMax(Expr,[Var]) Returns the abscissa of the maximum of the expression. - See also: 1/ fMin + See also: 1/ fMin Ex1:fMax(-x^2+2*x+1,x) Ex2:fMax(-x^2+2*x+1,x=1..2) - + ''' return GiacMethods['fMax'](self,*args) @@ -5614,12 +5614,12 @@ cdef class GiacMethods_base: Help for fMin: fMin(Expr,[Var]) Returns the abscissa of the minimum of the expression. - See also: 1/ fMax + See also: 1/ fMax Ex1:fMin(x^2-2*x+1,x) Ex2:fMin(x^2-2*x+1,x=1..2) Ex3:fMin((x-3)^2+(y-5)^2+1,[],[x,y],[1,1]) Ex4:fMin((x-3)^2+(y-5)^2+1,[x+y^2=1],[x,y],[1,1]) - + ''' return GiacMethods['fMin'](self,*args) @@ -5628,13 +5628,13 @@ cdef class GiacMethods_base: Help for fPart: fPart(Real||LstReal) Returns the fractional part (if x<0 then frac(x)+floor(x)+1=x else frac(x)+floor(x)=x). - See also: 1/ floor 2/ iPart 3/ trunc + See also: 1/ floor 2/ iPart 3/ trunc Ex1:fPart(1/2) Ex2:fPart(-1/2) Ex3:fPart(1.2) Ex4:fPart(-1.2) Ex5:fPart([3.4,sqrt(2)]) - + ''' return GiacMethods['fPart'](self,*args) @@ -5643,10 +5643,10 @@ cdef class GiacMethods_base: Help for faces: faces(Polygon or Polyedr(P)) Returns the list of the faces (1 face=matrix(n,3) where the n rows are the n vertices of the face) of the polyhedron P. - See also: 1/ polyhedron + See also: 1/ polyhedron Ex1:faces(polyhedron([0,0,0],[0,5,0],[0,0,5],[1,2,6])) Ex2:faces(polyhedron([0,0,0],[0,5,0],[0,0,5],[1,2,6]))[2] - + ''' return GiacMethods['faces'](self,*args) @@ -5655,10 +5655,10 @@ cdef class GiacMethods_base: Help for facteurs_premiers: facteurs_premiers(Intg(a) or LstIntg) Returns the list of prime factors of an integer (each factor is followed by its multiplicity). - See also: 1/ ifactor 2/ factors + See also: 1/ ifactor 2/ factors Ex1:facteurs_premiers(36) Ex2:facteurs_premiers([36,52]) - + ''' return GiacMethods['facteurs_premiers'](self,*args) @@ -5667,11 +5667,11 @@ cdef class GiacMethods_base: Help for factor: factor(Expr) Factors a polynomial. - See also: 1/ ifactor 2/ cfactor 3/ partfrac 4/ normal + See also: 1/ ifactor 2/ cfactor 3/ partfrac 4/ normal Ex1:factor(x^4-1) Ex2:factor(x^4-4,sqrt(2)) Ex3:factor(x^4+12*x^3+54*x^2+108*x+81) - + ''' return GiacMethods['factor'](self,*args) @@ -5680,10 +5680,10 @@ cdef class GiacMethods_base: Help for factor_xn: factor_xn(Poly(P)) Factors x^n in P (n=degree of polynomial P). - See also: 1/ ifactor 2/ partfrac 3/ normal + See also: 1/ ifactor 2/ partfrac 3/ normal Ex1:factor_xn(x^4-1) Ex2:factor_xn(x^4+12*x^3+54*x^2+108*x+81) - + ''' return GiacMethods['factor_xn'](self,*args) @@ -5692,10 +5692,10 @@ cdef class GiacMethods_base: Help for factorial: factorial(Intg(n)|| Real(a)) factorial(n)=n!. For non-integers, factorial(a)=a! = G(a + 1). This calculates the Gamma function. - See also: 1/ comb 2/ perm + See also: 1/ comb 2/ perm Ex1:factorial(4) Ex2:factorial(1.2) - + ''' return GiacMethods['factorial'](self,*args) @@ -5704,11 +5704,11 @@ cdef class GiacMethods_base: Help for factoriser: factoriser(Expr) Factors a polynomial. - See also: 1/ ifactor 2/ cfactor 3/ partfrac 4/ normal + See also: 1/ ifactor 2/ cfactor 3/ partfrac 4/ normal Ex1:factoriser(x^4-1) Ex2:factoriser(x^4-4,sqrt(2)) Ex3:factoriser(x^4+12*x^3+54*x^2+108*x+81) - + ''' return GiacMethods['factoriser'](self,*args) @@ -5717,10 +5717,10 @@ cdef class GiacMethods_base: Help for factoriser_entier: factoriser_entier(Intg(a)) Factorization of an integer into prime factors. - See also: 1/ factor 2/ ecm_factor + See also: 1/ factor 2/ ecm_factor Ex1:factoriser_entier(50) Ex2:factoriser_entier(123456789) - + ''' return GiacMethods['factoriser_entier'](self,*args) @@ -5729,11 +5729,11 @@ cdef class GiacMethods_base: Help for factoriser_sur_C: factoriser_sur_C(Expr) Factorization of the expression in ℂ (on the Gaussian integers if there are more than 2 variables). - See also: 1/ factor + See also: 1/ factor Ex1:factoriser_sur_C(x^2*y+y) Ex2:factoriser_sur_C(x^2*y^2+y^2+4*x^2+4) Ex3:factoriser_sur_C(x^2*y^2+y^2+2*x^2+2) - + ''' return GiacMethods['factoriser_sur_C'](self,*args) @@ -5742,10 +5742,10 @@ cdef class GiacMethods_base: Help for factors: factors(Poly or LstPoly) Returns the list of prime factors of a polynomial (each factor is followed by its multiplicity). - See also: 1/ factor 2/ ifactors + See also: 1/ factor 2/ ifactors Ex1:factors(x^4-1) Ex2:factors([x^2,x^2-1]) - + ''' return GiacMethods['factors'](self,*args) @@ -5754,9 +5754,9 @@ cdef class GiacMethods_base: Help for fadeev: fadeev(Opt) Option of the pcar or charpoly command to specify the algorithm. - See also: 1/ pcar + See also: 1/ pcar Ex1: pcar([[4,1,-2],[1,2,-1],[2,1,0]],fadeev) - + ''' return GiacMethods['fadeev'](self,*args) @@ -5765,9 +5765,9 @@ cdef class GiacMethods_base: Help for false: false() Boolean equal to false or 0. - See also: 1/ true + See also: 1/ true Ex1: a:=false - + ''' return GiacMethods['false'](self,*args) @@ -5776,14 +5776,14 @@ cdef class GiacMethods_base: Help for falsepos_solver: falsepos_solver(Opt) Argument for fsolve giving the method for solving a numerical equation. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve(cos(x)=x,x,0..1,bisection_solver) Ex2: fsolve(cos(x)=x,x,0..1,brent_solver) Ex3: fsolve(cos(x)=x,x,0..1,falsepos_solver) Ex4: fsolve(cos(x)=x,x,0,newton_solver) Ex5: fsolve(cos(x)=x,x,0,secant_solver) Ex6: fsolve(cos(x)=x,x,0,steffenson_solver) - + ''' return GiacMethods['falsepos_solver'](self,*args) @@ -5792,9 +5792,9 @@ cdef class GiacMethods_base: Help for fclose: fclose(File(f)) Closes the file f. - See also: 1/ fprint 2/ fopen + See also: 1/ fprint 2/ fopen Ex1:fclose(f) - + ''' return GiacMethods['fclose'](self,*args) @@ -5803,9 +5803,9 @@ cdef class GiacMethods_base: Help for fcoeff: fcoeff(Lst(root||pole,order)) Returns the polynomial described by the list (root or pole, order). - See also: 1/ pcoeff 2/ froot 3/ proot + See also: 1/ pcoeff 2/ froot 3/ proot Ex1:fcoeff([1,2,0,1,3,-1]) - + ''' return GiacMethods['fcoeff'](self,*args) @@ -5814,13 +5814,13 @@ cdef class GiacMethods_base: Help for fdistrib: fdistrib(Expr) Full distribution of * and / over + and -. - See also: 1/ texpand 2/ normal 3/ simplify 4/ ratnormal + See also: 1/ texpand 2/ normal 3/ simplify 4/ ratnormal Ex1:fdistrib((x+y)*(z+1)) Ex2:fdistrib((a+b+c)/d) Ex3:fdistrib((y+x)*(z+y)*(x+z)) Ex4:fdistrib((x+3)^4) Ex5:fdistrib((2*x-2*1)*(x^2-3*x+2)+(x^2-2*x+3)*(2*x-3*1)) - + ''' return GiacMethods['fdistrib'](self,*args) @@ -5829,10 +5829,10 @@ cdef class GiacMethods_base: Help for fft: fft(Vect or (Vect(L),Intg(a),Intg(p)) Fast Fourier Transform in ℝ or in the field ℤ/pℤ, with a as primitive n-th root of 1 (n=size(L)). - See also: 1/ ifft + See also: 1/ ifft Ex1:fft([1,2,3,4,0,0,0,0]) Ex2:fft(ranm(128),22798,35969) - + ''' return GiacMethods['fft'](self,*args) @@ -5841,13 +5841,13 @@ cdef class GiacMethods_base: Help for fieldplot: fieldplot(Expr,VectVar,[Opt]) fieldplot(f(t,y),[t,y]) draws the plotfield of the diff equation y'=f(t,y). - See also: 1/ interactive_plotode 2/ odeplot 3/ odesolve 4/ desolve + See also: 1/ interactive_plotode 2/ odeplot 3/ odesolve 4/ desolve Ex1:fieldplot(sin(t*y),[t=-5..5,y=-3..3],xstep=0.5,ystep=0.5) Ex2:fieldplot(-t*y,[t,y]) Ex3:fieldplot(-t*y,[t,y],normalize) Ex4:fieldplot(-t*y,[t,y],normalize,xstep=0.5,ystep=0.5) Ex5:fieldplot(-t*y,[t=-6.868..6.868,y=-6.868..6.868],normalize) - + ''' return GiacMethods['fieldplot'](self,*args) @@ -5856,13 +5856,13 @@ cdef class GiacMethods_base: Help for find: find(Expr,Vect) List of positions of an object in a list, a string or a set. - See also: 1/ index 2/ member + See also: 1/ index 2/ member Ex1:find(1,[3,x,1,2,1,3]) Ex2:find(2,[0,1,3,2,4,2,5])[0] Ex3:find("a","abracadabrant") Ex4:find("ab","abracadabrant") Ex5:find(1,%{4,3,1,2%}) - + ''' return GiacMethods['find'](self,*args) @@ -5871,11 +5871,11 @@ cdef class GiacMethods_base: Help for find_cycles: find_cycles(Graph(G,[length=k||l..u])) Returns the list of elementary cycles of the digraph G. If option "length" is specified, only cycles of length k resp. of length between l and u are returned. - See also: 1/ is_acyclic + See also: 1/ is_acyclic Ex1:find_cycles(digraph(%{[1,2],[1,3],[3,1],[1,4],[2,3],[4,3],[4,5],[5,3],[5,6],[7,6],[8,6],[8,7]%})) Ex2:find_cycles(digraph(%{[1,2],[1,3],[3,1],[1,4],[2,3],[4,3],[4,5],[5,3],[5,6],[7,6],[8,6],[8,7]%}),length=3) Ex3:find_cycles(digraph(%{[1,2],[1,3],[3,1],[1,4],[2,3],[4,3],[4,5],[5,3],[5,6],[7,6],[8,6],[8,7]%}),length=3..4) - + ''' return GiacMethods['find_cycles'](self,*args) @@ -5884,9 +5884,9 @@ cdef class GiacMethods_base: Help for findhelp: findhelp(Cmd) Returns help about the command (if ? is infixed see when) . - See also: 1/ ifte 2/ when + See also: 1/ ifte 2/ when Ex1:findhelp(ifactor) - + ''' return GiacMethods['findhelp'](self,*args) @@ -5895,12 +5895,12 @@ cdef class GiacMethods_base: Help for fisher: fisher(Intg(n),Intg(m),Real(x0)) Returns the probability density of the Fisher-Snedecor law (n and m are the numbers of degrees of freedom). - See also: 1/ fisher_cdf 2/ fisher_icdf 3/ randvector 4/ ranm + See also: 1/ fisher_cdf 2/ fisher_icdf 3/ randvector 4/ ranm Ex1:fisher(4,10,2.1) Ex2:fisher(4,4,2.1) Ex3: randvector(5,fisher,4,6) Ex4: ranm(2,3,fisher,4,6) - + ''' return GiacMethods['fisher'](self,*args) @@ -5909,10 +5909,10 @@ cdef class GiacMethods_base: Help for fisher_cdf: fisher_cdf(Intg(n),Intg(m),Real(x0)) Returns the probability that a Fisher-Snedecor random variable is less than x0 (n and m are the numbers of degrees of freedom). - See also: 1/ UTPF 2/ fisher_icdf 3/ fisherd + See also: 1/ UTPF 2/ fisher_icdf 3/ fisherd Ex1:fisher_cdf(4,4,2.1) Ex2:fisher_cdf(4,10,3.5) - + ''' return GiacMethods['fisher_cdf'](self,*args) @@ -5921,10 +5921,10 @@ cdef class GiacMethods_base: Help for fisher_icdf: fisher_icdf(Intg(n),Intg(m),Real(p)) Returns h such as the probability that a Fisher-Snedecor random variable is less than h is p (n and m are the numbers of degrees of freedom and 0<=p<=1). - See also: 1/ fisher_cdf 2/ fisherd + See also: 1/ fisher_cdf 2/ fisherd Ex1:fisher_icdf(4,10,0.95) Ex2:fisher_icdf(4,10,0.05) - + ''' return GiacMethods['fisher_icdf'](self,*args) @@ -5933,12 +5933,12 @@ cdef class GiacMethods_base: Help for fisherd: fisherd(Intg(n),Intg(m),Real(x0)) Returns the probability density of the Fisher-Snedecor law (n and m are the numbers of degrees of freedom). - See also: 1/ fisher_cdf 2/ fisher_icdf 3/ randvector 4/ ranm + See also: 1/ fisher_cdf 2/ fisher_icdf 3/ randvector 4/ ranm Ex1:fisherd(4,10,2.1) Ex2:fisherd(4,4,2.1) Ex3: randvector(5,fisher,4,6) Ex4: ranm(2,3,fisher,4,6) - + ''' return GiacMethods['fisherd'](self,*args) @@ -5947,10 +5947,10 @@ cdef class GiacMethods_base: Help for fisherd_cdf: fisherd_cdf(Intg(n),Intg(m),Real(x0)) Returns the probability that a Fisher-Snedecor random variable is less than x0 (n and m are the numbers of degrees of freedom). - See also: 1/ UTPF 2/ fisher_icdf 3/ fisherd + See also: 1/ UTPF 2/ fisher_icdf 3/ fisherd Ex1:fisherd_cdf(4,4,2.1) Ex2:fisherd_cdf(4,10,3.5) - + ''' return GiacMethods['fisherd_cdf'](self,*args) @@ -5959,10 +5959,10 @@ cdef class GiacMethods_base: Help for fisherd_icdf: fisherd_icdf(Intg(n),Intg(m),Real(p)) Returns h such as the probability that a Fisher-Snedecor random variable is less than h is p (n and m are the numbers of degrees of freedom and 0<=p<=1). - See also: 1/ fisher_cdf 2/ fisherd + See also: 1/ fisher_cdf 2/ fisherd Ex1:fisherd_icdf(4,10,0.95) Ex2:fisherd_icdf(4,10,0.05) - + ''' return GiacMethods['fisherd_icdf'](self,*args) @@ -5971,11 +5971,11 @@ cdef class GiacMethods_base: Help for fitdistr: fitdistr(Lst(L),Fnc(D)) Returns the distribution of type D which fits most closely to the i.i.d. samples in the list L. - See also: 1/ normald 2/ poisson 3/ exponentiald 4/ geometric 5/ gammad 6/ betad 7/ cauchyd 8/ weibulld 9/ sample 10/ randvector 11/ randvar + See also: 1/ normald 2/ poisson 3/ exponentiald 4/ geometric 5/ gammad 6/ betad 7/ cauchyd 8/ weibulld 9/ sample 10/ randvector 11/ randvar Ex1:fitdistr(randvector(1000,weibulld,1/2,1),weibull) Ex2: X:=randvar(normal,stddev=9.5):;Y:=randvar(normal,stddev=1.5):;S:=sample(eval(X/Y,0),1000):;Z:=fitdistr(S,cauchy) Ex3: X:=randvar(normal,mean=5,variance=2):;S:=sample(exp(X),1000):;fitdistr(log(S),normal) - + ''' return GiacMethods['fitdistr'](self,*args) @@ -5984,9 +5984,9 @@ cdef class GiacMethods_base: Help for flatten: flatten(Lst) Recursively flatten a list containing lists. - See also: 1/ mat2list + See also: 1/ mat2list Ex1:flatten([[1,[2,3],4],[5,6]]) - + ''' return GiacMethods['flatten'](self,*args) @@ -5995,12 +5995,12 @@ cdef class GiacMethods_base: Help for float2rational: float2rational(Expr) Converts the expression to a rational or real expression. - See also: 1/ + See also: 1/ Ex1:float2rational(-2) Ex2:float2rational(1.5) Ex3:float2rational(1.4141) Ex4:float2rational(0.156381102937) - + ''' return GiacMethods['float2rational'](self,*args) @@ -6009,10 +6009,10 @@ cdef class GiacMethods_base: Help for floor: floor(Real or Cplx) Returns the greatest integer <= to the argument. - See also: 1/ round 2/ ceil 3/ iPart 4/ trunc + See also: 1/ round 2/ ceil 3/ iPart 4/ trunc Ex1:floor(-2.5) Ex2:floor(2.5-4.2*i) - + ''' return GiacMethods['floor'](self,*args) @@ -6021,10 +6021,10 @@ cdef class GiacMethods_base: Help for flow_polynomial: flow_polynomial(Graph(G),[Var(x)]) Returns the flow polynomial [or its value at point x] of undirected unweighted graph G. - See also: 1/ chromatic_polynomial 2/ reliability_polynomial 3/ tutte_polynomial + See also: 1/ chromatic_polynomial 2/ reliability_polynomial 3/ tutte_polynomial Ex1:flow_polynomial(graph("tetrahedron")) Ex2:flow_polynomial(graph("tetrahedron"),5) - + ''' return GiacMethods['flow_polynomial'](self,*args) @@ -6034,7 +6034,7 @@ cdef class GiacMethods_base: fmod(Real(a),Real(b)) Returns a mod b for a and b floats. Ex1:fmod(10.0,pi) - + ''' return GiacMethods['fmod'](self,*args) @@ -6043,9 +6043,9 @@ cdef class GiacMethods_base: Help for foldl: foldl(op,id,Seq(r1,r2,...)) Returns the composition of the binary operator or function op, with an identity or initial value id onto its arguments r1, r2, ..., associating from the left. - See also: 1/ apply 2/ foldr 3/ map + See also: 1/ apply 2/ foldr 3/ map Ex1:foldl(F,init,a,b,c) - + ''' return GiacMethods['foldl'](self,*args) @@ -6054,9 +6054,9 @@ cdef class GiacMethods_base: Help for foldr: foldr(op,id,Seq(r1,r2,...)) Returns the composition of the binary operator or function op, with an identity or initial value id onto its arguments r1, r2, ..., associating from the right. - See also: 1/ apply 2/ foldl 3/ map + See also: 1/ apply 2/ foldl 3/ map Ex1:foldr(F,init,a,b,c) - + ''' return GiacMethods['foldr'](self,*args) @@ -6065,13 +6065,13 @@ cdef class GiacMethods_base: Help for fonction_derivee: fonction_derivee(Fnc(f)) Returns the derivative function of the function f. - See also: 1/ diff 2/ ' 3/ @ + See also: 1/ diff 2/ ' 3/ @ Ex1:fonction_derivee(sin+id) Ex2:fonction_derivee(sq@sin+id) Ex3:fonction_derivee(ln)(x,y) Ex4:fonction_derivee(ln)([x,y]) - Ex5: (function_diff @@3)(ln)('x') - + Ex5: (function_diff @@3)(ln)('x') + ''' return GiacMethods['fonction_derivee'](self,*args) @@ -6080,10 +6080,10 @@ cdef class GiacMethods_base: Help for forward: forward(NULL or Real(n)) The turtle takes n steps forward (by default n=10). - See also: 1/ recule 2/ saute + See also: 1/ recule 2/ saute Ex1: avance 30 Ex2:forward(30) - + ''' return GiacMethods['forward'](self,*args) @@ -6092,7 +6092,7 @@ cdef class GiacMethods_base: Help for fourier: fourier(Expr(f(x)),[Var(x),[Var(s)]]) Returns the Fourier transform F(s) of f(x). - See also: 1/ ifourier 2/ fourier_cn 3/ fft + See also: 1/ ifourier 2/ fourier_cn 3/ fft Ex1:fourier(x/(x^3-19x+30),x,s) Ex2:fourier((x^2+1)/(x^2-1),x,s) Ex3:fourier(3x^2+2x+1,x,s) @@ -6109,7 +6109,7 @@ cdef class GiacMethods_base: Ex14:fourier(Gamma(1+i*x/3),x,s) Ex15:fourier(atan(x/4)/x,x,s) Ex16:fourier(piecewise(x<=-1,exp(x+1),x<=1,1,exp(2-2x)),x,s) - + ''' return GiacMethods['fourier'](self,*args) @@ -6118,10 +6118,10 @@ cdef class GiacMethods_base: Help for fourier_an: fourier_an(Expr(f(x)),Var(x),Period(T),Intg(n),Real(a)) Returns the n-th Fourier coefficient an=2/T*integrate(f(x)*cos(2*pi*n*x/T),a,a+T). - See also: 1/ fourier_cn 2/ fourier_bn 3/ assume + See also: 1/ fourier_cn 2/ fourier_bn 3/ assume Ex1:fourier_an(x^2,x,2,0,-1) Ex2:fourier_an(x^2,x,2,n,-1) - + ''' return GiacMethods['fourier_an'](self,*args) @@ -6130,10 +6130,10 @@ cdef class GiacMethods_base: Help for fourier_bn: fourier_bn(Expr(f(x)),Var(x),Period(T),Intg(n),Real(a)) Returns the n-th Fourier coefficient bn=2/T*integrate(f(x)*sin(2*pi*n*x/T),a,a+T). - See also: 1/ fourier_cn 2/ fourier_an 3/ assume + See also: 1/ fourier_cn 2/ fourier_an 3/ assume Ex1:fourier_bn(x^2,x,2,0,-1) Ex2:fourier_bn(x^2,x,2,n,-1) - + ''' return GiacMethods['fourier_bn'](self,*args) @@ -6142,10 +6142,10 @@ cdef class GiacMethods_base: Help for fourier_cn: fourier_cn(Expr(f(x)),Var(x),Period(T),Intg(n),Real(a)) Returns the n-th Fourier coefficient cn=1/T*integrate(f(x)*exp(-2*i*pi*n*x/T),a,a+T). - See also: 1/ fourier_an 2/ fourier_bn 3/ assume + See also: 1/ fourier_an 2/ fourier_bn 3/ assume Ex1:fourier_cn(x^2,x,2,0,-1) Ex2:fourier_cn(x^2,x,2,n,-1) - + ''' return GiacMethods['fourier_cn'](self,*args) @@ -6154,11 +6154,11 @@ cdef class GiacMethods_base: Help for fprint: fprint(File(f),Var,[Var,Var...]) Writes in the file f some data. - See also: 1/ fopen 2/ fclose + See also: 1/ fopen 2/ fclose Ex1:fprint(f,x+1,"2") Ex2:fprint(f,"blabla") Ex3:fprint(f,Unquoted,"blabla") - + ''' return GiacMethods['fprint'](self,*args) @@ -6167,13 +6167,13 @@ cdef class GiacMethods_base: Help for frac: frac(Real||LstReal) Returns the fractional part (if x<0 then frac(x)+floor(x)+1=x else frac(x)+floor(x)=x). - See also: 1/ floor 2/ iPart 3/ trunc + See also: 1/ floor 2/ iPart 3/ trunc Ex1:frac(1/2) Ex2:frac(-1/2) Ex3:frac(1.2) Ex4:frac(-1.2) Ex5:frac([3.4,sqrt(2)]) - + ''' return GiacMethods['frac'](self,*args) @@ -6182,9 +6182,9 @@ cdef class GiacMethods_base: Help for fracmod: fracmod(Expr(Xpr),Intg(n)) Returns the fraction a/b such as b*Xpr=a mod n, -sqrt(n)/20),Real(b>0),Real(x>=0)) Returns the probability density of the Gamma law (=x^(a-1)*exp(-b*x)*b^a/Gamma(a)). - See also: 1/ gammad_cdf; 2/ gammad_icdf + See also: 1/ gammad_cdf; 2/ gammad_icdf Ex1:gammad(2.2,1.5,0.8) - + ''' return GiacMethods['gammad'](self,*args) @@ -6318,10 +6318,10 @@ cdef class GiacMethods_base: Help for gammad_cdf: gammad_cdf(Real(a>0),Real(b>0),Real(x0>=0),[Real(y0>=0)]) Returns the probability that a Gamma random variable (with a and b as parameters) is less than x0 or between x0 and y0. - See also: 1/ gammad 2/ gammad_icdf + See also: 1/ gammad 2/ gammad_icdf Ex1:gammad_cdf(2,1,2.96) Ex2:gammad_cdf(2,1,1.4,2.96) - + ''' return GiacMethods['gammad_cdf'](self,*args) @@ -6330,10 +6330,10 @@ cdef class GiacMethods_base: Help for gammad_icdf: gammad_icdf(Real(a>0),Real(b>0),Real(0<=p<=1)) Returns h such that the probability that a Gamma random variable is less than h is p (0<=p<=1). - See also: 1/ gammad_cdf 2/ gammad + See also: 1/ gammad_cdf 2/ gammad Ex1:gammad_icdf(2,1,0.95) Ex2:gammad_icdf(2,1,0.5) - + ''' return GiacMethods['gammad_icdf'](self,*args) @@ -6342,10 +6342,10 @@ cdef class GiacMethods_base: Help for gammavariate: gammavariate(Real(a),Real(b)) Returns a random real according to the Gamma distribution with parameters a>0 and b>0. - See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector + See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector Ex1:gammavariate(1,2) Ex2:gammavariate(1.5,4) - + ''' return GiacMethods['gammavariate'](self,*args) @@ -6354,9 +6354,9 @@ cdef class GiacMethods_base: Help for gauss: gauss(Expr,VectVar) Splits a quadratic form as a sum/difference of squares. - See also: 1/ cholesky + See also: 1/ cholesky Ex1:gauss(x^2+2*a*x*y,[x,y]) - + ''' return GiacMethods['gauss'](self,*args) @@ -6365,12 +6365,12 @@ cdef class GiacMethods_base: Help for gauss15: gauss15(Opt) Option of the area command. - See also: 1/ area + See also: 1/ area Ex1: area(x^2,x=0..1,5,simpson) Ex2: area(x^2,x=0..1,5,rombergt) Ex3: area(x^2,x=0..1,5,rombergm) Ex4:gauss15(area(x^2,x=0..1,5,gauss15)) - + ''' return GiacMethods['gauss15'](self,*args) @@ -6379,12 +6379,12 @@ cdef class GiacMethods_base: Help for gauss_seidel_linsolve: gauss_seidel_linsolve([Real(omega)],Mtrx(A),Vect(b),Real(eps),[Int(maxiter)]) Resolution of a linear system A*X=b by the iterative Gauss-Seidel method (by defaut omega=1) or by relaxation method, with eps as error margin and a number of iterations less than maxiter. - See also: 1/ jacobi_linsolve 2/ linsolve + See also: 1/ jacobi_linsolve 2/ linsolve Ex1: a:=[[100,2],[2,100]];gauss_seidel_linsolve(a,[0,1],1e-12); - Ex2: a:=[[100,2],[2,100]];gauss_seidel_linsolve(table(a),[0,1],1e-12); + Ex2: a:=[[100,2],[2,100]];gauss_seidel_linsolve(table(a),[0,1],1e-12); Ex3: a:=[[100,2],[2,100]];gauss_seidel_linsolve(1.5,a,[0,1],1e-12); - Ex4: a:=[[100,2],[2,100]];gauss_seidel_linsolve(1.5,table(a),[0,1],1e-12); - + Ex4: a:=[[100,2],[2,100]];gauss_seidel_linsolve(1.5,table(a),[0,1],1e-12); + ''' return GiacMethods['gauss_seidel_linsolve'](self,*args) @@ -6393,9 +6393,9 @@ cdef class GiacMethods_base: Help for gaussian_window: gaussian_window(Lst,[Real(a)],[Interval(n1..n2)]) Applies the Gaussian windowing function with parameter 0= b (default a=0.2 and b=1/6.) - See also: 1/ gbasis 2/ gbasis_max_pairs 3/ gbasis_reinject + See also: 1/ gbasis 2/ gbasis_max_pairs 3/ gbasis_reinject Ex1:gbasis_reinject(0.1) Ex2:gbasis_reinject(0.1,0.05) - + ''' return GiacMethods['gbasis_reinject'](self,*args) @@ -6470,9 +6470,9 @@ cdef class GiacMethods_base: Help for gbasis_simult_primes: gbasis_simult_primes(Intg) Gbasis fine-tuning: maximal number of Groebner basis modulo a prime that are computed simultaneously to rebuild a Groebner basis over Q (default 16). Set it to a smaller value if short in memory. - See also: 1/ gbasis 2/ gbasis_max_pairs 3/ gbasis_reinject + See also: 1/ gbasis 2/ gbasis_max_pairs 3/ gbasis_reinject Ex1:gbasis_simult_primes(3) - + ''' return GiacMethods['gbasis_simult_primes'](self,*args) @@ -6481,13 +6481,13 @@ cdef class GiacMethods_base: Help for gcd: gcd((Intg(a) or Poly),(Intg(b) or Poly)) Returns the greatest common divisor of 2 polynomials of several variables or of 2 integers or of 2 rationals. - See also: 1/ lcm 2/ euler 2/ modgcd 3/ ezgcd 4/ psrgcd 5/ heugcd 6/ Gcd + See also: 1/ lcm 2/ euler 2/ modgcd 3/ ezgcd 4/ psrgcd 5/ heugcd 6/ Gcd Ex1:gcd(45,75) Ex2:gcd(15/7,50/9) Ex3:gcd(x^2-2*x+1,x^3-1) Ex4:gcd(t^2-2*t+1,t^2+t-2) Ex5:gcd((x^2-1)*(y^2-1)*z^2,x^3*y^3*z+(-(y^3))*z+x^3*z-z) - + ''' return GiacMethods['gcd'](self,*args) @@ -6496,12 +6496,12 @@ cdef class GiacMethods_base: Help for gcdex: gcdex((Poly or Lst),(Poly or Lst),[Var]) Extended greatest common divisor of 2 polynomials. - See also: 1/ gcd 2/ iegcd + See also: 1/ gcd 2/ iegcd Ex1:gcdex((x-1)^2,x^3-1) Ex2:gcdex((X-1)^2,X^3-1,X) Ex3:gcdex([1,-2,1],[1,0,0,-1]) Ex4:gcdex([1,-2,1],[1,-1,2]) - + ''' return GiacMethods['gcdex'](self,*args) @@ -6510,11 +6510,11 @@ cdef class GiacMethods_base: Help for genpoly: genpoly(Poly(P),Intg(b),Var) Returns the reconstruction of a n-variables polynomial Q(-b/2<=coef<=b/2) from an (n-1)-variable polynomial P and a base b (subst(Q,var=b)=P). - See also: 1/ + See also: 1/ Ex1:genpoly(15,4,x) Ex2:genpoly(7*y+5,6,x) Ex3:genpoly(7*y-5*z,10,x) - + ''' return GiacMethods['genpoly'](self,*args) @@ -6523,12 +6523,12 @@ cdef class GiacMethods_base: Help for geometric: geometric(Real(p),Intg(k)) Returns the value at k of the geometric law with parameter p (0cos(2*x)) Ex4:getType(1.414) - + ''' return GiacMethods['getType'](self,*args) @@ -6611,9 +6611,9 @@ cdef class GiacMethods_base: Help for get_edge_attribute: get_edge_attribute(Graph(G),Edge(e),Seq(tag1=value1,tag2=value2,..)) Returns the attributes tag1, tag2, ... assigned to edge e in G as a sequence of the corresponding values. - See also: 1/ discard_edge_attribute 2/ set_edge_attribute 3/ list_edge_attributes + See also: 1/ discard_edge_attribute 2/ set_edge_attribute 3/ list_edge_attributes Ex1:get_edge_attribute(cycle_graph(3),[1,2],"cost") - + ''' return GiacMethods['get_edge_attribute'](self,*args) @@ -6622,9 +6622,9 @@ cdef class GiacMethods_base: Help for get_edge_weight: get_edge_weight(Graph(G),Edge(e)) Returns the weight of the edge e in the weighted graph G. - See also: 1/ is_weighted 2/ make_weighted 3/ set_edge_weight 4/ weight_matrix + See also: 1/ is_weighted 2/ make_weighted 3/ set_edge_weight 4/ weight_matrix Ex1:get_edge_weight(graph(%{[[1,2],5],[[2,3],6]%}),[1,2]) - + ''' return GiacMethods['get_edge_weight'](self,*args) @@ -6633,9 +6633,9 @@ cdef class GiacMethods_base: Help for get_graph_attribute: get_graph_attribute(Graph(G),Seq(tag1=value1,tag2=value2,..)) Return the graph attributes tag1, tag2, ..., as a sequence of the corresponding values. - See also: 1/ discard_graph_attribute 2/ set_graph_attribute 3/ list_graph_attributes + See also: 1/ discard_graph_attribute 2/ set_graph_attribute 3/ list_graph_attributes Ex1:get_graph_attribute(cycle_graph(3),"name") - + ''' return GiacMethods['get_graph_attribute'](self,*args) @@ -6644,9 +6644,9 @@ cdef class GiacMethods_base: Help for get_vertex_attribute: get_vertex_attribute(Graph(G),Vrtx(v),Seq(tag1=value1,tag2=value2,..)) Returns the attributes tag1, tag2, ... assigned to vertex v in G as a sequence of the corresponding values. - See also: 1/ discard_vertex_attribute 2/ set_vertex_attribute 3/ list_vertex_attributes + See also: 1/ discard_vertex_attribute 2/ set_vertex_attribute 3/ list_vertex_attributes Ex1:get_vertex_attribute(cycle_graph(3),1,"supply") - + ''' return GiacMethods['get_vertex_attribute'](self,*args) @@ -6655,10 +6655,10 @@ cdef class GiacMethods_base: Help for girth: girth(Graph(G)) Returns the length of the shortest cycle in the undirected unweighted graph G. - See also: 1/ odd_girth + See also: 1/ odd_girth Ex1:girth(graph("petersen")) Ex2:girth(hypercube_graph(3)) - + ''' return GiacMethods['girth'](self,*args) @@ -6667,10 +6667,10 @@ cdef class GiacMethods_base: Help for gl_showaxes: gl_showaxes(Opt=Boolean) Option that shows or hides axes. - See also: 1/ switch_axes 2/ axes + See also: 1/ switch_axes 2/ axes Ex1: gl_showaxes=true;plot(sin(x)) - Ex2: gl_showaxes=false;plot(sin(x)) - + Ex2: gl_showaxes=false;plot(sin(x)) + ''' return GiacMethods['gl_showaxes'](self,*args) @@ -6679,9 +6679,9 @@ cdef class GiacMethods_base: Help for grad: grad(Expr(Xpr),LstVar) Returns the gradient of the expression Xpr. - See also: 1/ hessian + See also: 1/ hessian Ex1:grad(2*x^2*y-x*z^3,[x,y,z]) - + ''' return GiacMethods['grad'](self,*args) @@ -6690,10 +6690,10 @@ cdef class GiacMethods_base: Help for gramschmidt: gramschmidt(Basis(B),ScalarProd(Sp)) Returns an orthonormal basis of E with basis B for the scalar product Sp. - See also: 1/ + See also: 1/ Ex1:gramschmidt(-2) Ex2:gramschmidt([1,1+x],(p,q)->integrate(p*q,x,-1,1)) - + ''' return GiacMethods['gramschmidt'](self,*args) @@ -6702,7 +6702,7 @@ cdef class GiacMethods_base: Help for graph: graph([Lst(V)],[Set(E)],[Mtrx(A)],[options]) Create an (un)directed (un)weighted graph from vertices V, edges E, and/or adjacency or weight matrix A. All parameters are optional. - See also: 1/ digraph 2/ trail + See also: 1/ digraph 2/ trail Ex1:graph(5) Ex2:graph([a,b,c]) Ex3:graph([1,2,3],%{[1,2],[2,3],[3,1]%}) @@ -6710,7 +6710,7 @@ cdef class GiacMethods_base: Ex5:graph([a,b,c],[[0,2,0],[2,0,3],[0,3,0]]) Ex6:graph("petersen") Ex7:graph([[0,1,1,0],[1,0,0,1],[1,0,0,0],[0,1,0,0]]) - + ''' return GiacMethods['graph'](self,*args) @@ -6719,9 +6719,9 @@ cdef class GiacMethods_base: Help for graph_automorphisms: graph_automorphisms(Graph(G)) Returns the sequence of generators of Aut(G), the automorphism group of G. Each element is a permutation in the form of list of disjoint cycles. - See also: 1/ cycles2permu 2/ isomorphic_copy 3/ permute_vertices + See also: 1/ cycles2permu 2/ isomorphic_copy 3/ permute_vertices Ex1:graph_automorphisms(graph("petersen")) - + ''' return GiacMethods['graph_automorphisms'](self,*args) @@ -6730,10 +6730,10 @@ cdef class GiacMethods_base: Help for graph_charpoly: graph_charpoly(Graph(G),[Var(x)]) Returns the value p(x) of the characteristic polynomial p of G. If x is omitted, a list of coefficients of p is returned. - See also: 1/ graph_spectrum 2/ charpoly + See also: 1/ graph_spectrum 2/ charpoly Ex1:graph_charpoly(graph(%{[1,2],[2,3]%})) Ex2:graph_charpoly(graph("shrikhande")) - + ''' return GiacMethods['graph_charpoly'](self,*args) @@ -6742,9 +6742,9 @@ cdef class GiacMethods_base: Help for graph_complement: graph_complement(Graph(G)) Return the graph with the same vertex set as G, but whose edge (arc) set consists of the edges (arcs) not present in G. - See also: 1/ edges + See also: 1/ edges Ex1:graph_complement(cycle_graph(5)) - + ''' return GiacMethods['graph_complement'](self,*args) @@ -6753,9 +6753,9 @@ cdef class GiacMethods_base: Help for graph_diameter: graph_diameter(Graph(G)) Returns the maximum distance between a pair of vertices in G or +infinity if G is disconnected. - See also: 1/ allpairs_distance 2/ dijkstra 3/ shortest_path 4/ vertex_distance + See also: 1/ allpairs_distance 2/ dijkstra 3/ shortest_path 4/ vertex_distance Ex1:graph_diameter(graph("petersen")) - + ''' return GiacMethods['graph_diameter'](self,*args) @@ -6764,9 +6764,9 @@ cdef class GiacMethods_base: Help for graph_equal: graph_equal(Graph(G1),Graph(G2)) Returns true iff the input graphs G1 and G2 are equal, that is when the sets of vertices and edges of G1 and G2, as well as the orderings of vertices in both graphs, mutually coincide. If the graphs are weighted (they must both be (un)weighted and (un)directed), weights given to the same edge in two graphs must be equal. - See also: 1/ edges 2/ graph_vertices + See also: 1/ edges 2/ graph_vertices Ex1:graph_equal(graph([1,2,3],%{[1,2],[2,3],[3,1]%}),graph(trail(1,2,3,1))) - + ''' return GiacMethods['graph_equal'](self,*args) @@ -6775,9 +6775,9 @@ cdef class GiacMethods_base: Help for graph_join: graph_join(Graph(G),Graph(H)) Returns the graph obtained by connecting every vertex from G with every vertex from H. The vertex labels in the resulting graph are strings of form "1:u" and "2:v" where u and v are vertices from G and H, respectively. - See also: 1/ disjoint_union 2/ graph_union + See also: 1/ disjoint_union 2/ graph_union Ex1:graph_join(edges(graph_join(cycle_graph(3),graph(2)))) - + ''' return GiacMethods['graph_join'](self,*args) @@ -6786,9 +6786,9 @@ cdef class GiacMethods_base: Help for graph_power: graph_power(Graph(G),Intg(k)) Returns the k-th power of G, where two vertices are connected iff there exists a path of length at most k in the original graph. - See also: 1/ adjacency matrix 2/ graph_diameter 3/ shortest_path + See also: 1/ adjacency matrix 2/ graph_diameter 3/ shortest_path Ex1:graph_power(edges(graph_power(path_graph(5),3))) - + ''' return GiacMethods['graph_power'](self,*args) @@ -6797,10 +6797,10 @@ cdef class GiacMethods_base: Help for graph_rank: graph_rank(Graph(G),[Lst(E)]) Returns the graph rank of G. If optional set E of edges is given, the rank of the spanning subgraph of G with edge set E is returned. - See also: 1/ connected_components 2/ number_of_vertices + See also: 1/ connected_components 2/ number_of_vertices Ex1:graph_rank(graph(%{[1,2],[3,4],[4,5]%})) Ex2:graph_rank(graph(%{[1,2],[3,4],[4,5]%}),[[1,2],[3,4]) - + ''' return GiacMethods['graph_rank'](self,*args) @@ -6809,9 +6809,9 @@ cdef class GiacMethods_base: Help for graph_spectrum: graph_spectrum(Graph(G)) Returns the graph spectrum of G as a list of lists with two elements, each containing an eigenvalue and its multiplicity. - See also: 1/ graph_charpoly 2/ seidel_spectrum 3/ is_integer_graph + See also: 1/ graph_charpoly 2/ seidel_spectrum 3/ is_integer_graph Ex1:graph_spectrum(cycle_graph(5)) - + ''' return GiacMethods['graph_spectrum'](self,*args) @@ -6820,9 +6820,9 @@ cdef class GiacMethods_base: Help for graph_union: graph_union(Seq(G1,G2,...)) Returns the union of the graphs G1, G2, ... The set of vertices of the resulting graph is the union of the sets of vertices of the input graphs and the set of edges of the resulting graph is the union of sets of edges of the input graphs. If the input graphs are weighted, the weight of any common edge is the sum of the weights of that edge in G1, G2, ... - See also: 1/ disjoint_union 2/ graph_join + See also: 1/ disjoint_union 2/ graph_join Ex1:graph_union(edges(graph_union(cycle_graph(4),path_graph(5)))) - + ''' return GiacMethods['graph_union'](self,*args) @@ -6831,9 +6831,9 @@ cdef class GiacMethods_base: Help for graph_vertices: graph_vertices(Graph(G)) Return the list of vertices in G. - See also: 1/ add_vertex 2/ graph 3/ neighbors 4/ permute_vertices 5/ relabel_vertices + See also: 1/ add_vertex 2/ graph 3/ neighbors 4/ permute_vertices 5/ relabel_vertices Ex1:graph_vertices(graph(%{[a,c],[b,c],[a,b]%})) - + ''' return GiacMethods['graph_vertices'](self,*args) @@ -6842,11 +6842,11 @@ cdef class GiacMethods_base: Help for greduce: greduce(Poly,LstPoly,LstVar,[order]) Returns the remainder of the division of a polynomial by a Groebner basis. - See also: 1/ gbasis + See also: 1/ gbasis Ex1:greduce(x*y-1,[x^2-y^2,2*x*y-y^2,y^3],[x,y]) Ex2:greduce(x1^2*x3^2,[x3^3-1,-x2^2-x2*x3-x3^2,x1+x2+x3],[x1,x2,x3],tdeg) Ex3:greduce(x1^2*x3^2-x2,[x3^3-1,-x2^2-x2*x3-x3^2,x1+x2+x3],[x1,x2,x3]) - + ''' return GiacMethods['greduce'](self,*args) @@ -6855,9 +6855,9 @@ cdef class GiacMethods_base: Help for greedy_color: greedy_color(Graph(G),[Permu(p)]) Returns the list of vertex colors (positive integers) obtained by coloring vertices one at a time [in the order given by permutation p], assigning to it the smallest available color. - See also: 1/ is_vertex_colorable 2/ chromatic_number + See also: 1/ is_vertex_colorable 2/ chromatic_number Ex1:greedy_color(graph("petersen")) - + ''' return GiacMethods['greedy_color'](self,*args) @@ -6866,9 +6866,9 @@ cdef class GiacMethods_base: Help for grid_graph: grid_graph(Intg(m),Intg(n),[triangle]) Returns a [triangular] grid graph on m*n vertices, where m,n>=2. - See also: 1/ torus_grid_graph + See also: 1/ torus_grid_graph Ex1:grid_graph(5,8) - + ''' return GiacMethods['grid_graph'](self,*args) @@ -6877,9 +6877,9 @@ cdef class GiacMethods_base: Help for groupermu: groupermu(Permut(a),Permut(b)) Returns the group of permutations generated by a and b. - See also: 1/ + See also: 1/ Ex1:groupermu([1,2,0],[3,1,2,0]) - + ''' return GiacMethods['groupermu'](self,*args) @@ -6888,10 +6888,10 @@ cdef class GiacMethods_base: Help for hadamard: hadamard(Mtrx,Mtrx) Hadamard bound of a matrix or element by element multiplication of 2 matrices. - See also: 1/ .* 2/ * + See also: 1/ .* 2/ * Ex1:hadamard([[1,2],[3,4]]) Ex2:hadamard([[1,2],[3,4]],[[3,4],[5,6]]) - + ''' return GiacMethods['hadamard'](self,*args) @@ -6900,10 +6900,10 @@ cdef class GiacMethods_base: Help for half_cone: half_cone(Pnt(A),Vect(v),Real(t),[Real(h)]) Draws a half-cone with vertex A, direction v and with half_angle=t [and with altitude h]. - See also: 1/ cone 2/ cylinder + See also: 1/ cone 2/ cylinder Ex1:half_cone([0,0,0],[0,0,1],pi/6) Ex2:half_cone([0,0,0],[0,1,1],pi/6,-4) - + ''' return GiacMethods['half_cone'](self,*args) @@ -6912,10 +6912,10 @@ cdef class GiacMethods_base: Help for half_line: half_line((Pnt or Cplx),(Pnt or Cplx)) half_line(A,B) draws the half-line AB with A as origin. - See also: 1/ line + See also: 1/ line Ex1:half_line(i,1+i) Ex2:half_line(point(i),point(1+i)) - + ''' return GiacMethods['half_line'](self,*args) @@ -6927,7 +6927,7 @@ cdef class GiacMethods_base: Ex1:halftan(sin(x)) Ex2:halftan(cos(x)) Ex3:halftan(tan(x)) - + ''' return GiacMethods['halftan'](self,*args) @@ -6936,9 +6936,9 @@ cdef class GiacMethods_base: Help for halftan_hyp2exp: halftan_hyp2exp(ExprTrig) Transforms the trigonometric functions in tan(x/2) and hyperbolic functions to exp. - See also: 1/ hyp2exp 2/ halftan + See also: 1/ hyp2exp 2/ halftan Ex1:halftan_hyp2exp(sin(x)+sinh(x)) - + ''' return GiacMethods['halftan_hyp2exp'](self,*args) @@ -6947,9 +6947,9 @@ cdef class GiacMethods_base: Help for halt: halt(NULL) Puts a program in step-by-step debug mode. - See also: 1/ + See also: 1/ Ex1:halt() - + ''' return GiacMethods['halt'](self,*args) @@ -6959,7 +6959,7 @@ cdef class GiacMethods_base: hamdist(Intg,Intg) Bitwise Hamming distance. Ex1:hamdist(0x12,0x38) - + ''' return GiacMethods['hamdist'](self,*args) @@ -6968,9 +6968,9 @@ cdef class GiacMethods_base: Help for hamming_window: hamming_window(Lst,[Interval(n1..n2)]) Applies the Hamming windowing function to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ bartlett_hann_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ bartlett_hann_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(hamming_window(randvector(1000,0..1))) - + ''' return GiacMethods['hamming_window'](self,*args) @@ -6979,9 +6979,9 @@ cdef class GiacMethods_base: Help for hann_poisson_window: hann_poisson_window(Lst,[Interval(n1..n2)]) Applies the Hann-Poisson windowing function with parameter a (by default a=1) to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ bartlett_hann_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ bartlett_hann_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(hann_poisson_window(randvector(1000,0..1),2)) - + ''' return GiacMethods['hann_poisson_window'](self,*args) @@ -6990,9 +6990,9 @@ cdef class GiacMethods_base: Help for hann_window: hann_window(Lst,[Interval(n1..n2)]) Applies the Hann windowing function to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ bartlett_hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ bartlett_hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(hann_window(randvector(1000,0..1))) - + ''' return GiacMethods['hann_window'](self,*args) @@ -7001,12 +7001,12 @@ cdef class GiacMethods_base: Help for harmonic_conjugate: harmonic_conjugate(Line or Pnt(A),Line or Pnt(B),Line or Pnt(C)) Returns the harmonic conjugate C with respect to A and B of 3 points or of 3 parallel or concurrent lines or the line of conjugates of a point with respect to 2 lines. - See also: 1/ is_harmonic 2/ harmonic_division + See also: 1/ is_harmonic 2/ harmonic_division Ex1:harmonic_conjugate(0,2,3/2) Ex2:harmonic_conjugate(0,1+i,2+2*i) Ex3:harmonic_conjugate(line(0,1+i),line(0,3+i),line(0,i)) Ex4:harmonic_conjugate(line(0,1+i),line(0,3+i),point(3/2+i)) - + ''' return GiacMethods['harmonic_conjugate'](self,*args) @@ -7015,12 +7015,12 @@ cdef class GiacMethods_base: Help for harmonic_division: harmonic_division(Pnt or Line,Pnt or Line,Pnt or Line,Var) Returns 4 points (resp lines) and affects the last argument, such that the 4 points (resp lines) are in a harmonic division and assigns the fourth point to the variable name. - See also: 1/ harmonic_conjugate 2/ is_harmonic + See also: 1/ harmonic_conjugate 2/ is_harmonic Ex1:harmonic_division(0,2,3/2,D) Ex2:harmonic_division(0,1+i,2+2*i,D) Ex3:harmonic_division(line(i,0),line(i,1+i),line(i,3+2*i),D) Ex4:harmonic_division(line(0,1+i),line(0,3+i),line(0,i),D) - + ''' return GiacMethods['harmonic_division'](self,*args) @@ -7029,10 +7029,10 @@ cdef class GiacMethods_base: Help for has: has(Expr,Var) Checks if a variable is in an expression. - See also: 1/ lname 2/ lvar + See also: 1/ lname 2/ lvar Ex1:has(x+y,x) Ex2:has(x+y,n) - + ''' return GiacMethods['has'](self,*args) @@ -7041,10 +7041,10 @@ cdef class GiacMethods_base: Help for has_arc: has_arc(Graph(G),Edge(e)) Returns true iff the arc e=[i,j] is contained in digraph G or, if e={i,j} is a set, iff G has both edges [i,j] and [j,i]. - See also: 1/ edges 2/ has_edge + See also: 1/ edges 2/ has_edge Ex1:has_arc(digraph(trail(1,2,3,4,1)),[4,2]) Ex2:has_arc(digraph(trail(1,2,3,4,1)),%{4,2%}) - + ''' return GiacMethods['has_arc'](self,*args) @@ -7053,9 +7053,9 @@ cdef class GiacMethods_base: Help for has_edge: has_edge(Graph(G),Edge(e)) Returns true iff the edge e=[i,j] is contained in undirected graph G. - See also: 1/ edges 2/ has_arc + See also: 1/ edges 2/ has_arc Ex1:has_edge(graph(trail(1,2,3,4,1)),[2,4]) - + ''' return GiacMethods['has_edge'](self,*args) @@ -7064,7 +7064,7 @@ cdef class GiacMethods_base: Help for hasard: hasard(Intg(n) or Interval(p..n) or NULL,[Intg(b1) or Lst(L)],[Intg(b2)]) (hasard n)=a random integer (resp (hasard p,n)=a real or hasard(p..n)=a real function) with uniform distribution in 0..n-1 (resp in [p;n])(hasard= (hasard 0,1)=a random real in [0,1[) or hasard(n,b1,b2)=n integers between b1 and b2 or hasard(n,L)=n elements of L. If hasard has only one argument, () are not necessary (compatibility with turtle language). - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ srand + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ srand Ex1: hasard 4 Ex2: hasard(4) Ex3:hasard(0,2) @@ -7072,7 +7072,7 @@ cdef class GiacMethods_base: Ex5: f:=hasard 0..2 Ex6:hasard(3,1,10) Ex7:hasard(3,["r","r","r","b","n"]) - + ''' return GiacMethods['hasard'](self,*args) @@ -7081,11 +7081,11 @@ cdef class GiacMethods_base: Help for head: head(Vect or Seq or Str) Shows the first element of a vector or a sequence or a string. - See also: 1/ back 2/ tail 3/ mid 4/ left 5/ right + See also: 1/ back 2/ tail 3/ mid 4/ left 5/ right Ex1:head(1,2,3) Ex2:head([1,2,3]) Ex3:head("bonjour") - + ''' return GiacMethods['head'](self,*args) @@ -7094,11 +7094,11 @@ cdef class GiacMethods_base: Help for heading: heading(NULL or Real) Returns the turtle cap in degrees or turns the turtle in the direction given by the argument. - See also: 1/ position 2/ initialise + See also: 1/ position 2/ initialise Ex1: cap Ex2:heading() Ex3:heading(cap 90) - + ''' return GiacMethods['heading'](self,*args) @@ -7107,8 +7107,8 @@ cdef class GiacMethods_base: Help for heapify: heapify(List) Partial ordering of a list as a heap. - See also: 1/ heappush 2/ heappop - + See also: 1/ heappush 2/ heappop + ''' return GiacMethods['heapify'](self,*args) @@ -7117,8 +7117,8 @@ cdef class GiacMethods_base: Help for heappop: heappop(List) Removes and returns the root node of a heap. - See also: 1/ heapify 2/ heappush - + See also: 1/ heapify 2/ heappush + ''' return GiacMethods['heappop'](self,*args) @@ -7127,8 +7127,8 @@ cdef class GiacMethods_base: Help for heappush: heappush(List,Object) Adds an object in a heap. - See also: 1/ heapify 2/ heappop - + See also: 1/ heapify 2/ heappop + ''' return GiacMethods['heappush'](self,*args) @@ -7137,10 +7137,10 @@ cdef class GiacMethods_base: Help for hermite: hermite(Intg(n)||Matr(A)) Returns the Hermite polynomial of degree n or the Hermite normal form for a matrix with polynomial coefficients (I,U such that I*A=U). - See also: 1/ legendre 2/ laguerre 3/ smith 4/ ihermite 5/ ismith + See also: 1/ legendre 2/ laguerre 3/ smith 4/ ihermite 5/ ismith Ex1:hermite(3) Ex2: n:=5; a:=ranm(n,n) % 17; l,u:=hermite(x-a);normal(l*(x-a)-u); - + ''' return GiacMethods['hermite'](self,*args) @@ -7149,13 +7149,13 @@ cdef class GiacMethods_base: Help for hessenberg: hessenberg(Mtrx(A),[Intg(n)]) Matrix reduction to Hessenberg form. Returns [P,B] such that B=inv(P)*A*P, by default n=0 the result is exact else the result is numeric. For n=-1 B is triangular, n=-2 P is orthogonal and if n is prime the result is mod n. - See also: 1/ SCHUR + See also: 1/ SCHUR Ex1:hessenberg([[1,2,3],[4,5,6],[7,8,1]]) Ex2:hessenberg([[1,2,3,4],[4,5,6,7],[7,8,9,0],[0,1,2,3]]) Ex3:hessenberg([[1,2,3],[4,5,6],[7,8,1]],-1) Ex4:hessenberg([[1,2,3],[4,5,6],[7,8,1]],-2) Ex5:hessenberg([[1,2,3],[4,5,6],[7,8,1]],3) - + ''' return GiacMethods['hessenberg'](self,*args) @@ -7164,9 +7164,9 @@ cdef class GiacMethods_base: Help for hessian: hessian(Expr(Xpr),LstVar) Returns the hessian of the expression Xpr. - See also: 1/ grad + See also: 1/ grad Ex1:hessian(2*x^2*y-x*z,[x,y,z]) - + ''' return GiacMethods['hessian'](self,*args) @@ -7175,9 +7175,9 @@ cdef class GiacMethods_base: Help for heugcd: heugcd(Poly,Poly) GCD of 2 polynomials, with the algorithm called heuristic pgcd. - See also: 1/ gcd 2/ modgcd 3/ ezgcd 4/ psrgcd + See also: 1/ gcd 2/ modgcd 3/ ezgcd 4/ psrgcd Ex1:heugcd(x^4-1,(x-1)^2) - + ''' return GiacMethods['heugcd'](self,*args) @@ -7186,12 +7186,12 @@ cdef class GiacMethods_base: Help for hexagon: hexagon(Pnt(A)||Cplx,Pnt(B)||Cplx,[Pnt(P)],[Var(C)],[Var(D)],[Var(E)],[Var(F)]) Returns and draws the hexagon of side AB (ABCDEF is direct) (in the plane ABP). - See also: 1/ isopolygon 2/ polygon + See also: 1/ isopolygon 2/ polygon Ex1:hexagon(i,1+i) Ex2:hexagon(i,1+i,C,D,E,F) Ex3:hexagon(point(0,0,0),point(3,3,3),point(0,0,3)) Ex4:hexagon(point(0,0,0),point(3,3,3),point(0,0,3),C,D,E,F) - + ''' return GiacMethods['hexagon'](self,*args) @@ -7200,9 +7200,9 @@ cdef class GiacMethods_base: Help for highlight_edges: highlight_edges(Graph(G),Edge(e)||Lst(E),[Color(c)||Lst(C)]) Changes color of edge e resp. colors of edges in E of the input graph V to c resp C (by default red) and returns the modified copy of G. - See also: 1/ highlight_vertex 2/ highlight_subgraph 3/ highlight_trail + See also: 1/ highlight_vertex 2/ highlight_subgraph 3/ highlight_trail Ex1: draw_graph(highlight_edges(cycle_graph(3),[1,2])) - + ''' return GiacMethods['highlight_edges'](self,*args) @@ -7211,9 +7211,9 @@ cdef class GiacMethods_base: Help for highlight_subgraph: highlight_subgraph(Graph(G),Graph(S)||Lst(S1,S2,..),Seq(c1,c2)) Changes colors of edges and vertices from the sugbraph S or list of subgraphs S1, S2, ... of G to c1 and c2, respectively (red and green by default), and returns the modified copy of G. - See also: 1/ highlight_edges 2/ highlight_vertex 3/ highlight_trail + See also: 1/ highlight_edges 2/ highlight_vertex 3/ highlight_trail Ex1: draw_graph(highlight_subgraph(cycle_graph(5),path_graph(3))) - + ''' return GiacMethods['highlight_subgraph'](self,*args) @@ -7222,9 +7222,9 @@ cdef class GiacMethods_base: Help for highlight_trail: highlight_trail(Graph(G),Trail(t)||Lst(T),[Color(c)||Lst(C)]) Changes colors of edges in G which lie along the trail t resp. trails in T to c resp. C (by default red) and returns the modified copy of G. - See also: 1/ highlight_edges 2/ highlight_subgraph 3/ highlight_vertex + See also: 1/ highlight_edges 2/ highlight_subgraph 3/ highlight_vertex Ex1: draw_graph(highlight_trail(cycle_graph(5),trail(1,2,3),green) - + ''' return GiacMethods['highlight_trail'](self,*args) @@ -7233,9 +7233,9 @@ cdef class GiacMethods_base: Help for highlight_vertex: highlight_vertex(Graph(G),Vrtx(v)||Lst(V),[Color(c)||Lst(C)]) Changes the color of vertex v resp. colors of vertices from V in G to c resp. C (green by default) and returns the modified copy of G. - See also: 1/ highlight_edges 2/ highlight_subgraph 3/ highlight_trail + See also: 1/ highlight_edges 2/ highlight_subgraph 3/ highlight_trail Ex1: draw_graph(highlight_vertex(cycle_graph(3),1)) - + ''' return GiacMethods['highlight_vertex'](self,*args) @@ -7244,9 +7244,9 @@ cdef class GiacMethods_base: Help for highpass: highpass(Lst(s),Real(c),[Intg(samplerate)]) Returns the result of applying a simple first-order highpass RC filter with cutoff frequency c (the default samplerate is 44100) to the given signal s. - See also: 1/ lowpass 2/ moving_average + See also: 1/ lowpass 2/ moving_average Ex1: f:=unapply(periodic(sign(x),x,-1/880,1/880),x):;s:=createwav(apply(f,soundsec(1))):;playsnd(highpass(s,5000)) - + ''' return GiacMethods['highpass'](self,*args) @@ -7255,9 +7255,9 @@ cdef class GiacMethods_base: Help for hilbert: hilbert(Intg(n)) Returns the order n Hilbert matrix : Hjk=1/(j+k+1) j,k=1..n. - See also: 1/ + See also: 1/ Ex1:hilbert(4) - + ''' return GiacMethods['hilbert'](self,*args) @@ -7266,7 +7266,7 @@ cdef class GiacMethods_base: Help for histogram: histogram(Lst(data),[Lst(eff) || Intg(nc) || Real(classmin)],[Real(classsize)]) Draws the histogram of data, optional arguments are eff (number of data for each data element) or nc the number of classes or the classes minimum and size. - See also: 1/ cumulated_frequencies 2/ classes 3/ bar_plot 4/ frequencies + See also: 1/ cumulated_frequencies 2/ classes 3/ bar_plot 4/ frequencies Ex1:histogram([1,2,1,1,2,1,2,4,3,3]) Ex2:histogram([1,2,1,1,2,1,2,4,3,3],0.5,1) Ex3:histogram(seq(rand(1000),k,0,100),0,100) @@ -7275,7 +7275,7 @@ cdef class GiacMethods_base: Ex6:histogram([[1.5..1.65,50],[1.65..1.7,20],[1.7..1.8,30]]) Ex7:histogram(seq(rand(1000),k,0,100),0,100) Ex8:histogram(seq(rand(1000),k,0,100),10) - + ''' return GiacMethods['histogram'](self,*args) @@ -7284,11 +7284,11 @@ cdef class GiacMethods_base: Help for hold: hold(Expr) Returns its argument unevaluated (and also a:=quote(a) purges a). - See also: 1/ + See also: 1/ Ex1:hold(1+2) Ex2:hold(1/x+1/(x-1)) Ex3:hold((x+1)*(x-1)) - + ''' return GiacMethods['hold'](self,*args) @@ -7299,7 +7299,7 @@ cdef class GiacMethods_base: Make P homogeneous by adding a variable (by default t) Ex1:homogeneize(x^2-1) Ex2:homogeneize(x^2-y,z) - + ''' return GiacMethods['homogeneize'](self,*args) @@ -7308,12 +7308,12 @@ cdef class GiacMethods_base: Help for homothety: homothety(Pnt(C),Real(k),Pnt(A)) homothety(C,k,A)=point A1 such as vect(C,A1)=k*vect(C,A) i.e in 2d it is the similarity with center C, coeff abs(k) and angle arg(k). - See also: 1/ similarity 2/ inversion + See also: 1/ similarity 2/ inversion Ex1:homothety(1+i,1/3,i) Ex2:homothety(point(1,1,1),1/3,point(0,1,0)) Ex3: h:=homothety(1+i,1/3);h(i) Ex4: h:=homothety(point(1,1,1),1/3);h(point(0,1,0)) - + ''' return GiacMethods['homothety'](self,*args) @@ -7322,12 +7322,12 @@ cdef class GiacMethods_base: Help for horner: horner(Poly(P),Real(a)) Returns the value of P(a) calculated with Horner's method. With horner(list_alpha_i,list_x_i,x), evals an interpolation polynomial from the divided differences of x. - See also: 1/ convert 2/ base 3/ revlist + See also: 1/ convert 2/ base 3/ revlist Ex1:horner(x^2+1,2) Ex2:horner([1,0,1],2) Ex3:horner(x^2+y*x+y^3-1,2,y) Ex4: X:=[0.0,1.0,2.0]; A:=lagrange(X,exp,lagrange); horner(A,X,1.5); - + ''' return GiacMethods['horner'](self,*args) @@ -7336,14 +7336,14 @@ cdef class GiacMethods_base: Help for hybrid_solver: hybrid_solver(Opt) Argument for fsolve giving the method for solving a system of numerical equations. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],dnewton_solver) Ex2: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrid_solver) Ex3: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrids_solver) Ex4: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridj_solver) Ex5: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridsj_solver) Ex6: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],newtonj_solver) - + ''' return GiacMethods['hybrid_solver'](self,*args) @@ -7352,14 +7352,14 @@ cdef class GiacMethods_base: Help for hybridj_solver: hybridj_solver(Opt) Argument for fsolve giving the method for solving a system of numerical equations. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],dnewton_solver) Ex2: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrid_solver) Ex3: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrids_solver) Ex4: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridj_solver) Ex5: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridsj_solver) Ex6: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],newtonj_solver) - + ''' return GiacMethods['hybridj_solver'](self,*args) @@ -7368,14 +7368,14 @@ cdef class GiacMethods_base: Help for hybrids_solver: hybrids_solver(Opt) Argument for fsolve giving the method for solving a system of numerical equations. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],dnewton_solver) Ex2: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrid_solver) Ex3: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrids_solver) Ex4: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridj_solver) Ex5: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridsj_solver) Ex6: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],newtonj_solver) - + ''' return GiacMethods['hybrids_solver'](self,*args) @@ -7384,14 +7384,14 @@ cdef class GiacMethods_base: Help for hybridsj_solver: hybridsj_solver(Opt) Argument for fsolve giving the method for solving a system of numerical equations. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],dnewton_solver) Ex2: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrid_solver) Ex3: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrids_solver) Ex4: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridj_solver) Ex5: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridsj_solver) Ex6: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],newtonj_solver) - + ''' return GiacMethods['hybridsj_solver'](self,*args) @@ -7400,9 +7400,9 @@ cdef class GiacMethods_base: Help for hyp2exp: hyp2exp(ExprHyperb) Transforms the hyperbolic functions to the exponential function. - See also: 1/ halftan_hyp2exp + See also: 1/ halftan_hyp2exp Ex1:hyp2exp(cosh(x)) - + ''' return GiacMethods['hyp2exp'](self,*args) @@ -7411,12 +7411,12 @@ cdef class GiacMethods_base: Help for hyperbola: hyperbola(Focus(F1),Focus(F2),(Pnt(M) or Real(a))) hyperbola(F1,F2,M)=hyperbola with foci F1,F2 through M or (|MF1-MF2|=2*a geo2d) and hyperbola(p(x,y)) draws the conic if deg(p)=2. - See also: 1/ ellipse 2/ parabola + See also: 1/ ellipse 2/ parabola Ex1:hyperbola(-1,1,point(1+i)) Ex2:hyperbola(-1,1,sqrt(5)-1) Ex3:hyperbola(point(-1,0,0),point(1,0,0),point(1,1,1)) Ex4:hyperbola(x^2-y^2+y+2) - + ''' return GiacMethods['hyperbola'](self,*args) @@ -7425,9 +7425,9 @@ cdef class GiacMethods_base: Help for hypercube_graph: hypercube_graph(Intg(n)) Constructs and returns the hypercube graph in dimension n (with 2^n vertices). - See also: 1/ graph + See also: 1/ graph Ex1:hypercube_graph(3) - + ''' return GiacMethods['hypercube_graph'](self,*args) @@ -7436,11 +7436,11 @@ cdef class GiacMethods_base: Help for iPart: iPart(Real||LstReal) Returns the argument without its fractional part (type=DOM_FLOAT). - See also: 1/ fPart 2/ floor 3/ trunc + See also: 1/ fPart 2/ floor 3/ trunc Ex1:iPart(4.3) Ex2:iPart(sqrt(2)) Ex3:iPart(4.3,sqrt(2)) - + ''' return GiacMethods['iPart'](self,*args) @@ -7449,11 +7449,11 @@ cdef class GiacMethods_base: Help for iabcuv: iabcuv(Intg(a),Intg(b),Intg(c)) Returns [u,v] such that au+bv=c for 3 integers a,b,c. - See also: 1/ iegcd 2/ abcuv + See also: 1/ iegcd 2/ abcuv Ex1:iabcuv(21,28,7) Ex2:iabcuv(21,28,14) Ex3:iabcuv(21,28,1) - + ''' return GiacMethods['iabcuv'](self,*args) @@ -7462,9 +7462,9 @@ cdef class GiacMethods_base: Help for ibasis: ibasis(Lst(Vect,..,Vect),Lst(Vect,..,Vect)) Basis of the intersection of two vector spaces. - See also: 1/ basis + See also: 1/ basis Ex1:ibasis([[1,0,0],[0,1,0]],[[1,1,1],[0,0,1]]) - + ''' return GiacMethods['ibasis'](self,*args) @@ -7473,13 +7473,13 @@ cdef class GiacMethods_base: Help for ibpdv: ibpdv(Expr(f(x)),Expr(v(x)),[Var(x)],[Real(a)],[Real(b)]) Integration by parts of f(x)=u(x)*v'(x) with f(x) as 1st argument and v(x) (or 0) as 2nd argument. You can specify a variable of integration and also calculate the integral (bounds a and b). - See also: 1/ ibpu 2/ int + See also: 1/ ibpu 2/ int Ex1:ibpdv(ln(x),x) Ex2:ibpdv(ln(x),x,x,1,3) Ex3:ibpdv(x*ln(x),x^2/2) Ex4:ibpdv([x*ln(x),-1],0) Ex5:ibpdv(ibpdv(ln(x),x,x,2,3),0,x,2,3) - + ''' return GiacMethods['ibpdv'](self,*args) @@ -7488,13 +7488,13 @@ cdef class GiacMethods_base: Help for ibpu: ibpu(Expr(f(x)),Expr(u(x)),[Var(x)],[Real(a)],[Real(b)]) Integration by parts of f(x)=u(x)*v'(x) with f(x) as 1st argument and u(x) (or 0) as 2nd argument. You can specify a variable of integration and also calculate the integral (bounds a and b). - See also: 1/ ibpdv 2/ int + See also: 1/ ibpdv 2/ int Ex1:ibpu(ln(x),ln(x)) Ex2:ibpu(ln(x),ln(x),x,1,3) Ex3:ibpu(x*ln(x),ln(x)) Ex4:ibpu([x*ln(x),-1],0) Ex5:ibpu(ibpu(ln(x),ln(x),x,2,3),0,x,2,3) - + ''' return GiacMethods['ibpu'](self,*args) @@ -7503,10 +7503,10 @@ cdef class GiacMethods_base: Help for icdf: icdf(Func,FuncParams) Inverse cumulative distribution function. - See also: 1/ cdf 2/ binomial_icdf 3/ normald_icdf + See also: 1/ cdf 2/ binomial_icdf 3/ normald_icdf Ex1:icdf(binomial,10,0.5,0.6) Ex2:icdf(normald,0.0,1.0,0.975) - + ''' return GiacMethods['icdf'](self,*args) @@ -7515,12 +7515,12 @@ cdef class GiacMethods_base: Help for ichinrem: ichinrem(LstIntg(a,p),LstIntg(b,q)) Chinese remainders for integers. - See also: 1/ gcd 2/ fracmod 3/ chinrem 4/ chrem + See also: 1/ gcd 2/ fracmod 3/ chinrem 4/ chrem Ex1:ichinrem([2,7],[3,5]) Ex2:ichinrem([2%7,3%5]) Ex3:ichinrem([2%7,3%5,1%9]) Ex4:ichinrem([(x+1)%2,(x+2)%3,(3*x-1)%5]) - + ''' return GiacMethods['ichinrem'](self,*args) @@ -7529,12 +7529,12 @@ cdef class GiacMethods_base: Help for ichrem: ichrem(LstIntg(a,p),LstIntg(b,q)) Chinese remainders for integers. - See also: 1/ gcd 2/ fracmod 3/ chinrem 4/ chrem + See also: 1/ gcd 2/ fracmod 3/ chinrem 4/ chrem Ex1:ichrem([2,7],[3,5]) Ex2:ichrem([2%7,3%5]) Ex3:ichrem([2%7,3%5,1%9]) Ex4:ichrem([(x+1)%2,(x+2)%3,(3*x-1)%5]) - + ''' return GiacMethods['ichrem'](self,*args) @@ -7543,10 +7543,10 @@ cdef class GiacMethods_base: Help for icomp: icomp(Intg(n),Intg(k),[zeros=true||false]) Returns the list of compositions of n into k parts. - See also: 1/ sum + See also: 1/ sum Ex1:icomp(4,2) Ex2:icomp(6,3,zeros=false) - + ''' return GiacMethods['icomp'](self,*args) @@ -7555,10 +7555,10 @@ cdef class GiacMethods_base: Help for icontent: icontent(Poly,[Var]) GCD of the integer coefficients of a polynomial. - See also: 1/ + See also: 1/ Ex1:icontent(24x^3+6x^2-12x+18) Ex2:icontent(24t^3+6t^2-12t+18,t) - + ''' return GiacMethods['icontent'](self,*args) @@ -7567,10 +7567,10 @@ cdef class GiacMethods_base: Help for icosahedron: icosahedron(Pnt(A),Pnt(B),Pnt(C)) Draws an icosahedron with center A, vertex B and such that the plane ABC contains one vertex among the 5 nearest vertices from B. - See also: 1/ octahedron 2/ dodecahedron 3/ cube 4/ tetrahedron + See also: 1/ octahedron 2/ dodecahedron 3/ cube 4/ tetrahedron Ex1:icosahedron([0,0,0],[sqrt(5),0,0],[1,2,0]) Ex2:icosahedron(evalf([0,0,0],[3,2,4],[1,1,0])) - + ''' return GiacMethods['icosahedron'](self,*args) @@ -7579,9 +7579,9 @@ cdef class GiacMethods_base: Help for id: id(Seq) The name of the identity function (ℝ^n -> ℝ^n). - See also: 1/ sq 2/ sqrt + See also: 1/ sq 2/ sqrt Ex1:id(1,2,3) - + ''' return GiacMethods['id'](self,*args) @@ -7590,10 +7590,10 @@ cdef class GiacMethods_base: Help for identity: identity(Intg(n)) Returns the identity matrix of specified dimension n. - See also: 1/ ranm + See also: 1/ ranm Ex1:identity(3) Ex2:identity(5) - + ''' return GiacMethods['identity'](self,*args) @@ -7602,10 +7602,10 @@ cdef class GiacMethods_base: Help for idivis: idivis(Intg(a) or LstIntg) Returns the list of divisors of an integer. - See also: 1/ divis 2/ ifactors + See also: 1/ divis 2/ ifactors Ex1:idivis(36) Ex2:idivis([36,49]) - + ''' return GiacMethods['idivis'](self,*args) @@ -7614,10 +7614,10 @@ cdef class GiacMethods_base: Help for idn: idn(Intg(n)) Returns the identity matrix of specified dimension n. - See also: 1/ ranm + See also: 1/ ranm Ex1:idn(3) Ex2:idn(5) - + ''' return GiacMethods['idn'](self,*args) @@ -7626,11 +7626,11 @@ cdef class GiacMethods_base: Help for iegcd: iegcd(Intg,Intg) Extended greatest common divisor of 2 integers. - See also: 1/ gcd 2/ iabcuv 3/ egcd + See also: 1/ gcd 2/ iabcuv 3/ egcd Ex1:iegcd(45,75) Ex2:iegcd(21,28) Ex3:iegcd(30,49) - + ''' return GiacMethods['iegcd'](self,*args) @@ -7639,10 +7639,10 @@ cdef class GiacMethods_base: Help for ifactor: ifactor(Intg(a)) Factorization of an integer into prime factors. - See also: 1/ factor 2/ ecm_factor + See also: 1/ factor 2/ ecm_factor Ex1:ifactor(50) Ex2:ifactor(123456789) - + ''' return GiacMethods['ifactor'](self,*args) @@ -7651,10 +7651,10 @@ cdef class GiacMethods_base: Help for ifactors: ifactors(Intg(a) or LstIntg) Returns the list of prime factors of an integer (each factor is followed by its multiplicity). - See also: 1/ ifactor 2/ factors + See also: 1/ ifactor 2/ factors Ex1:ifactors(36) Ex2:ifactors([36,52]) - + ''' return GiacMethods['ifactors'](self,*args) @@ -7663,7 +7663,7 @@ cdef class GiacMethods_base: Help for ifourier: ifourier(Expr(F(s)),[Var(s),[Var(x)]]) Returns the inverse Fourier transform f(x) of F(s). - See also: 1/ fourier 2/ fourier_cn 3/ ifft + See also: 1/ fourier 2/ fourier_cn 3/ ifft Ex1:ifourier(2*pi*(Dirac(s)-sign(s)*sin(s)),s,x) Ex2:ifourier(-2/(s^2-1),s,x) Ex3:ifourier(pi/(exp(pi*s/4)+exp(-pi*s/4)),s,x) @@ -7671,7 +7671,7 @@ cdef class GiacMethods_base: Ex5:ifourier(pi*ugamma(0,4*abs(s)),s,x) Ex6:ifourier(fourier(exp(-abs(x)),x,s)^2,s,x) Ex7:ifourier(sinc(s),s,x) - + ''' return GiacMethods['ifourier'](self,*args) @@ -7680,11 +7680,11 @@ cdef class GiacMethods_base: Help for igamma: igamma(Real(a),Real(x),[1]) Calculates of gamma at a point (a,x). If a and x>0, igamma(a,x)=int(e^{-t}*t^{a-1},t=0..x), (igamma(a,x,1)=igamma(a,x)/Gamma(a)). - See also: 1/ Psi 2/ Beta 3/ Gamma 3/ ugamma + See also: 1/ Psi 2/ Beta 3/ Gamma 3/ ugamma Ex1:igamma(5.0,2.0) Ex2:igamma(-5.1,2.1) Ex3:igamma(5.0,2.0,1) - + ''' return GiacMethods['igamma'](self,*args) @@ -7693,13 +7693,13 @@ cdef class GiacMethods_base: Help for igcd: igcd((Intg(a) or Poly),(Intg(b) or Poly)) Returns the greatest common divisor of 2 polynomials of several variables or of 2 integers or of 2 rationals. - See also: 1/ lcm 2/ euler 2/ modgcd 3/ ezgcd 4/ psrgcd 5/ heugcd 6/ Gcd + See also: 1/ lcm 2/ euler 2/ modgcd 3/ ezgcd 4/ psrgcd 5/ heugcd 6/ Gcd Ex1:igcd(45,75) Ex2:igcd(15/7,50/9) Ex3:igcd(x^2-2*x+1,x^3-1) Ex4:igcd(t^2-2*t+1,t^2+t-2) Ex5:igcd((x^2-1)*(y^2-1)*z^2,x^3*y^3*z+(-(y^3))*z+x^3*z-z) - + ''' return GiacMethods['igcd'](self,*args) @@ -7708,11 +7708,11 @@ cdef class GiacMethods_base: Help for igcdex: igcdex(Intg,Intg) Extended greatest common divisor of 2 integers. - See also: 1/ gcd 2/ iabcuv 3/ egcd + See also: 1/ gcd 2/ iabcuv 3/ egcd Ex1:igcdex(45,75) Ex2:igcdex(21,28) Ex3:igcdex(30,49) - + ''' return GiacMethods['igcdex'](self,*args) @@ -7721,10 +7721,10 @@ cdef class GiacMethods_base: Help for ihermite: ihermite(Mtrx(A)) Hermite normal form of a matrix with coefficients in ℤ : returns L,U such that L is invertible in ℤ, U is upper triangular and U=L*A. - See also: 1/ ismith + See also: 1/ ismith Ex1:ihermite([[9,-36,30], [-36,192,-180], [30,-180,180]]) Ex2:ihermite([[1,2,3],[4,5,6],[7,8,9]]) - + ''' return GiacMethods['ihermite'](self,*args) @@ -7733,11 +7733,11 @@ cdef class GiacMethods_base: Help for ilaplace: ilaplace(Expr,[Var],[IlapVar]) Inverse Laplace transform of a rational fraction. - See also: 1/ laplace 2/ ztrans 3/ invztrans 4/ Heaviside + See also: 1/ laplace 2/ ztrans 3/ invztrans 4/ Heaviside Ex1:ilaplace(1/(x^2+1)^2) Ex2:ilaplace(s/(s^4-1),s,x) Ex3:ilaplace(exp(-s)/s,s,x) - + ''' return GiacMethods['ilaplace'](self,*args) @@ -7746,11 +7746,11 @@ cdef class GiacMethods_base: Help for im: im(Cplx) Returns the imaginary part of a complex number. - See also: 1/ re 2/ conj + See also: 1/ re 2/ conj Ex1:im(1+2*i) Ex2:im((1+2*i)^2) Ex3:im([1+2*i,(1+2*i)^2]) - + ''' return GiacMethods['im'](self,*args) @@ -7759,11 +7759,11 @@ cdef class GiacMethods_base: Help for imag: imag(Cplx) Returns the imaginary part of a complex number. - See also: 1/ re 2/ conj + See also: 1/ re 2/ conj Ex1:imag(1+2*i) Ex2:imag((1+2*i)^2) Ex3:imag([1+2*i,(1+2*i)^2]) - + ''' return GiacMethods['imag'](self,*args) @@ -7772,10 +7772,10 @@ cdef class GiacMethods_base: Help for image: image(Mtrx(M)) Image of a linear map with matrix M. - See also: 1/ ker 2/ rref + See also: 1/ ker 2/ rref Ex1:image([[1,2],[3,6]]) Ex2:image([[1,2,3],[1,3,6],[2,5,9]]) - + ''' return GiacMethods['image'](self,*args) @@ -7784,7 +7784,7 @@ cdef class GiacMethods_base: Help for implicitdiff: implicitdiff(constr,[depvars],y,diffvars) Implicit differentiation. - See also: 1/ diff + See also: 1/ diff Ex1:implicitdiff(x^2*y+y^2=1,y,x) Ex2:implicitdiff(R=P*V/T,P,T) Ex3:implicitdiff([x^2+y=z,x+y*z=1],[y(x),z(x)],y,x) @@ -7803,7 +7803,7 @@ cdef class GiacMethods_base: Ex16:implicitdiff(x*y*z,-2x^3+15x^2*y+11y^3-24y=0,[x,z,y],order=1) Ex17:implicitdiff(x*y*z,-2x^3+15x^2*y+11y^3-24y=0,[x,z,y],order=2,[1,-1,0]) Ex18: pd:=implicitdiff(x*y*z,-2x^3+15x^2*y+11y^3-24y=0,[x,z,y],order=4,[0,z,0]);pd[4,0,0] - + ''' return GiacMethods['implicitdiff'](self,*args) @@ -7812,7 +7812,7 @@ cdef class GiacMethods_base: Help for implicitplot: implicitplot(Expr,Var1,Var2) plotimplicit(f(x,y),x,y) or plotimplicit(f(x,y),[x,y]) draws graph of f(x,y)=0. - See also: 1/ plotcontour 2/ unfactored 3/ plotinequation + See also: 1/ plotcontour 2/ unfactored 3/ plotinequation Ex1:implicitplot(x^2+y^2-1,x,y) Ex2:implicitplot(x^4+y^4=x^2-y^2) Ex3:implicitplot(x^2+y^2-1,x,y,unfactored) @@ -7822,7 +7822,7 @@ cdef class GiacMethods_base: Ex7:implicitplot(y^3=x^3-x^2,[x,y],xstep=0.1,ystep=0.1) Ex8:implicitplot((x+5)^2+(y+4)^2-1,x=-6..-4,y=-5..-3) Ex9:implicitplot((x+5)^2+(y+4)^2-1,[x=-6..-4,y=-5..-3]) - + ''' return GiacMethods['implicitplot'](self,*args) @@ -7832,7 +7832,7 @@ cdef class GiacMethods_base: import_graph(Str("path/to/graphname[.dot]")) Returns the graph constructed from instructions in the file 'path/to/graphname.dot' (in dot format), or "undef" on failure. Ex1:import_graph("K5.dot") - + ''' return GiacMethods['import_graph'](self,*args) @@ -7841,10 +7841,10 @@ cdef class GiacMethods_base: Help for inString: inString(Str(l),Elem(e)) Tests if e is in the string l (returns -1 or k if l[k]=e). - See also: 1/ contains + See also: 1/ contains Ex1:inString("abcd","b") Ex2:inString("abcd","e") - + ''' return GiacMethods['inString'](self,*args) @@ -7853,10 +7853,10 @@ cdef class GiacMethods_base: Help for in_ideal: in_ideal(Poly,Lst,LstVar,[order]) Checks whether a polynomial or list of polynomials belongs to an ideal given by a Grobner basis (2nd argument) with respect to a variable list. - See also: 1/ gbasis 2/ greduce + See also: 1/ gbasis 2/ greduce Ex1:in_ideal((x+y)^2,[y^2,x^2+2*x*y],[x,y]) Ex2:in_ideal(x+y,[y^2,x^2+2*x*y],[x,y]) - + ''' return GiacMethods['in_ideal'](self,*args) @@ -7865,9 +7865,9 @@ cdef class GiacMethods_base: Help for incidence_matrix: incidence_matrix(Graph(G)) Returns the incidence matrix of G whose rows are indexed by the vertices and columns by the edges (in order defined by the command 'edges'). - See also: 1/ incident_edges + See also: 1/ incident_edges Ex1:incidence_matrix(graph("tetrahedron")) - + ''' return GiacMethods['incidence_matrix'](self,*args) @@ -7876,9 +7876,9 @@ cdef class GiacMethods_base: Help for incident_edges: incident_edges(Graph(G),Vrtx(v)) Returns the list of all edges incident to the vertex v of G (or to the vertices in the list v). - See also: 1/ adjacency_matrix 2/ vertex_degree 3/ incidence_matrix 4/ neighbors + See also: 1/ adjacency_matrix 2/ vertex_degree 3/ incidence_matrix 4/ neighbors Ex1:incident_edges(cycle_graph(8),[1,5,7]) - + ''' return GiacMethods['incident_edges'](self,*args) @@ -7887,9 +7887,9 @@ cdef class GiacMethods_base: Help for incircle: incircle((Pnt or Cplx),(Pnt or Cplx),(Pnt or Cplx)) incircle(A,B,C) draws the incircle of the triangle ABC. - See also: 1/ excircle 2/ circumcircle + See also: 1/ excircle 2/ circumcircle Ex1:incircle(0,1,1+i) - + ''' return GiacMethods['incircle'](self,*args) @@ -7898,10 +7898,10 @@ cdef class GiacMethods_base: Help for increasing_power: increasing_power(:=Intg(0 or 1)) Pseudo-variable to control the display of polynomials. - See also: 1/ cas_setup + See also: 1/ cas_setup Ex1: increasing_power:=1 Ex2: increasing_power:=0 - + ''' return GiacMethods['increasing_power'](self,*args) @@ -7910,9 +7910,9 @@ cdef class GiacMethods_base: Help for independence_number: independence_number(Graph(G)) Returns the independence number of G. - See also: 1/ clique_number 2/ graph_complement 3/ maximum_clique 4/ maximum_independent_set + See also: 1/ clique_number 2/ graph_complement 3/ maximum_clique 4/ maximum_independent_set Ex1:independence_number(complete_graph(3,4)) - + ''' return GiacMethods['independence_number'](self,*args) @@ -7921,9 +7921,9 @@ cdef class GiacMethods_base: Help for indets: indets(Expr) List of variables in the expression. - See also: 1/ has 2/ lvar + See also: 1/ has 2/ lvar Ex1:indets(exp(x)*2*sin(y)) - + ''' return GiacMethods['indets'](self,*args) @@ -7932,12 +7932,12 @@ cdef class GiacMethods_base: Help for index: index(Vect,Expr) Index of the first position of an object in a list, a string or a set or returns an error message. - See also: 1/ find 2/ member + See also: 1/ find 2/ member Ex1:index([3,x,1,2,1,3],1) Ex2:index([0,1,3,2,4,2,5],2) Ex3:index(%{4,3,1,2%},1) Ex4:index("abracadabrant","c") - + ''' return GiacMethods['index'](self,*args) @@ -7946,9 +7946,9 @@ cdef class GiacMethods_base: Help for induced_subgraph: induced_subgraph(Graph(G),Lst(V)) Returns the subgraph of G induced by the vertices in list V. - See also: 1/ subgraph + See also: 1/ subgraph Ex1:induced_subgraph(cycle_graph(6),[1,2,6]) - + ''' return GiacMethods['induced_subgraph'](self,*args) @@ -7957,12 +7957,12 @@ cdef class GiacMethods_base: Help for inequationplot: inequationplot(Expr,[x=xrange,y=yrange],[xstep],[ystep]) Shows the graph of the solutions of inequalities with 2 variables. - See also: 1/ plotfunc 2/ plotcontour 3/ plotdensity 4/ plotimplicit + See also: 1/ plotfunc 2/ plotcontour 3/ plotdensity 4/ plotimplicit Ex1:inequationplot(x^2-y^2<3) Ex2:inequationplot(x^2-y^2<3,[x=-2..2,y=-2..2],xstep=0.1,ystep=0.1) Ex3:inequationplot(3-(x^2-y^2),[x=-2..2,y=-2..2],xstep=0.1,ystep=0.1) Ex4:inequationplot([x+y>3,x^2ln(a*b^n) for integers n. - See also: 1/ texpand + See also: 1/ texpand Ex1:lncollect(ln(x)+2*ln(y)) - + ''' return GiacMethods['lncollect'](self,*args) @@ -9904,9 +9904,9 @@ cdef class GiacMethods_base: Help for lnexpand: lnexpand(Expr) Expands logarithms. - See also: 1/ texpand 2/ expexpand 3/ trigexpand + See also: 1/ texpand 2/ expexpand 3/ trigexpand Ex1:lnexpand(ln(3*x)) - + ''' return GiacMethods['lnexpand'](self,*args) @@ -9915,10 +9915,10 @@ cdef class GiacMethods_base: Help for locus: locus(Pnt,Elem) locus(M,A) draws the locus of M (or locus(d,A) draws the envelope of d) when A:=element(C) (C is a curve). The example instructions below must be written in a geometric level on different lines. - See also: 1/ envelope 2/ trace + See also: 1/ envelope 2/ trace Ex1: A:=element(circle(i,1+i));M:=homothety(0,2,A);locus(M,A) Ex2: A:=element(line(x=0));d:=perpen_bisector(1,A);locus(d,A) - + ''' return GiacMethods['locus'](self,*args) @@ -9927,11 +9927,11 @@ cdef class GiacMethods_base: Help for log: log(Expr or Opt) Natural logarithm or option of the convert or convertir command (id trig2exp). - See also: 1/ exp 2/ convert 3/ trig2exp 4/ log10 + See also: 1/ exp 2/ convert 3/ trig2exp 4/ log10 Ex1:log(1) Ex2:log(e) Ex3: convert(cos(x),ln) - + ''' return GiacMethods['log'](self,*args) @@ -9940,9 +9940,9 @@ cdef class GiacMethods_base: Help for log10: log10(Expr) Common logarithm (base 10). - See also: 1/ alog10 2/ ln + See also: 1/ alog10 2/ ln Ex1:log10(10) - + ''' return GiacMethods['log10'](self,*args) @@ -9951,10 +9951,10 @@ cdef class GiacMethods_base: Help for logarithmic_regression: logarithmic_regression(Lst||Mtrx(A),[Lst]) Returns the coefficients a and b of y=a*ln(x)+b : it is the best logarithm which approx the points where the coordinates are the rows of A (or the 2 lists). - See also: 1/ exponential_regression + See also: 1/ exponential_regression Ex1:logarithmic_regression([[1.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]]) Ex2:logarithmic_regression([1.0,2.0,3.0,4.0],[1.0,4.0,9.0,16.0]) - + ''' return GiacMethods['logarithmic_regression'](self,*args) @@ -9963,10 +9963,10 @@ cdef class GiacMethods_base: Help for logarithmic_regression_plot: logarithmic_regression_plot(Lst||Mtrx(A),[Lst]) Returns the plot of y=a*ln(x)+b : it is the best logarithm which approx the points where the coordinates are the rows of A (or the 2 lists). - See also: 1/ exponential_regression_plot + See also: 1/ exponential_regression_plot Ex1:logarithmic_regression_plot([[1.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]]) Ex2:logarithmic_regression_plot([1.0,2.0,3.0,4.0],[1.0,4.0,9.0,16.0]) - + ''' return GiacMethods['logarithmic_regression_plot'](self,*args) @@ -9975,10 +9975,10 @@ cdef class GiacMethods_base: Help for logb: logb(Real) Logarithm with base b. - See also: 1/ log 2/ log10 + See also: 1/ log 2/ log10 Ex1:logb(5,2) Ex2:logb(7,10) - + ''' return GiacMethods['logb'](self,*args) @@ -9987,10 +9987,10 @@ cdef class GiacMethods_base: Help for logistic_regression: logistic_regression(Lst(L),Real(x0),Real(y0)) Returns y,y',C,y'max,xmax,R : y is a logistic function (sol of y'/y=a*y+b), such that y(x0)=y0 and where [y'(x0),y'(x0+1)...] is the best approximation of L. - See also: 1/ polynomial_regression 2/ power_regression 3/ linear_regression + See also: 1/ polynomial_regression 2/ power_regression 3/ linear_regression Ex1:logistic_regression(evalf([1,2,4,6,8,7,5]),1,2) Ex2:logistic_regression([0.0,1.0,2.0,3.0,4.0],0.0,1.0) - + ''' return GiacMethods['logistic_regression'](self,*args) @@ -9999,10 +9999,10 @@ cdef class GiacMethods_base: Help for logistic_regression_plot: logistic_regression_plot(Lst(L),Real(x0),Real(y0)) Returns the plot of a logistic function y such that y(x0)=y0 and where [y'(x0),y'(x0+1)...] is the best approximation of L. - See also: 1/ polynomial_regression_plot 2/ power_regression_plot 3/ linear_regression_plot + See also: 1/ polynomial_regression_plot 2/ power_regression_plot 3/ linear_regression_plot Ex1:logistic_regression_plot(evalf([1,2,4,6,8,7,5]),1,2) Ex2:logistic_regression_plot([0.0,1.0,2.0,3.0,4.0],0.0,1.0) - + ''' return GiacMethods['logistic_regression_plot'](self,*args) @@ -10011,10 +10011,10 @@ cdef class GiacMethods_base: Help for lower: lower(Mtrx||Strng) Returns the lower triangular matrix (under the diagonal, included) or writes a string in lowercase. - See also: 1/ diag 2/ upper + See also: 1/ diag 2/ upper Ex1:lower([[1,2,3],[4,5,6],[7,8,9]]) Ex2:lower("HELLO") - + ''' return GiacMethods['lower'](self,*args) @@ -10023,10 +10023,10 @@ cdef class GiacMethods_base: Help for lowest_common_ancestor: lowest_common_ancestor(Graph(T),Vrtx(r),Seq(u,v)||Lst([u1,v1],[u2,v2],...)) Returns the lowest common ancestor of nodes u and v in the tree graph T with root r, or the list of lowest common ancestors of all pairs [uk,vk]. - See also: 1/ is_tree 2/ tree_height + See also: 1/ is_tree 2/ tree_height Ex1: T:=random_tree(30); lowest_common_ancestor(T,15,10,20) Ex2: T:=random_tree(30); lowest_common_ancestor(T,15,[[10,20],[11,19]]) - + ''' return GiacMethods['lowest_common_ancestor'](self,*args) @@ -10035,9 +10035,9 @@ cdef class GiacMethods_base: Help for lowpass: lowpass(Lst(s),Real(c),[Intg(samplerate)]) Returns the result of applying a simple first-order lowpass RC filter with cutoff frequency c (the default samplerate is 44100) to the given signal s. - See also: 1/ highpass 2/ moving_average + See also: 1/ highpass 2/ moving_average Ex1: f:=unapply(periodic(sign(x),x,-1/880,1/880),x):;s:=createwav(apply(f,soundsec(1))):;playsnd(lowpass(s,1000)) - + ''' return GiacMethods['lowpass'](self,*args) @@ -10046,8 +10046,8 @@ cdef class GiacMethods_base: Help for lp_assume: lp_assume(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_assume'](self,*args) @@ -10056,8 +10056,8 @@ cdef class GiacMethods_base: Help for lp_bestprojection: lp_bestprojection(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_bestprojection'](self,*args) @@ -10066,8 +10066,8 @@ cdef class GiacMethods_base: Help for lp_binary: lp_binary(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_binary'](self,*args) @@ -10076,8 +10076,8 @@ cdef class GiacMethods_base: Help for lp_binaryvariables: lp_binaryvariables(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_binaryvariables'](self,*args) @@ -10086,8 +10086,8 @@ cdef class GiacMethods_base: Help for lp_breadthfirst: lp_breadthfirst(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_breadthfirst'](self,*args) @@ -10096,8 +10096,8 @@ cdef class GiacMethods_base: Help for lp_depthfirst: lp_depthfirst(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_depthfirst'](self,*args) @@ -10106,8 +10106,8 @@ cdef class GiacMethods_base: Help for lp_depthlimit: lp_depthlimit(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_depthlimit'](self,*args) @@ -10116,8 +10116,8 @@ cdef class GiacMethods_base: Help for lp_firstfractional: lp_firstfractional(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_firstfractional'](self,*args) @@ -10126,8 +10126,8 @@ cdef class GiacMethods_base: Help for lp_gaptolerance: lp_gaptolerance(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_gaptolerance'](self,*args) @@ -10136,8 +10136,8 @@ cdef class GiacMethods_base: Help for lp_hybrid: lp_hybrid(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_hybrid'](self,*args) @@ -10146,8 +10146,8 @@ cdef class GiacMethods_base: Help for lp_initialpoint: lp_initialpoint(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_initialpoint'](self,*args) @@ -10156,8 +10156,8 @@ cdef class GiacMethods_base: Help for lp_integer: lp_integer(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_integer'](self,*args) @@ -10166,8 +10166,8 @@ cdef class GiacMethods_base: Help for lp_integertolerance: lp_integertolerance(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_integertolerance'](self,*args) @@ -10176,8 +10176,8 @@ cdef class GiacMethods_base: Help for lp_integervariables: lp_integervariables(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_integervariables'](self,*args) @@ -10186,8 +10186,8 @@ cdef class GiacMethods_base: Help for lp_interiorpoint: lp_interiorpoint(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_interiorpoint'](self,*args) @@ -10196,8 +10196,8 @@ cdef class GiacMethods_base: Help for lp_iterationlimit: lp_iterationlimit(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_iterationlimit'](self,*args) @@ -10206,8 +10206,8 @@ cdef class GiacMethods_base: Help for lp_lastfractional: lp_lastfractional(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_lastfractional'](self,*args) @@ -10216,8 +10216,8 @@ cdef class GiacMethods_base: Help for lp_maxcuts: lp_maxcuts(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_maxcuts'](self,*args) @@ -10226,8 +10226,8 @@ cdef class GiacMethods_base: Help for lp_maximize: lp_maximize(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_maximize'](self,*args) @@ -10236,8 +10236,8 @@ cdef class GiacMethods_base: Help for lp_method: lp_method(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_method'](self,*args) @@ -10246,8 +10246,8 @@ cdef class GiacMethods_base: Help for lp_mostfractional: lp_mostfractional(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_mostfractional'](self,*args) @@ -10256,8 +10256,8 @@ cdef class GiacMethods_base: Help for lp_nodelimit: lp_nodelimit(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_nodelimit'](self,*args) @@ -10266,8 +10266,8 @@ cdef class GiacMethods_base: Help for lp_nodeselect: lp_nodeselect(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_nodeselect'](self,*args) @@ -10276,8 +10276,8 @@ cdef class GiacMethods_base: Help for lp_nonnegative: lp_nonnegative(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_nonnegative'](self,*args) @@ -10286,8 +10286,8 @@ cdef class GiacMethods_base: Help for lp_nonnegint: lp_nonnegint(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_nonnegint'](self,*args) @@ -10296,8 +10296,8 @@ cdef class GiacMethods_base: Help for lp_pseudocost: lp_pseudocost(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_pseudocost'](self,*args) @@ -10306,8 +10306,8 @@ cdef class GiacMethods_base: Help for lp_simplex: lp_simplex(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_simplex'](self,*args) @@ -10316,8 +10316,8 @@ cdef class GiacMethods_base: Help for lp_timelimit: lp_timelimit(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_timelimit'](self,*args) @@ -10326,8 +10326,8 @@ cdef class GiacMethods_base: Help for lp_variables: lp_variables(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_variables'](self,*args) @@ -10336,8 +10336,8 @@ cdef class GiacMethods_base: Help for lp_varselect: lp_varselect(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_varselect'](self,*args) @@ -10346,8 +10346,8 @@ cdef class GiacMethods_base: Help for lp_verbose: lp_verbose(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_verbose'](self,*args) @@ -10356,7 +10356,7 @@ cdef class GiacMethods_base: Help for lpsolve: lpsolve(Expr(o),[List(c)],[bounds],[options]) Solves a (mixed integer/binary) LP problem in general form. - See also: 1/ nlpsolve 2/ fsolve + See also: 1/ nlpsolve 2/ fsolve Ex1:lpsolve(2x+y-z+4,[x<=1,y>=2,x+3y-z=2,2x-y+z<=8,-x+y<=5]) Ex2:lpsolve(-4x-5y,[x+2y<=6,5x+4y<=20,0<=x,0<=y]) Ex3:lpsolve(-7x+2y,[4x-12y<=20,-x+3y<=3],x=-5..5,y=0..inf,lp_maximize=true) @@ -10372,7 +10372,7 @@ cdef class GiacMethods_base: Ex13:lpsolve(x1+x2,[2x1+5x2<=16,6x1+5x2<=30],assume=nonnegint,lp_maximize) Ex14:lpsolve(8x1+11x2+6x3+4x4,[5x1+7x2+4x3+3x4<=14],assume=lp_binary,lp_maximize) Ex15:lpsolve(x1+x2,[1867x1+1913x2=3618894],assume=nonnegint,lp_verbose=true) - + ''' return GiacMethods['lpsolve'](self,*args) @@ -10381,9 +10381,9 @@ cdef class GiacMethods_base: Help for lsmod: lsmod(NULL) Displays the installed dynamic libraries. - See also: 1/ insmod 2/ rmmod + See also: 1/ insmod 2/ rmmod Ex1:lsmod() - + ''' return GiacMethods['lsmod'](self,*args) @@ -10392,10 +10392,10 @@ cdef class GiacMethods_base: Help for lsq: lsq(Mtrx(A),(Mtrx || Vect)(B)) Returns the vector (resp matrix) X which is the minimum of the euclidean (resp Frobenius) norm of A*X-B corresponding to the linear system A*X=B when B is a vector (resp matrix). - See also: 1/ lu 2/ QR + See also: 1/ lu 2/ QR Ex1:lsq([[1,2],[3,4]],[5,11]) Ex2:lsq([[1,2],[3,4]],[[5,-1],[11,-1]]) - + ''' return GiacMethods['lsq'](self,*args) @@ -10404,10 +10404,10 @@ cdef class GiacMethods_base: Help for lu: lu(Mtrx) For a numerical matrix A, returns p permutation, L and U such that PA=LU (P=permu2mat(p)). - See also: 1/ qr 2/ cholesky 3/ LU + See also: 1/ qr 2/ cholesky 3/ LU Ex1:lu([[1,2],[3,4]]) Ex2:lu([[6,12,18],[5,14,31],[3,8,18]]) - + ''' return GiacMethods['lu'](self,*args) @@ -10416,10 +10416,10 @@ cdef class GiacMethods_base: Help for lvar: lvar(Expr) List of variables of an object (with rational dependence). - See also: 1/ lname 2/ has + See also: 1/ lname 2/ has Ex1:lvar(exp(x)*2*sin(y)) Ex2:lvar(exp(x)*2*sin(y)+ln(x)) - + ''' return GiacMethods['lvar'](self,*args) @@ -10428,9 +10428,9 @@ cdef class GiacMethods_base: Help for mRow: mRow(Expr(Xpr),Mtrx(A),Intg(n1)) Multiplies row n1 of the matrix A by Xpr. - See also: 1/ rowAdd 2/ mRowAdd + See also: 1/ rowAdd 2/ mRowAdd Ex1:mRow(12,[[1,2],[3,4],[5,6]],0) - + ''' return GiacMethods['mRow'](self,*args) @@ -10439,9 +10439,9 @@ cdef class GiacMethods_base: Help for mRowAdd: mRowAdd(Expr(Xpr),Mtrx(A),Intg(n1),Intg(n2)) Multiplies row n1 of the matrix A by Xpr, then adds it to the row n2. - See also: 1/ rowAdd 2/ mRow + See also: 1/ rowAdd 2/ mRow Ex1:mRowAdd(12,[[1,2],[3,4],[5,6]],0,2) - + ''' return GiacMethods['mRowAdd'](self,*args) @@ -10450,10 +10450,10 @@ cdef class GiacMethods_base: Help for magenta: magenta(Opt) Option of the display command to display with color. - See also: 1/ display + See also: 1/ display Ex1: F:=display(point(2+1.5*i),red) Ex2: F:=display(point(2+1.5*i),point_point+green) - + ''' return GiacMethods['magenta'](self,*args) @@ -10462,9 +10462,9 @@ cdef class GiacMethods_base: Help for make_directed: make_directed(Graph(G),[Mrtx(A)]) Returns the copy of undirected graph G in which every edge is converted to a pair of arcs [and with weights specified by matrix A]. - See also: 1/ is_directed 2/ make_weighted 3/ underlying_graph + See also: 1/ is_directed 2/ make_weighted 3/ underlying_graph Ex1:make_directed(cycle_graph(4),[[0,0,0,1],[2,0,1,3],[0,1,0,4],[5,0,4,0]]) - + ''' return GiacMethods['make_directed'](self,*args) @@ -10473,9 +10473,9 @@ cdef class GiacMethods_base: Help for make_weighted: make_weighted(Graph(G),[Mrtx(M)]) Returns a copy of G with edge/arc weights set as specified by matrix M. If M is omitted, a square matrix of ones is used. If G is undirected, M is assumed to be symmetric. - See also: 1/ get_edge_weight 2/ is_weighted 3/ make_directed 4/ set_edge_weight 5/ underlying_graph 6/ weight_matrix + See also: 1/ get_edge_weight 2/ is_weighted 3/ make_directed 4/ set_edge_weight 5/ underlying_graph 6/ weight_matrix Ex1:make_weighted(cycle_graph(3),[[0,2,3],[2,0,1],[3,1,0]]) - + ''' return GiacMethods['make_weighted'](self,*args) @@ -10484,12 +10484,12 @@ cdef class GiacMethods_base: Help for makelist: makelist(Fnc,InitVal,FinalVal,StepVal) Returns a list made with a function or with a constant. - See also: 1/ seq 2/ range 3/ makemat 4/ $ + See also: 1/ seq 2/ range 3/ makemat 4/ $ Ex1:makelist(x->x^2,1,10,2) Ex2:makelist(4,1,10) Ex3:makelist(4,5,10) Ex4:makelist(x->ifte(x<5,"A","B"),1,10) - + ''' return GiacMethods['makelist'](self,*args) @@ -10498,11 +10498,11 @@ cdef class GiacMethods_base: Help for makemat: makemat(Fnct(f),RowsNumb,ColsNumb) Creates a matrix. - See also: 1/ matrix + See also: 1/ matrix Ex1:makemat((j,k)->j+k,3,2) Ex2:makemat((j,k)->1/(j+k+1),2,3) Ex3:makemat(sqrt(2),2,3) - + ''' return GiacMethods['makemat'](self,*args) @@ -10511,9 +10511,9 @@ cdef class GiacMethods_base: Help for makesuite: makesuite(Vect||Lst) Returns a sequence made with a vector. - See also: 1/ makevector 2/ op + See also: 1/ makevector 2/ op Ex1:makesuite([1,2,3]) - + ''' return GiacMethods['makesuite'](self,*args) @@ -10522,9 +10522,9 @@ cdef class GiacMethods_base: Help for makevector: makevector(Seq) Returns a vector made with a sequence. - See also: 1/ makesuite + See also: 1/ makesuite Ex1:makevector(1,2,3) - + ''' return GiacMethods['makevector'](self,*args) @@ -10533,11 +10533,11 @@ cdef class GiacMethods_base: Help for map: map(Lst(l),Fnc(f)) Applies the function f at the elements of the list l or at a polynomial of internal format. - See also: 1/ apply 2/ set 3/ unapply + See also: 1/ apply 2/ set 3/ unapply Ex1:map([1,2,3],x->x^3) Ex2:map([1,2,3],unapply(x^3,x)) Ex3:map(%%%{1,[2,0]%%%}+%%%{2,[1,1]%%%},(a,b,c)->a*(b+2*c)) - + ''' return GiacMethods['map'](self,*args) @@ -10546,8 +10546,8 @@ cdef class GiacMethods_base: Help for maple2mupad: maple2mupad(Str("Name_Maplefile"),Str("Name_Mupadfile")) maple2mupad("file1","file2") translates file1(Maple) to file2(MuPAD). - See also: 1/ maple2xcas - + See also: 1/ maple2xcas + ''' return GiacMethods['maple2mupad'](self,*args) @@ -10556,8 +10556,8 @@ cdef class GiacMethods_base: Help for maple2xcas: maple2xcas(Str("NameMapleFile"),Str("NameXcasFile")) maple2xcas("file1","file2") translates file1(Maple) to file2(Xcas). - See also: 1/ maple2mupad - + See also: 1/ maple2mupad + ''' return GiacMethods['maple2xcas'](self,*args) @@ -10566,9 +10566,9 @@ cdef class GiacMethods_base: Help for maple_ifactors: maple_ifactors(Intg(n)) Returns 1 or -1 for the sign and the prime factors with their multiplicity of n in a matrix, such as ifactors in Maple. - See also: 1/ ifactors + See also: 1/ ifactors Ex1:maple_ifactors(120) - + ''' return GiacMethods['maple_ifactors'](self,*args) @@ -10577,10 +10577,10 @@ cdef class GiacMethods_base: Help for maple_mode: maple_mode(Intg(0) or 1 or 2 or 3) Switches to mode Xcas (0), Maple (1), Mupad (2), TI89 (3). - See also: 1/ python_compat + See also: 1/ python_compat Ex1:maple_mode(1) Ex2:maple_mode(0) - + ''' return GiacMethods['maple_mode'](self,*args) @@ -10589,9 +10589,9 @@ cdef class GiacMethods_base: Help for markov: markov(Mtrx(M),[Real(eps)]) Computation of the proper elements of a Markov chain transition matrix M, returns the list of sequence of positive recurrent states, the list of corresponding invariant probabilities, the list of other strongly connected components, the list of probabilities to end up in the sequence of recurrent states. - See also: 1/ randmarkov 2/ plotproba + See also: 1/ randmarkov 2/ plotproba Ex1:markov([[0,0,1/2,0,1/2],[0,0,1,0,0],[1/4,1/4,0,1/4,1/4],[0,0,1/2,0,1/2],[0,0,0,0,1]]) - + ''' return GiacMethods['markov'](self,*args) @@ -10600,9 +10600,9 @@ cdef class GiacMethods_base: Help for mat2list: mat2list(Mtrx) Returns the list of the terms of the matrix. - See also: 1/ list2mat 2/ flatten + See also: 1/ list2mat 2/ flatten Ex1:mat2list([[1,8],[4,9]]) - + ''' return GiacMethods['mat2list'](self,*args) @@ -10611,9 +10611,9 @@ cdef class GiacMethods_base: Help for mathml: mathml(Expr) Converts the expression into a string to display maths for the web. - See also: 1/ export_mathml 2/ latex + See also: 1/ export_mathml 2/ latex Ex1:mathml(1/2) - + ''' return GiacMethods['mathml'](self,*args) @@ -10622,9 +10622,9 @@ cdef class GiacMethods_base: Help for matpow: matpow(Mtrx,Intg(n)) Calculates the nth power of a matrix by jordanization. - See also: 1/ &^ 2/ ^ + See also: 1/ &^ 2/ ^ Ex1:matpow([[1,2],[3,4]],n) - + ''' return GiacMethods['matpow'](self,*args) @@ -10633,12 +10633,12 @@ cdef class GiacMethods_base: Help for matrix: matrix(Intg(p),Intg(q),(Fnc(f) or Val(a))) Makes a matrix m(j,k) with p rows and q cols, m(j,k)=f(j,k) or m(j,k)=a : the index start at 0 or 1 according to the mode (Xcas or Maple) (or option of apply) or make a matrix with a table. - See also: 1/ makemat 2/ makelist 3/ apply + See also: 1/ makemat 2/ makelist 3/ apply Ex1:matrix(2,3,(j,k)->1/(j+k+1)) Ex2:matrix(3,2,(j,k)->j+k) Ex3:matrix(2,3,4) - Ex4: A[0..2,0..2]:=1;A[0..1,1..2]:=2;a:=matrix(A) - + Ex4: A[0..2,0..2]:=1;A[0..1,1..2]:=2;a:=matrix(A) + ''' return GiacMethods['matrix'](self,*args) @@ -10647,12 +10647,12 @@ cdef class GiacMethods_base: Help for matrix_norm: matrix_norm(Mtrx,[2]||[inf]) Matrix norm induced by l1norm or by l2norm or by linfinty norm. - See also: 1/ l1norm 2/ l2 norm 3/ linfnorm 4/ frobenius_norm + See also: 1/ l1norm 2/ l2 norm 3/ linfnorm 4/ frobenius_norm Ex1:matrix_norm([[1,2,3],[3,-9,6],[4,5,6]]) Ex2:matrix_norm([[1,2,3],[3,-9,6],[4,5,6]],1) Ex3:matrix_norm([[1,2,3],[3,-9,6],[4,5,6]],2) Ex4:matrix_norm([[1,2,3],[3,-9,6],[4,5,6]],inf) - + ''' return GiacMethods['matrix_norm'](self,*args) @@ -10661,9 +10661,9 @@ cdef class GiacMethods_base: Help for max: max(Seq||Lst) Maximum of elements of a sequence or a list of reals. - See also: 1/ min + See also: 1/ min Ex1:max(25,35) - + ''' return GiacMethods['max'](self,*args) @@ -10672,9 +10672,9 @@ cdef class GiacMethods_base: Help for maxflow: maxflow(Graph(G),Vrtx(s),Vrtx(t)) Returns the optimal value for the max flow problem for network G with the source s and sink t along with an optimal flow (as a matrix). - See also: 1/ minimum_cut + See also: 1/ minimum_cut Ex1:maxflow(digraph(%{[[1,2],2],[[2,3],4],[[3,4],3],[[1,5],3],[[5,2],1],[[5,4],2]%}),1,4) - + ''' return GiacMethods['maxflow'](self,*args) @@ -10683,9 +10683,9 @@ cdef class GiacMethods_base: Help for maximal_independent_set: maximal_independent_set(Graph(G)) Returns a maximal set of mutually independent (non-adjacent) vertices in G. - See also: 1/ maximum_independent_set + See also: 1/ maximum_independent_set Ex1:maximal_independent_set(graph("petersen")) - + ''' return GiacMethods['maximal_independent_set'](self,*args) @@ -10702,7 +10702,7 @@ cdef class GiacMethods_base: Ex6:maximize(sqrt(x^2+y^2)-z,[x^2+y^2<=16,x+y+z=10],[x,y,z]) Ex7:maximize((1+x^2+3y+5x-4*x*y)/(1+x^2+y^2),x^2/4+y^2/3=9,[x,y]) Ex8:maximize(cos(x)^2+cos(y)^2,x+y=pi/4,[x,y],locus) - + ''' return GiacMethods['maximize'](self,*args) @@ -10711,9 +10711,9 @@ cdef class GiacMethods_base: Help for maximum_clique: maximum_clique(Graph(G)) Returns the maximum clique of undirected graph G as a list of vertices. - See also: 1/ clique_number 2/ is_clique 3/ maximum_independent_set + See also: 1/ clique_number 2/ is_clique 3/ maximum_independent_set Ex1:maximum_clique(graph_complement(complete_graph(3,4))) - + ''' return GiacMethods['maximum_clique'](self,*args) @@ -10722,9 +10722,9 @@ cdef class GiacMethods_base: Help for maximum_degree: maximum_degree(Graph(G)) Returns the largest degree among the vertices of G. - See also: 1/ minimum_degree 2/ vertex_degree + See also: 1/ minimum_degree 2/ vertex_degree Ex1:maximum_degree(digraph(trail(1,2,3,4,5,6,4,7,8,2))) - + ''' return GiacMethods['maximum_degree'](self,*args) @@ -10733,9 +10733,9 @@ cdef class GiacMethods_base: Help for maximum_independent_set: maximum_independent_set(Graph(G)) Returns the maximum independent vertex set of G. - See also: 1/ clique_number 2/ graph_complement 3/ independence_number 4/ maximum_clique + See also: 1/ clique_number 2/ graph_complement 3/ independence_number 4/ maximum_clique Ex1:maximum_independent_set(complete_graph(3,4)) - + ''' return GiacMethods['maximum_independent_set'](self,*args) @@ -10744,9 +10744,9 @@ cdef class GiacMethods_base: Help for maximum_matching: maximum_matching(Graph(G)) Returns the list of edges representing maximum matching in G. - See also: 1/ maximum_independent_set + See also: 1/ maximum_independent_set Ex1: G:=graph("soccerball"); draw_graph(highlight_edges(G,maximum_matching(G))) - + ''' return GiacMethods['maximum_matching'](self,*args) @@ -10755,11 +10755,11 @@ cdef class GiacMethods_base: Help for maxnorm: maxnorm(Vect or Mtrx) Norm with the max of a vector (or of a matrix): maxnorm([x1,x2,..,xn])=max(|x1|,..,|xn|). - See also: 1/ l2norm 2/ l1norm + See also: 1/ l2norm 2/ l1norm Ex1:maxnorm([1,2]) Ex2:maxnorm([1,2,3,-4]) Ex3:maxnorm([[1,2],[3,-4]]) - + ''' return GiacMethods['maxnorm'](self,*args) @@ -10768,11 +10768,11 @@ cdef class GiacMethods_base: Help for mean: mean(Lst||Mtrx,[Lst]) Mean of a list with the second argument as weight or of the columns of a matrix. - See also: 1/ stddev + See also: 1/ stddev Ex1:mean([1,2,3]) Ex2:mean([1,2,3],[1,2,3]) Ex3:mean([[1,2,3],[1,2,3]]) - + ''' return GiacMethods['mean'](self,*args) @@ -10781,10 +10781,10 @@ cdef class GiacMethods_base: Help for median: median(Lst||Mtrx,[Lst]) Returns the median of a list with the second argument as weight or of the columns of a matrix. - See also: 1/ quartiles + See also: 1/ quartiles Ex1:median([1,2,3,5,10,4]) Ex2:median([1,2,3,5,10,4],[1,2,3,1,2,3]) - + ''' return GiacMethods['median'](self,*args) @@ -10793,9 +10793,9 @@ cdef class GiacMethods_base: Help for median_line: median_line((Pnt or Cplx),(Pnt or Cplx),(Pnt or Cplx)) median_line(A,B,C) draws the median-line through A of the triangle ABC. - See also: 1/ midpoint 2/ perpen_bisector + See also: 1/ midpoint 2/ perpen_bisector Ex1:median_line(-1,1-i,i) - + ''' return GiacMethods['median_line'](self,*args) @@ -10804,10 +10804,10 @@ cdef class GiacMethods_base: Help for member: member(Elem(e),(Lst(l) or Set(l))) Tests if e is in the list or set l (=0, or k+1 with l[k]=e). - See also: 1/ contains 2/ est_element 3/ find 4/ index + See also: 1/ contains 2/ est_element 3/ find 4/ index Ex1:member(1,[4,3,1,2]) Ex2:member(1,%{4,3,1,2%}) - + ''' return GiacMethods['member'](self,*args) @@ -10819,7 +10819,7 @@ cdef class GiacMethods_base: Ex1:mgf(normald,1,0) Ex2:mgf(poisson,5) Ex3:mgf(binomial,n,p) - + ''' return GiacMethods['mgf'](self,*args) @@ -10828,13 +10828,13 @@ cdef class GiacMethods_base: Help for mid: mid(Lst(l) or Str(l),Intg(d),Intg(n)) Returns the extracted list of l with n elements (by default n=size(l)-d) and beginning at index d. - See also: 1/ head 2/ tail 3/ left 4/ right 5/ subMat + See also: 1/ head 2/ tail 3/ left 4/ right 5/ subMat Ex1:mid([0,1,2,3,4,5,6],2,3) Ex2:mid([0,1,2,3,4,5,6],2) Ex3:mid("azertyuiop",2,4) Ex4:mid("azertyuiop",2) Ex5:mid([[1,2],[3,4],[5,6]],1) - + ''' return GiacMethods['mid'](self,*args) @@ -10843,14 +10843,14 @@ cdef class GiacMethods_base: Help for middle_point: middle_point(Opt) Option of the plotarea command and of the area command. - See also: 1/ plotarea 2/ area + See also: 1/ plotarea 2/ area Ex1: plotarea(x^2,x=0..1,5,trapezoid) Ex2: plotarea(x^2,x=0..1,5,middle_point) Ex3: plotarea(x^2,x=0..1,5,right_rectangle) Ex4: plotarea(x^2,x=0..1,5,left_rectangle) Ex5: area(x^2,x=0..1,5,middle_point) Ex6: area(x^2,x=0..1,5,trapezoid) - + ''' return GiacMethods['middle_point'](self,*args) @@ -10859,9 +10859,9 @@ cdef class GiacMethods_base: Help for midpoint: midpoint((Pnt or Cplx),(Pnt or Cplx)) midpoint(A,B) draws the midpoint of the segment AB. - See also: 1/ median_line 2/ perpen_bisector + See also: 1/ median_line 2/ perpen_bisector Ex1:midpoint(-2,2i) - + ''' return GiacMethods['midpoint'](self,*args) @@ -10870,9 +10870,9 @@ cdef class GiacMethods_base: Help for min: min(Seq||Lst) Minimum of elements of a sequence or a list of reals. - See also: 1/ max + See also: 1/ max Ex1:min(25,35) - + ''' return GiacMethods['min'](self,*args) @@ -10881,10 +10881,10 @@ cdef class GiacMethods_base: Help for minimal_edge_coloring: minimal_edge_coloring(Graph(G),[sto]) Finds the minimal edge coloring of G and returns the sequence n,L where n is the class of G (1 for D colors and 2 for D+1 colors) and L is the list of colors of edges of G as returned by the edges command, or a copy of G with colored edges if the option 'sto' is specified. - See also: 1/ chromatic_index 2/ minimal_vertex_coloring 3/ edges + See also: 1/ chromatic_index 2/ minimal_vertex_coloring 3/ edges Ex1:minimal_edge_coloring(graph("petersen")) Ex2: G:=minimal_edge_coloring(graph("dodecahedron"),sto); draw_graph(G) - + ''' return GiacMethods['minimal_edge_coloring'](self,*args) @@ -10893,9 +10893,9 @@ cdef class GiacMethods_base: Help for minimal_spanning_tree: minimal_spanning_tree(Graph(G)) Returns the minimal spanning tree of undirected graph G. - See also: 1/ spanning_tree + See also: 1/ spanning_tree Ex1:minimal_spanning_tree(graph([[0,1,0,4,0,0],[1,0,1,0,4,0],[0,1,0,3,0,1],[4,0,3,0,1,0],[0,4,0,1,0,4],[0,0,1,0,4,0]])) - + ''' return GiacMethods['minimal_spanning_tree'](self,*args) @@ -10904,10 +10904,10 @@ cdef class GiacMethods_base: Help for minimal_vertex_coloring: minimal_vertex_coloring(Graph(G),[sto]) Computes the minimal vertex coloring for G and returns the colors in the order of vertices. If optional parameter "sto" is given, the colors are assigned to vertices and the modified copy of G is returned. - See also: 1/ chromatic_number 2/ is_vertex_colorable + See also: 1/ chromatic_number 2/ is_vertex_colorable Ex1:minimal_vertex_coloring(graph("petersen")) Ex2: draw_graph(minimal_vertex_coloring(graph("petersen"),sto)) - + ''' return GiacMethods['minimal_vertex_coloring'](self,*args) @@ -10926,7 +10926,7 @@ cdef class GiacMethods_base: Ex8:minimax(abs(x)*sqrt(abs(x)),x=-2..2,15) Ex9:minimax(min(1/cosh(3*sin(x)),sin(9x/10)),x=-3..4,30) Ex10:minimax(when(x==0,0,exp(-1/x^2)),x=-1..1,25) - + ''' return GiacMethods['minimax'](self,*args) @@ -10943,7 +10943,7 @@ cdef class GiacMethods_base: Ex6:minimize(sqrt(x^2+y^2)-z,[x^2+y^2<=16,x+y+z=10],[x,y,z]) Ex7:minimize((1+x^2+3y+5x-4*x*y)/(1+x^2+y^2),x^2/4+y^2/3=9,[x,y]) Ex8:minimize(cos(x)^2+cos(y)^2,x+y=pi/4,[x,y],locus) - + ''' return GiacMethods['minimize'](self,*args) @@ -10952,9 +10952,9 @@ cdef class GiacMethods_base: Help for minimum_cut: minimum_cut(Graph(G),Vrtx(s),Vrtx(t)) Returns the list of edges forming a minimum cut in a directed graph G with the source s and sink t. - See also: 1/ maxflow + See also: 1/ maxflow Ex1:minimum_cut(digraph(%{[[1,2],2],[[2,3],4],[[3,4],3],[[1,5],3],[[5,2],1],[[5,4],2]%}),1,4) - + ''' return GiacMethods['minimum_cut'](self,*args) @@ -10963,9 +10963,9 @@ cdef class GiacMethods_base: Help for minimum_degree: minimum_degree(Graph(G)) Returns the smallest degree among the vertices of G. - See also: 1/ maximum_degree 2/ vertex_degree + See also: 1/ maximum_degree 2/ vertex_degree Ex1:minimum_degree(digraph(trail(1,2,3,4,5,6,4,7,8,2))) - + ''' return GiacMethods['minimum_degree'](self,*args) @@ -10974,11 +10974,11 @@ cdef class GiacMethods_base: Help for mkisom: mkisom(Vect,(Sign(1) or -1)) Matrix of an isometry given by its proper elements. - See also: 1/ isom + See also: 1/ isom Ex1:mkisom([1,2],1) Ex2:mkisom([[1,0,0],pi/3],-1) Ex3:mkisom(pi,1) - + ''' return GiacMethods['mkisom'](self,*args) @@ -10987,9 +10987,9 @@ cdef class GiacMethods_base: Help for mksa: mksa(Unit) Converts units to the MKSA international unit system. - See also: 1/ convert 2/ ufactor + See also: 1/ convert 2/ ufactor Ex1:mksa(1_N) - + ''' return GiacMethods['mksa'](self,*args) @@ -10998,9 +10998,9 @@ cdef class GiacMethods_base: Help for modgcd: modgcd(Poly,Poly) GCD of 2 polynomials, with the modular algorithm. - See also: 1/ gcd 2/ heugcd 3/ ezgcd 4/ psrgcd + See also: 1/ gcd 2/ heugcd 3/ ezgcd 4/ psrgcd Ex1:modgcd(x^4-1,(x-1)^2) - + ''' return GiacMethods['modgcd'](self,*args) @@ -11009,11 +11009,11 @@ cdef class GiacMethods_base: Help for mods: mods(Intg,Intg) Returns the Euclidean symmetric remainder of two integers. - See also: 1/ irem 2/ iquo 3/ mod 4/ fracmod + See also: 1/ irem 2/ iquo 3/ mod 4/ fracmod Ex1:mods(8,3) Ex2:mods(10,4) Ex3:mods(11,7) - + ''' return GiacMethods['mods'](self,*args) @@ -11023,7 +11023,7 @@ cdef class GiacMethods_base: monotonic() Returns a real that increases as time passes Ex1:monotonic() - + ''' return GiacMethods['monotonic'](self,*args) @@ -11032,9 +11032,9 @@ cdef class GiacMethods_base: Help for montre_tortue: montre_tortue(NULL) Shows the turtle. - See also: 1/ cache_tortue + See also: 1/ cache_tortue Ex1:montre_tortue() - + ''' return GiacMethods['montre_tortue'](self,*args) @@ -11043,12 +11043,12 @@ cdef class GiacMethods_base: Help for moustache: moustache(Lst,[Lst],[x=a..b||y=a..b]) Box and Whisker plot for a statistical series. - See also: 1/ quartiles + See also: 1/ quartiles Ex1:moustache([-1,1,2,2.2,3,4,-2,5]) Ex2:moustache([1,2,3,5,10,4],x=1..2) Ex3:moustache([1,2,3,5,10,4],[1,2,3,1,2,3]) Ex4:moustache([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],[1,3,4,2,5,6,0],[3,4,2,5,6,0,1],[4,2,5,6,0,1,3],[2,5,6,0,1,3,4]]) - + ''' return GiacMethods['moustache'](self,*args) @@ -11057,9 +11057,9 @@ cdef class GiacMethods_base: Help for moving_average: moving_average(Lst(A),Intg(n)) Applies a moving average filter of length n to a signal sample A, and returns its result as an array of length nops(A)-n+1. - See also: 1/ lowpass + See also: 1/ lowpass Ex1: snd:=soundsec(2):;data:=0.5*threshold(3*sin(2*pi*220*snd),[-1.0,1.0])+randvector(length(snd),normald,0,0.05):;moving_average(data,25) - + ''' return GiacMethods['moving_average'](self,*args) @@ -11068,9 +11068,9 @@ cdef class GiacMethods_base: Help for moyal: moyal(Expr,Expr,VectVar) Moyal product of 2 symbols. - See also: 1/ + See also: 1/ Ex1:moyal(x^2+y^4,x^4-y^2,[x,y],5) - + ''' return GiacMethods['moyal'](self,*args) @@ -11079,11 +11079,11 @@ cdef class GiacMethods_base: Help for moyenne: moyenne(Lst||Mtrx,[Lst]) Mean of a list with the second argument as weight or of the columns of a matrix. - See also: 1/ stddev + See also: 1/ stddev Ex1:moyenne([1,2,3]) Ex2:moyenne([1,2,3],[1,2,3]) Ex3:moyenne([[1,2,3],[1,2,3]]) - + ''' return GiacMethods['moyenne'](self,*args) @@ -11092,7 +11092,7 @@ cdef class GiacMethods_base: Help for mul: mul(Expr||Lst,[Var||Lst],[Intg(a)],[Intg(b)],[Intg(p)]) Multiplies the values of the expression when the variable go from a to b with a step p (product(expression,var,begin,end,step) by default p=1) or product of the elements of a list or product element by element of 2 lists or matrices. - See also: 1/ sum + See also: 1/ sum Ex1:mul(n,n,1,10,2) Ex2:mul(1/n,n,1,10) Ex3:mul(1/n,n,11,1) @@ -11100,7 +11100,7 @@ cdef class GiacMethods_base: Ex5:mul([2,3,4,5]) Ex6:mul([2,3,4],[5,6,7]) Ex7:mul([[2,3,4],[5,6,7]],[[2,3,4],[5,6,7]]) - + ''' return GiacMethods['mul'](self,*args) @@ -11109,10 +11109,10 @@ cdef class GiacMethods_base: Help for mult_c_conjugate: mult_c_conjugate(Expr) Returns the expression after multiplication by the complex conjugate of the denominator (or of the numerator if no denominator). - See also: 1/ mult_conjugate + See also: 1/ mult_conjugate Ex1:mult_c_conjugate(1/(3+i*2)) Ex2:mult_c_conjugate(3+i*2) - + ''' return GiacMethods['mult_c_conjugate'](self,*args) @@ -11121,10 +11121,10 @@ cdef class GiacMethods_base: Help for mult_conjugate: mult_conjugate(Expr) Returns the expression after multiplication by the conjugate of the denominator (or of the numerator if no denominator). - See also: 1/ mult_c_conjugate + See also: 1/ mult_c_conjugate Ex1:mult_conjugate(sqrt(3)-sqrt(2)) Ex2:mult_conjugate(1/(sqrt(3)-sqrt(2))) - + ''' return GiacMethods['mult_conjugate'](self,*args) @@ -11133,12 +11133,12 @@ cdef class GiacMethods_base: Help for multinomial: multinomial(Intg(n),Vect(p),Vect(k)) Returns n!/(k0!*k1!*..;kj!)*(p0^k0*p1^k1..*pj^kj) (sum(p)=1 and sum(k)=n). - See also: 1/ binomial 2/ randvector 3/ ranm + See also: 1/ binomial 2/ randvector 3/ ranm Ex1:multinomial(10,[0.5,0.5],[3,7]) Ex2:multinomial(10,[0.2,0.3,0.5],[1,3,6]) Ex3: randvector(3,multinomial,[1/2,1/3,1/6]) Ex4: ranm(4,3,multinomial,[1/2,1/3,1/6]) - + ''' return GiacMethods['multinomial'](self,*args) @@ -11147,10 +11147,10 @@ cdef class GiacMethods_base: Help for multiplier_conjugue: multiplier_conjugue(Expr) Returns the expression after multiplication by the conjugate of the denominator (or of the numerator if no denominator). - See also: 1/ mult_c_conjugate + See also: 1/ mult_c_conjugate Ex1:multiplier_conjugue(sqrt(3)-sqrt(2)) Ex2:multiplier_conjugue(1/(sqrt(3)-sqrt(2))) - + ''' return GiacMethods['multiplier_conjugue'](self,*args) @@ -11159,10 +11159,10 @@ cdef class GiacMethods_base: Help for multiplier_conjugue_complexe: multiplier_conjugue_complexe(Expr) Returns the expression after multiplication by the complex conjugate of the denominator (or of the numerator if no denominator). - See also: 1/ mult_conjugate + See also: 1/ mult_conjugate Ex1:multiplier_conjugue_complexe(1/(3+i*2)) Ex2:multiplier_conjugue_complexe(3+i*2) - + ''' return GiacMethods['multiplier_conjugue_complexe'](self,*args) @@ -11171,11 +11171,11 @@ cdef class GiacMethods_base: Help for multiply: multiply(Intg or Lst, Intg or Lst) Returns the product of the 2 arguments. - See also: 1/ * + See also: 1/ * Ex1:multiply(41,-4) Ex2:multiply([4,1],[-4,2]) Ex3:multiply([[4,1],[-4,1]],[[4,1],[-4,1]]) - + ''' return GiacMethods['multiply'](self,*args) @@ -11184,8 +11184,8 @@ cdef class GiacMethods_base: Help for mupad2maple: mupad2maple(Str("NameMupadFile"),Str("NameMapleFile")) mupad2maple("file1","file2") translates file1(MuPAD) to file2(Maple). - See also: 1/ mupad2xcas - + See also: 1/ mupad2xcas + ''' return GiacMethods['mupad2maple'](self,*args) @@ -11194,8 +11194,8 @@ cdef class GiacMethods_base: Help for mupad2xcas: mupad2xcas(Str("NameMupadFile"),Str("NameXcasFile")) mupad2xcas("file1","file2") translates file1(MuPAD) to file2(Xcas). - See also: 1/ mupad2maple - + See also: 1/ mupad2maple + ''' return GiacMethods['mupad2xcas'](self,*args) @@ -11204,10 +11204,10 @@ cdef class GiacMethods_base: Help for mycielski: mycielski(Graph(G)) Returns the Mycielskian of undirected graph G. - See also: 1/ chromatic_number 2/ number_of_triangles + See also: 1/ chromatic_number 2/ number_of_triangles Ex1:mycielski(graph("petersen")) Ex2: is_isomorphic(mycielski(mycielski(path_graph(2))),graph("grotzsch")) - + ''' return GiacMethods['mycielski'](self,*args) @@ -11216,9 +11216,9 @@ cdef class GiacMethods_base: Help for nCr: nCr(Intg(n),Intg(r)) comb(n,r)=number of combinations of r objects taken among n : n!/(r!(n-r)!) (If n<0 comb(n,r)=n(n-1)..(n-r+1)/r!). - See also: 1/ factorial 2/ perm + See also: 1/ factorial 2/ perm Ex1:nCr(4,2) - + ''' return GiacMethods['nCr'](self,*args) @@ -11227,11 +11227,11 @@ cdef class GiacMethods_base: Help for nDeriv: nDeriv(Expr(Xpr),Var(Var),[Real(h)]) Returns an approximation of the derivative number at a point: (Xpr(var+h)-Xpr(var-h))/(2*h) (by default h=0.001). - See also: 1/ avgRC + See also: 1/ avgRC Ex1:nDeriv(f(x),x,h) Ex2:nDeriv(x^2,x,0.1) Ex3:nDeriv(x^2,x) - + ''' return GiacMethods['nDeriv'](self,*args) @@ -11240,11 +11240,11 @@ cdef class GiacMethods_base: Help for nInt: nInt(Expr(f(x)),Var(x),Real(a),Real(b)) Returns the approximate value of integrate(f(x),x,a,b) by Romberg's method. - See also: 1/ integrate 2/ gaussquad + See also: 1/ integrate 2/ gaussquad Ex1:nInt(exp(x^2),x,0,1) Ex2:nInt(x^2,x,0,1) Ex3:nInt(exp(-x^2),x,-1,1) - + ''' return GiacMethods['nInt'](self,*args) @@ -11253,9 +11253,9 @@ cdef class GiacMethods_base: Help for nPr: nPr(Intg(n),Intg(p)) perm(n,p)=number of arrangements of p objects taken among n : n!/(n-p)! - See also: 1/ comb 2/ factorial + See also: 1/ comb 2/ factorial Ex1:nPr(4,2) - + ''' return GiacMethods['nPr'](self,*args) @@ -11264,10 +11264,10 @@ cdef class GiacMethods_base: Help for nSolve: nSolve(Expr,Var,[Guess or Interval],[Method]) Numerical solution of an equation or a system of equations. - See also: 1/ solve 2/ fsolve 3/ csolve + See also: 1/ solve 2/ fsolve 3/ csolve Ex1:nSolve(cos(x)=x,x) Ex2:nSolve(cos(x)=x,x=1.3) - + ''' return GiacMethods['nSolve'](self,*args) @@ -11276,10 +11276,10 @@ cdef class GiacMethods_base: Help for ncols: ncols(Mtrx) Number of columns of a matrix. - See also: 1/ rowdim + See also: 1/ rowdim Ex1:ncols([[1,2,3],[4,5,6]]) Ex2:ncols([[1,2],[3,4],[5,6]]) - + ''' return GiacMethods['ncols'](self,*args) @@ -11288,11 +11288,11 @@ cdef class GiacMethods_base: Help for negbinomial: negbinomial(Intg(n),Intg(k),Real(p in 0..1)) Returns comb(n+k-1,k)*p^k*(1-p)^n. - See also: 1/ negbinomial_cdf 2/ negbinomial_icdf 3/ binomial + See also: 1/ negbinomial_cdf 2/ negbinomial_icdf 3/ binomial Ex1:negbinomial(4,0,0.5) Ex2:negbinomial(4,2,0.6) Ex3:negbinomial(4,6,0.3) - + ''' return GiacMethods['negbinomial'](self,*args) @@ -11301,11 +11301,11 @@ cdef class GiacMethods_base: Help for negbinomial_cdf: negbinomial_cdf(Intg(n),Real(p),Real(x),[Real(y)]) Returns Proba(X<=x) or Proba(x<=X<=y) when X follows the negbinomial(n,p) law. - See also: 1/ negbinomial 2/ negbinomial_icdf + See also: 1/ negbinomial 2/ negbinomial_icdf Ex1:negbinomial_cdf(4,0.5,2) Ex2:negbinomial_cdf(4,0.1,2) Ex3:negbinomial_cdf(4,0.5,2,3) - + ''' return GiacMethods['negbinomial_cdf'](self,*args) @@ -11314,10 +11314,10 @@ cdef class GiacMethods_base: Help for negbinomial_icdf: negbinomial_icdf(Intg(n),Real(p),Real(t)) Returns h such as Proba(X<=h)=t when X follows the negbinomial(n,p) law. - See also: 1/ negbinomial 2/ negbinomial_cdf + See also: 1/ negbinomial 2/ negbinomial_cdf Ex1:negbinomial_icdf(4,0.5,0.68) Ex2:negbinomial_icdf(4,0.1,0.95) - + ''' return GiacMethods['negbinomial_icdf'](self,*args) @@ -11326,9 +11326,9 @@ cdef class GiacMethods_base: Help for neighbors: neighbors(Graph(G),[Vrtx(v)]) Returns the list of vertices adjacent to vertex v of G. If v is omitted, a list of adjacency lists of all vertices in G is returned. - See also: 1/ adjacency_matrix 2/ vertex_degree 3/ in_degree 3/ out_degree + See also: 1/ adjacency_matrix 2/ vertex_degree 3/ in_degree 3/ out_degree Ex1:neighbors(digraph(trail(1,2,3,4,5,6,4,7,8,2)),4) - + ''' return GiacMethods['neighbors'](self,*args) @@ -11337,9 +11337,9 @@ cdef class GiacMethods_base: Help for network_transitivity: network_transitivity(Graph(G)) Returns the transitivity (also called triangle density or global clustering coefficient) of G. - See also: 1/ clustering_coefficient 2/ number_of_triangles + See also: 1/ clustering_coefficient 2/ number_of_triangles Ex1:network_transitivity(graph(%{[1,2],[2,3],[2,4],[3,4],[4,1]%})) - + ''' return GiacMethods['network_transitivity'](self,*args) @@ -11348,9 +11348,9 @@ cdef class GiacMethods_base: Help for newList: newList(Intg(n)) Returns the list made with n zeros. - See also: 1/ newMat 2/ makelist + See also: 1/ newMat 2/ makelist Ex1:newList(4) - + ''' return GiacMethods['newList'](self,*args) @@ -11359,9 +11359,9 @@ cdef class GiacMethods_base: Help for newMat: newMat(Intg(n),Intg(p)) Returns the list with n rows and p columns, made with zeros. - See also: 1/ newList 2/ makemat + See also: 1/ newList 2/ makemat Ex1:newMat(2,3) - + ''' return GiacMethods['newMat'](self,*args) @@ -11370,12 +11370,12 @@ cdef class GiacMethods_base: Help for newton: newton(Expr(f(x)),Var(x),[ApproxVal(a),NumIter(p)]) newton(f(x),x,a,p)=one root of f(x) by Newton method beginning with a and p iterations (by default p=20). - See also: 1/ rootof + See also: 1/ rootof Ex1:newton(x^2-2,x) Ex2:newton(x^2-2,x,2) Ex3:newton(x^2-2,x,-2) Ex4:newton(x^2-2,x,2,5,1e-7) - + ''' return GiacMethods['newton'](self,*args) @@ -11384,14 +11384,14 @@ cdef class GiacMethods_base: Help for newton_solver: newton_solver(Opt) Argument for fsolve giving the method for solving a numerical equation. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve(cos(x)=x,x,0..1,bisection_solver) Ex2: fsolve(cos(x)=x,x,0..1,brent_solver) Ex3: fsolve(cos(x)=x,x,0..1,falsepos_solver) Ex4: fsolve(cos(x)=x,x,0,newton_solver) Ex5: fsolve(cos(x)=x,x,0,secant_solver) Ex6: fsolve(cos(x)=x,x,0,steffenson_solver) - + ''' return GiacMethods['newton_solver'](self,*args) @@ -11400,14 +11400,14 @@ cdef class GiacMethods_base: Help for newtonj_solver: newtonj_solver(Opt) Argument for fsolve giving the method for solving a system of numerical equations. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],dnewton_solver) Ex2: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrid_solver) Ex3: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrids_solver) Ex4: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridj_solver) Ex5: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridsj_solver) Ex6: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],newtonj_solver) - + ''' return GiacMethods['newtonj_solver'](self,*args) @@ -11416,10 +11416,10 @@ cdef class GiacMethods_base: Help for nextperm: nextperm(Intg(n)) Returns the next permutation with the lexicographic order. - See also: 1/ prevperm 2/ is_permu + See also: 1/ prevperm 2/ is_permu Ex1:nextperm([0,2,1,3]) Ex2:nextperm([0,3,2,1]) - + ''' return GiacMethods['nextperm'](self,*args) @@ -11428,10 +11428,10 @@ cdef class GiacMethods_base: Help for nextprime: nextprime(Intg(a)) Next prime or pseudo-prime after a given integer. - See also: 1/ prevprime 2/ is_prime 3/ ithprime + See also: 1/ prevprime 2/ is_prime 3/ ithprime Ex1:nextprime(9856989898990) Ex2:nextprime(97160249868928888261606009) - + ''' return GiacMethods['nextprime'](self,*args) @@ -11440,7 +11440,7 @@ cdef class GiacMethods_base: Help for nlpsolve: nlpsolve(objective, [constr], [bd], [opts]) Solves a nonlinear programming problem of optimizing the objective obj under constraints constr (list of equations and/or inequations) and within bounds bd (sequence of x=a..b) with optional options (for example setting an initial point). - See also: 1/ lpsolve 2/ fsolve 3/ fMin 4/ fMax + See also: 1/ lpsolve 2/ fsolve 3/ fMin 4/ fMax Ex1:nlpsolve((x1-10)^3+(x2-20)^3,[(x1-5)^2+(x2-5)^2>=100,(x2-5)^2+(x1-6)^2<=82.81],nlp_initialpoint=[x1=20.1,x2=5.84]) Ex2:nlpsolve(sin(x1+x2)+(x1-x2)^2-1.5x1+2.5x2+1,x1=-1.5..4,x2=-3..3) Ex3:nlpsolve(ln(1+x1^2)-x2,[(1+x1^2)^2+x2^2=4]) @@ -11448,10 +11448,10 @@ cdef class GiacMethods_base: Ex5:nlpsolve(-x1*x2*x3,[72-x1-2x2-2x3>=0],x1=0..20,x2=0..11,x3=0..42) Ex6:nlpsolve(2-1/120*x1*x2*x3*x4*x5,[x1<=1,x2<=2,x3<=3,x4<=4,x5<=5],assume=nlp_nonnegative) Ex7:nlpsolve(sin(x)/x,x=1..30) - Ex8:nlpsolve(x^3+2x*y-2y^2,x=-10..10,y=-10..10,nlp_initialpoint=[x=3,y=4],maximize) + Ex8:nlpsolve(x^3+2x*y-2y^2,x=-10..10,y=-10..10,nlp_initialpoint=[x=3,y=4],maximize) Ex9:nlpsolve(w^3*(v-w)^2+(w-x-1)^2+(x-y-2)^2+(y-z-3)^2,[w+x+y+z<=5,3z+2v=3],assume=nlp_nonnegative) Ex10:nlpsolve(sin(x)*Psi(x),x=1..20,nlp_initialpoint=[x=16]) - + ''' return GiacMethods['nlpsolve'](self,*args) @@ -11461,7 +11461,7 @@ cdef class GiacMethods_base: nodisp(Expr) Displays Done in place of a value. Ex1:nodisp(A:=ranm(50,50)) - + ''' return GiacMethods['nodisp'](self,*args) @@ -11470,10 +11470,10 @@ cdef class GiacMethods_base: Help for non_recursive_normal: non_recursive_normal(Expr) Simplifies the expressions, but without simplification inside of non-rational expressions. - See also: 1/ normal + See also: 1/ normal Ex1:non_recursive_normal(sin(x+x)+sin(2*x)+x+x) Ex2:non_recursive_normal(sin(2*x)+sin(2*x)+x+x) - + ''' return GiacMethods['non_recursive_normal'](self,*args) @@ -11482,9 +11482,9 @@ cdef class GiacMethods_base: Help for nop: nop(NULL) No OPeration instruction. - See also: 1/ + See also: 1/ Ex1:nop() - + ''' return GiacMethods['nop'](self,*args) @@ -11493,11 +11493,11 @@ cdef class GiacMethods_base: Help for nops: nops(Lst or Str or Seq) Returns the size of a list, a string or a sequence. - See also: 1/ sizes 2/ dim 3/ degree + See also: 1/ sizes 2/ dim 3/ degree Ex1:nops([1,2,3]) Ex2:nops("bonjour") Ex3:nops(1,2,3) - + ''' return GiacMethods['nops'](self,*args) @@ -11506,12 +11506,12 @@ cdef class GiacMethods_base: Help for norm: norm(Vect or Mtrx) Returns the l2 norm of a vector = sqrt(x1^2+x2^2+...xn^2) or matrix norm induced by l2 norm. - See also: 1/ maxnorm 2/ l1norm + See also: 1/ maxnorm 2/ l1norm Ex1:norm([1,2]) Ex2:norm([1,2,3,-4]) Ex3:norm([[1,2],[3,-4]]) Ex4:norm([[1,2,3],[3,-9,6],[4,5,6]]) - + ''' return GiacMethods['norm'](self,*args) @@ -11520,11 +11520,11 @@ cdef class GiacMethods_base: Help for normal: normal(Expr) Simplifies the expression. - See also: 1/ simplify + See also: 1/ simplify Ex1:normal(2*x+y=1) Ex2:normal(2*x*2) Ex3:normal((2*x+1)^2) - + ''' return GiacMethods['normal'](self,*args) @@ -11533,11 +11533,11 @@ cdef class GiacMethods_base: Help for normal_cdf: normal_cdf(Real(mu),Real(sigma),Real(x0),[Real(y0)]) Returns the probability that a Normal random variable is less than x0 or between x0 and y0 (mu is the mean and sigma the standard deviation). - See also: 1/ UTPN 2/ normal_icdf 3/ normald + See also: 1/ UTPN 2/ normal_icdf 3/ normald Ex1:normal_cdf(1.96) Ex2:normal_cdf(1,2,2.96*sqrt(2)) Ex3:normal_cdf(1,2,1.4*sqrt(2),2.96*sqrt(2)) - + ''' return GiacMethods['normal_cdf'](self,*args) @@ -11546,10 +11546,10 @@ cdef class GiacMethods_base: Help for normal_icdf: normal_icdf(Real(mu),Real(sigma),Real(p)) Returns h such as the probability that a Normal random variable is less than h is p (mu is the mean and sigma the standard deviation and 0<=p<=1). - See also: 1/ normal_cdf 2/ normald + See also: 1/ normal_cdf 2/ normald Ex1:normal_icdf(0.95) Ex2:normal_icdf(1,2,0.95) - + ''' return GiacMethods['normal_icdf'](self,*args) @@ -11558,12 +11558,12 @@ cdef class GiacMethods_base: Help for normald: normald(Real(mu),Real(sigma),Real(x0)) Returns the probability density of the Normal law (mu is the mean and sigma the standard deviation). - See also: 1/ normal_cdf 2/ normal_icdf 3/ randvector 4/ ranm + See also: 1/ normal_cdf 2/ normal_icdf 3/ randvector 4/ ranm Ex1:normald(1) Ex2:normald(1,2,3.5) Ex3: randvector(3,normald,1,0.5) Ex4: ranm(4,3,normald,1,0.5) - + ''' return GiacMethods['normald'](self,*args) @@ -11572,11 +11572,11 @@ cdef class GiacMethods_base: Help for normald_cdf: normald_cdf(Real(mu),Real(sigma),Real(x0),[Real(y0)]) Returns the probability that a Normal random variable is less than x0 or between x0 and y0 (mu is the mean and sigma the standard deviation). - See also: 1/ UTPN 2/ normal_icdf 3/ normald + See also: 1/ UTPN 2/ normal_icdf 3/ normald Ex1:normald_cdf(1.96) Ex2:normald_cdf(1,2,2.96*sqrt(2)) Ex3:normald_cdf(1,2,1.4*sqrt(2),2.96*sqrt(2)) - + ''' return GiacMethods['normald_cdf'](self,*args) @@ -11585,10 +11585,10 @@ cdef class GiacMethods_base: Help for normald_icdf: normald_icdf(Real(mu),Real(sigma),Real(p)) Returns h such as the probability that a Normal random variable is less than h is p (mu is the mean and sigma the standard deviation and 0<=p<=1). - See also: 1/ normal_cdf 2/ normald + See also: 1/ normal_cdf 2/ normald Ex1:normald_icdf(0.95) Ex2:normald_icdf(1,2,0.95) - + ''' return GiacMethods['normald_icdf'](self,*args) @@ -11597,12 +11597,12 @@ cdef class GiacMethods_base: Help for normalize: normalize(Lst||Cplx) Returns the vector divided by its l2norm. It is also an option for plotfield. - See also: 1/ l2norm + See also: 1/ l2norm Ex1:normalize(3+4*i) Ex2:normalize([3,4]) Ex3: fieldplot(-t*y,[t,y],normalize) Ex4: fieldplot(-t*y,[t,y],normalize,xstep=0.5,ystep=0.5) - + ''' return GiacMethods['normalize'](self,*args) @@ -11611,10 +11611,10 @@ cdef class GiacMethods_base: Help for normalt: normalt(Lst,Real,[Real],Fnc,[Real]) Z-Test/normal law: arg1=[success,trial] or [mean,sample size] or data, arg2=proportion or data, arg3 optional if data=sigma, arg4 alternative '!=' or '>' or '<', arg5 optional alpha confidence level. - See also: 1/ studentt 2/ chisquaret 3/ kolmogorovt + See also: 1/ studentt 2/ chisquaret 3/ kolmogorovt Ex1:normalt([10,30],.5,.02,'!=',0.1) Ex2:normalt([0.48,50],0.5,0.1,'<') - + ''' return GiacMethods['normalt'](self,*args) @@ -11623,10 +11623,10 @@ cdef class GiacMethods_base: Help for normalvariate: normalvariate(Real(mu),Real(sigma)) Returns a random real with normal distribution N(mu,sigma). - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randpoisson 8/ randgeometric 9/ randmultinomial + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randpoisson 8/ randgeometric 9/ randmultinomial Ex1:normalvariate(0,1) Ex2:normalvariate(2,1) - + ''' return GiacMethods['normalvariate'](self,*args) @@ -11635,9 +11635,9 @@ cdef class GiacMethods_base: Help for nprimes: nprimes(Intg(n)) Counts the number of primes less than n. - See also: 1/ ithprime 2/ prevprime 3/ nextprime 4/ isprime + See also: 1/ ithprime 2/ prevprime 3/ nextprime 4/ isprime Ex1:nprimes(20) - + ''' return GiacMethods['nprimes'](self,*args) @@ -11646,10 +11646,10 @@ cdef class GiacMethods_base: Help for nrows: nrows(Mtrx) Number of rows of a matrix. - See also: 1/ ncols + See also: 1/ ncols Ex1:nrows([[1,2,3],[4,5,6]]) Ex2:nrows([[1,2],[3,4],[5,6]]) - + ''' return GiacMethods['nrows'](self,*args) @@ -11658,9 +11658,9 @@ cdef class GiacMethods_base: Help for nuage_points: nuage_points(Mtrx) Draws for k=0..nrows, the points (xk,yk) where xk=element row k column 0 and yk=element row k column j (j=1..ncols). - See also: 1/ polygonplot 2/ polygonscatterplot 3/ listplot + See also: 1/ polygonplot 2/ polygonscatterplot 3/ listplot Ex1:nuage_points([[1,2,3],[2,0,1],[-1,2,3]]) - + ''' return GiacMethods['nuage_points'](self,*args) @@ -11669,10 +11669,10 @@ cdef class GiacMethods_base: Help for nullspace: nullspace(Mtrx) Kernel of a linear map with matrix M. - See also: 1/ image 2/ rref 3/ Nullspace + See also: 1/ image 2/ rref 3/ Nullspace Ex1:nullspace([[1,2],[3,6]]) Ex2:nullspace([[1,2,3],[1,3,6],[2,5,9]]) - + ''' return GiacMethods['nullspace'](self,*args) @@ -11681,9 +11681,9 @@ cdef class GiacMethods_base: Help for number_of_edges: number_of_edges(Graph(G)) Returns the number of edges/arcs of G. - See also: 1/ edges 2/ number_of_vertices + See also: 1/ edges 2/ number_of_vertices Ex1:number_of_edges(complete_graph(5)) - + ''' return GiacMethods['number_of_edges'](self,*args) @@ -11692,10 +11692,10 @@ cdef class GiacMethods_base: Help for number_of_spanning_trees: number_of_spanning_trees(Graph(G)) Returns the number of spanning trees in undirected graph G. - See also: 1/ spanning_tree + See also: 1/ spanning_tree Ex1:number_of_spanning_trees(complete_graph(4)) Ex2:number_of_spanning_trees(graph(trail(1,2,3,4,1,3))) - + ''' return GiacMethods['number_of_spanning_trees'](self,*args) @@ -11704,9 +11704,9 @@ cdef class GiacMethods_base: Help for number_of_triangles: number_of_triangles(Graph(G)) Returns the number of 3-cliques if G is undirected resp. the number of directed cycles on 3 vertices if G is directed. - See also: 1/ is_clique 2/ maximal_clique + See also: 1/ is_clique 2/ maximal_clique Ex1:number_of_triangles(graph("tetrahedron")) - + ''' return GiacMethods['number_of_triangles'](self,*args) @@ -11715,9 +11715,9 @@ cdef class GiacMethods_base: Help for number_of_vertices: number_of_vertices(Graph(G)) Returns the number of vertices of G. - See also: 1/ graph_vertices 2/ number_of_edges + See also: 1/ graph_vertices 2/ number_of_edges Ex1:number_of_vertices(graph("petersen")) - + ''' return GiacMethods['number_of_vertices'](self,*args) @@ -11726,11 +11726,11 @@ cdef class GiacMethods_base: Help for numer: numer(Frac(a/b) or RatFrac) Returns the numerator of the simplified fraction. - See also: 1/ getNum 2/ getDenom 3/ denom 4/ f2nd + See also: 1/ getNum 2/ getDenom 3/ denom 4/ f2nd Ex1:numer(25/15) Ex2:numer((x^3-1)/(x^2-1)) Ex3:numer(1+(x^3-1)/x^2) - + ''' return GiacMethods['numer'](self,*args) @@ -11739,10 +11739,10 @@ cdef class GiacMethods_base: Help for octahedron: octahedron(Pnt(A),Pnt(B),Pnt(C)) Draws an octahedron with center A, vertex B and such that the plane ABC contains 4 vertices. - See also: 1/ icosahedron 2/ dodecahedron 3/ cube 4/ tetrahedron + See also: 1/ icosahedron 2/ dodecahedron 3/ cube 4/ tetrahedron Ex1:octahedron([0,0,0],[0,0,5],[0,5,0]) Ex2:octahedron(evalf([0,0,0],[3,2,4],[1,1,0])) - + ''' return GiacMethods['octahedron'](self,*args) @@ -11751,10 +11751,10 @@ cdef class GiacMethods_base: Help for odd: odd(Intg(n)) Returns 1 if the integer is odd, else returns 0. - See also: 1/ even + See also: 1/ even Ex1:odd(6) Ex2:odd(1251) - + ''' return GiacMethods['odd'](self,*args) @@ -11763,10 +11763,10 @@ cdef class GiacMethods_base: Help for odd_girth: odd_girth(Graph(G)) Returns the length of the shortest odd cycle in the undirected unweighted graph G. - See also: 1/ girth + See also: 1/ girth Ex1:odd_girth(graph("petersen")) Ex2:odd_girth(hypercube_graph(3)) - + ''' return GiacMethods['odd_girth'](self,*args) @@ -11775,9 +11775,9 @@ cdef class GiacMethods_base: Help for odd_graph: odd_graph(Intg(n)) Returns the odd graph of order n as Kneser graph K(2n-1,n-1), where n<=8. - See also: 1/ kneser_graph + See also: 1/ kneser_graph Ex1:odd_graph(3) - + ''' return GiacMethods['odd_graph'](self,*args) @@ -11786,7 +11786,7 @@ cdef class GiacMethods_base: Help for odeplot: odeplot(Expr,VectVar,VectInitCond) odeplot(f(t,y),[t,y],[t0,y0]) draws the solution of y'=f(t,y) and y(t0)=y0 or of the system [x'=g(t,x,y),y'=h(t,x,y)] with x(t0)=x0 and y(t0)=y0. - See also: 1/ interactive_plotode 2/ fieldplot 3/ odesolve 4/ desolve + See also: 1/ interactive_plotode 2/ fieldplot 3/ odesolve 4/ desolve Ex1:odeplot(sin(t*y),[t,y],[0,1]) Ex2:odeplot(sin(t*y),[t=-10..10,y],[0,1]) Ex3:odeplot(sin(t*y),[t=-3..3,y],[0,1],tstep=0.1,color=vert) @@ -11794,7 +11794,7 @@ cdef class GiacMethods_base: Ex5:odeplot([x-0.3*x*y, 0.3*x*y-y], [t,x,y],[0,0.3,0.7],plan) Ex6:odeplot([-y+b,-1+(x-a)^2+(y-b)^2],[t=-3..3,x,y],[0,a+1,b+0.5],plan) Ex7:odeplot(5*[-y,x],[t=0..1,x,y],[0,0.3,0.7],tstep=0.05,plan) - + ''' return GiacMethods['odeplot'](self,*args) @@ -11803,13 +11803,13 @@ cdef class GiacMethods_base: Help for odesolve: odesolve(Expr,VectVar,VectInitCond,FinalVal,[tstep=Val,curve]) odesolve(f(t,y),[t,y],[t0,y0],t1)=odesolve(t0..t1,f,y0)=y(t1) for y approx sol of y'=f(t,y) and y(t0)=y0 with y=vector for systems. - See also: 1/ plotode 2/ plotfield 3/ interactive_plotode 4/ desolve + See also: 1/ plotode 2/ plotfield 3/ interactive_plotode 4/ desolve Ex1:odesolve(sin(t*y),[t,y],[0,1],2) Ex2:odesolve(0..2,(t,y)->sin(t*y),1) Ex3:odesolve(0..pi,(t,v)->{[-v[1],v[0]]},[0,1]) Ex4:odesolve(sin(t*y),t=0..2,y,1,tstep=0.5) Ex5:odesolve(sin(t*y),t=0..2,y,1,tstep=0.5,curve) - + ''' return GiacMethods['odesolve'](self,*args) @@ -11818,13 +11818,13 @@ cdef class GiacMethods_base: Help for op: op(Op or Fnc) Returns the arguments of an operator as a sequence. - See also: 1/ sommet 2/ quote 3/ makesuite + See also: 1/ sommet 2/ quote 3/ makesuite Ex1:op(quote(gcd(45,126))) Ex2:op('gcd(45,126)') Ex3:op('1+2')[1] Ex4:op([1,2,3]) Ex5:op(set[1,2,3]) - + ''' return GiacMethods['op'](self,*args) @@ -11833,10 +11833,10 @@ cdef class GiacMethods_base: Help for open_polygon: open_polygon(LstPnt||LstCplx) Returns and draws the polygonal line where its vertices are the element of l. - See also: 1/ isopolygon 2/ quadrilateral + See also: 1/ isopolygon 2/ quadrilateral Ex1:open_polygon(i,1+i,2-i,-1,-1+i/2) Ex2:open_polygon(point(0,0,0),point(3,3,3),point(0,0,3),point(3,0,0)) - + ''' return GiacMethods['open_polygon'](self,*args) @@ -11845,11 +11845,11 @@ cdef class GiacMethods_base: Help for ord: ord(Char||LstChar) Returns the ASCII code of a character or of the first character of a string. - See also: 1/ asc 2/ char + See also: 1/ asc 2/ char Ex1:ord("A") Ex2:ord("ABC") Ex3:ord(["a","b","c"]) - + ''' return GiacMethods['ord'](self,*args) @@ -11860,7 +11860,7 @@ cdef class GiacMethods_base: Returns element order of g in (Z/nZ)^* or in a finite field. Ex1:order(3 % 7) Ex2: GF(3,5,g); order(g^2+g+1); - + ''' return GiacMethods['order'](self,*args) @@ -11869,10 +11869,10 @@ cdef class GiacMethods_base: Help for order_size: order_size(Expr) Remainder (O term) of a series expansion: limit(x^a*order_size(x),x=0)=0 if a>0. - See also: 1/ series + See also: 1/ series Ex1:order_size(x) Ex2: limit(sqrt(x)*order_size(x),x=0) - + ''' return GiacMethods['order_size'](self,*args) @@ -11881,12 +11881,12 @@ cdef class GiacMethods_base: Help for ordinate: ordinate(Pnt or Vect) Returns the ordinate of a point or a vector. - See also: 1/ abscissa 2/ affix 3/ cote 4/ coordinates + See also: 1/ abscissa 2/ affix 3/ cote 4/ coordinates Ex1:ordinate(point(1+2*i)) Ex2:ordinate(point(i)-point(1+2*i)) Ex3:ordinate(-1-i) Ex4:ordinate(point(1,2,3)) - + ''' return GiacMethods['ordinate'](self,*args) @@ -11895,11 +11895,11 @@ cdef class GiacMethods_base: Help for orthocenter: orthocenter((Pnt or Cplx),(Pnt or Cplx),(Pnt or Cplx)) Shows the orthocenter of a triangle or of the triangle made with 3 points. - See also: 1/ altitude 2/ triangle + See also: 1/ altitude 2/ triangle Ex1:orthocenter(1+i,2,i) Ex2:orthocenter(point(1+i),point(2),point(i)) Ex3:orthocenter(triangle(0,1,1+i)) - + ''' return GiacMethods['orthocenter'](self,*args) @@ -11908,10 +11908,10 @@ cdef class GiacMethods_base: Help for orthogonal: orthogonal((Pnt),(Line or Plan)) orthogonal(A,line(B,C)) draws the orthogonal plane of line BC through A and orthogonal(A,plane(B,C,D)) draws the orthogonal line of plane(B,C,D) through A. - See also: 1/ altitude 2/ perpendicular + See also: 1/ altitude 2/ perpendicular Ex1:orthogonal(point(0,0,0),line(point(1,0,0),point(0,1,0))) Ex2:orthogonal(point(0,0,0),plane(point(1,0,0),point(0,1,0),point(0,0,1))) - + ''' return GiacMethods['orthogonal'](self,*args) @@ -11920,14 +11920,14 @@ cdef class GiacMethods_base: Help for osculating_circle: osculating_circle(Curve,Point) Osculating circle at point M to the curve C. - See also: 1/ curvature 2/ evolute + See also: 1/ curvature 2/ evolute Ex1:osculating_circle(plot(x^2),point(1,1)) Ex2:osculating_circle([5*cos(t),5*sin(t)],t,0) Ex3:osculating_circle([t,t^2],t) Ex4:osculating_circle([t,t^2],t,1) Ex5:osculating_circle([3*exp(t/2)*cos(t),3*exp(t/2)*sin(t)],t) Ex6:osculating_circle([3*exp(t/2)*cos(t),3*exp(t/2)*sin(t)],t,7) - + ''' return GiacMethods['osculating_circle'](self,*args) @@ -11936,9 +11936,9 @@ cdef class GiacMethods_base: Help for p1oc2: p1oc2(Permut,Cycle) Returns the permutation product of p1 and c2. - See also: 1/ c1op2 2/ p1op2 + See also: 1/ c1op2 2/ p1op2 Ex1:p1oc2([0,2,1],[2,1,3]) - + ''' return GiacMethods['p1oc2'](self,*args) @@ -11947,9 +11947,9 @@ cdef class GiacMethods_base: Help for p1op2: p1op2(Permut,Permut) Returns the permutation product of p1 and p2. - See also: 1/ c1op2 2/ p1oc2 + See also: 1/ c1op2 2/ p1oc2 Ex1:p1op2([0,2,1],[1,0,3,2]) - + ''' return GiacMethods['p1op2'](self,*args) @@ -11961,7 +11961,7 @@ cdef class GiacMethods_base: Ex1:pa2b2(17) Ex2:pa2b2(209) Ex3:pa2b2(229) - + ''' return GiacMethods['pa2b2'](self,*args) @@ -11970,9 +11970,9 @@ cdef class GiacMethods_base: Help for pade: pade(Expr(Xpr), Var(x), (Intg(n) || Poly(N)), Intg(p)) Pade approximation P/Q=Xpr mod x^(n+1) or mod N with degree(P)3,x^20 (by default a=1) to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ bartlett_hann_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ bartlett_hann_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(poisson_window(randvector(1000,0..1),0.5)) - + ''' return GiacMethods['poisson_window'](self,*args) @@ -12932,10 +12932,10 @@ cdef class GiacMethods_base: Help for polar: polar(Crcle,Pnt or Cplxe(A)) Returns the line of the conjugated points of A with respect to the circle. - See also: 1/ pole 2/ is_conjugate + See also: 1/ pole 2/ is_conjugate Ex1:polar(circle(0,1),point(1+i)/2) Ex2:polar(circle(0,1),point(1+i)) - + ''' return GiacMethods['polar'](self,*args) @@ -12944,12 +12944,12 @@ cdef class GiacMethods_base: Help for polar_coordinates: polar_coordinates(Pnt or Cplx or LstRectCoord) Returns the list of the norm and of the argument of the affix of a point (for 2D) or of a complex number or of the list of rectangular coordinates. - See also: 1/ abscissapoint 2/ ordinate 3/ rectangular_coordinates 4/ polar_point + See also: 1/ abscissapoint 2/ ordinate 3/ rectangular_coordinates 4/ polar_point Ex1:polar_coordinates(point(1+2*i)) Ex2:polar_coordinates(-1-i) Ex3:polar_coordinates([-1,2]) Ex4:polar_coordinates(point(1+2*i)-point(-1+i)) - + ''' return GiacMethods['polar_coordinates'](self,*args) @@ -12958,10 +12958,10 @@ cdef class GiacMethods_base: Help for polar_point: polar_point(Real(r),Real(t)) Returns the point (for 2D) with the arguments r and t as polar coordinates (i.e. with r*exp(i*t) as affix). - See also: 1/ abscissa 2/ ordinate 3/ polar_coordinates 4/ rectangular_coordinates 5/ point + See also: 1/ abscissa 2/ ordinate 3/ polar_coordinates 4/ rectangular_coordinates 5/ point Ex1:polar_point(1,pi/4) Ex2:polar_point(2,-pi/3) - + ''' return GiacMethods['polar_point'](self,*args) @@ -12970,10 +12970,10 @@ cdef class GiacMethods_base: Help for polarplot: polarplot(Expr,Var,VarMin,VarMax) plotpolar(f(x),x,a,b) draws the polar curve r=f(x) for x in [a,b]. - See also: 1/ plotparam 2/ plotfunc 3/ plotpolar + See also: 1/ plotparam 2/ plotfunc 3/ plotpolar Ex1:polarplot(sin(2*x),x,0,pi) Ex2:polarplot(sin(2*x),x,0,pi,tstep=0.1) - + ''' return GiacMethods['polarplot'](self,*args) @@ -12982,10 +12982,10 @@ cdef class GiacMethods_base: Help for pole: pole(Crcle,Line) Returns the point having the line as polar with respect to the circle . - See also: 1/ polar 2/ is_conjugate + See also: 1/ polar 2/ is_conjugate Ex1:pole(circle(0,1),line(i,1)) Ex2:pole(circle(0,1),line((1+i),2)) - + ''' return GiacMethods['pole'](self,*args) @@ -12994,12 +12994,12 @@ cdef class GiacMethods_base: Help for poly2symb: poly2symb(Lst,Var) Gives the polynomial (or its value) : the first argument is the vector of coefficients and the second argument is the variable (by default x). - See also: 1/ e2r 2/ symb2poly + See also: 1/ e2r 2/ symb2poly Ex1:poly2symb([1,2,3]) Ex2:poly2symb([1,2,3],x) Ex3:poly2symb([1,2,3],-1) Ex4:poly2symb([1,2,-1],y) - + ''' return GiacMethods['poly2symb'](self,*args) @@ -13008,10 +13008,10 @@ cdef class GiacMethods_base: Help for polyEval: polyEval(Vect,Real(x0)) Evaluates at a point x0, a polynomial given by its coefficients. - See also: 1/ proot 2/ pcoeff + See also: 1/ proot 2/ pcoeff Ex1:polyEval([1,0,-2],1) Ex2:polyEval([1,2,-25,-26,120],8) - + ''' return GiacMethods['polyEval'](self,*args) @@ -13020,10 +13020,10 @@ cdef class GiacMethods_base: Help for polygon: polygon(LstPnt||LstCplx) Returns and draws the polygon where its vertices are the elements of l. - See also: 1/ isopolygon 2/ quadrilateral 3/ convexhull 4/ hexagon + See also: 1/ isopolygon 2/ quadrilateral 3/ convexhull 4/ hexagon Ex1:polygon(i,1+i,2-i,-1,-1+i/2) Ex2:polygon(point(0,0,0),point(3,3,3),point(0,0,3),point(3,0,0)) - + ''' return GiacMethods['polygon'](self,*args) @@ -13032,11 +13032,11 @@ cdef class GiacMethods_base: Help for polygone_rempli: polygone_rempli(Intg(n)) The argument is an integer <-1 which gives the number of previous turtle positions drawing a polygon and created this full polygon. - See also: 1/ + See also: 1/ Ex1: repete(4,avance 40,tourne_droite);polygone_rempli -8 Ex2: repete(3,avance 40,tourne_droite 120);polygone_rempli -6 Ex3: repete(3,avance 40,avance 40,tourne_droite 120);polygone_rempli -9 - + ''' return GiacMethods['polygone_rempli'](self,*args) @@ -13045,9 +13045,9 @@ cdef class GiacMethods_base: Help for polygonplot: polygonplot(Mtrx) Draws the polygons joining for j fixed and for k=0..nrows, the points (xk,yk) where xk=element row k column 0 and yk=element row k column j, after the xk are sorted (we obtain ncols-1 polygons). - See also: 1/ scatterplot 2/ listplot 3/ polygonscatterplot + See also: 1/ scatterplot 2/ listplot 3/ polygonscatterplot Ex1:polygonplot([[1,2,3],[2,0,1],[-1,2,3]]) - + ''' return GiacMethods['polygonplot'](self,*args) @@ -13056,9 +13056,9 @@ cdef class GiacMethods_base: Help for polygonscatterplot: polygonscatterplot(Mtrx) Draws the points (xk,yk) and the polygons joining for j fixed and for k=0..nrows, the points (xk,yk) where xk=element row k column 0 et yk=element row k column j, after the xk are sorted (we obtain ncols-1 polygons). - See also: 1/ scatterplot 2/ polygonplot 3/ listplot + See also: 1/ scatterplot 2/ polygonplot 3/ listplot Ex1:polygonscatterplot([[1,2,3],[2,0,1],[-1,2,3]]) - + ''' return GiacMethods['polygonscatterplot'](self,*args) @@ -13067,9 +13067,9 @@ cdef class GiacMethods_base: Help for polyhedron: polyhedron(SeqPnt(A,B,C...)) Draws a convex polyhedron with vertices among the arguments. - See also: 1/ cube 2/ parallelepiped + See also: 1/ cube 2/ parallelepiped Ex1:polyhedron([0,0,0],[0,5,0],[0,0,5],[1,2,6]) - + ''' return GiacMethods['polyhedron'](self,*args) @@ -13078,13 +13078,13 @@ cdef class GiacMethods_base: Help for polynom: polynom(Opt) Option of the convert or convertir command and of the taylor and series commands (list=>n-poly or series=>poly). - See also: 1/ poly2symb 2/ taylor 3/ series 4/ convert + See also: 1/ poly2symb 2/ taylor 3/ series 4/ convert Ex1: convert([[10,[3,1]],[12,[2,2]]],polynom) Ex2: convert(taylor(sin(x)),polynom) Ex3: convert(series(sin(x),x=0,6),polynom) Ex4: taylor(sin(x),x=0,5,polynom) Ex5: series(sin(x),x=0,6,,polynom) - + ''' return GiacMethods['polynom'](self,*args) @@ -13093,11 +13093,11 @@ cdef class GiacMethods_base: Help for polynomial_regression: polynomial_regression(Lst||Mtrx(A),[Lst],Intg(n)) Returns the coefficients (an,...a1,a0) of y=an*x^n+..a1x+a0 : it is the best polynomial which approx the points where the coordinates are the rows of A (or the 2 lists) (n is the 2nd argument). - See also: 1/ linear_regression 2/ power_regression + See also: 1/ linear_regression 2/ power_regression Ex1:polynomial_regression([[1.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]],3) Ex2:polynomial_regression([[0.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]],3) Ex3:polynomial_regression([0.0,2.0,3.0,4.0],[1.0,4.0,9.0,16.0],3) - + ''' return GiacMethods['polynomial_regression'](self,*args) @@ -13106,11 +13106,11 @@ cdef class GiacMethods_base: Help for polynomial_regression_plot: polynomial_regression_plot(Lst||Mtrx(A),[Lst],Intg(n)) Returns the plot of y=an*x^n+..a1x+a0 : it is the best polynomial which approx the points where the coordinates are the rows of A (or the 2 lists) (n is the 2nd argument). - See also: 1/ linear_regression_plot 2/ power_regression_plot + See also: 1/ linear_regression_plot 2/ power_regression_plot Ex1:polynomial_regression_plot([[1.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]],3) Ex2:polynomial_regression_plot([[0.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]],3) Ex3:polynomial_regression_plot([0.0,2.0,3.0,4.0],[1.0,4.0,9.0,16.0],3) - + ''' return GiacMethods['polynomial_regression_plot'](self,*args) @@ -13119,11 +13119,11 @@ cdef class GiacMethods_base: Help for position: position(NULL or LstCoord) Returns the turtle position in pixels or puts the turtle at the position given by the argument with the same direction. - See also: 1/ cap 2/ initialise + See also: 1/ cap 2/ initialise Ex1:position() Ex2:position(50,70) Ex3:position([50,70]) - + ''' return GiacMethods['position'](self,*args) @@ -13132,9 +13132,9 @@ cdef class GiacMethods_base: Help for poslbdLMQ: poslbdLMQ(Poly(P)) Returns a lower bound on the values of the positive roots of P. Akritas-Strzebonski-Vigklas' Local Max Quadratic (LMQ) method is used. - See also: 1/ posubLMQ 2/ VAS_positive 3/ realroot + See also: 1/ posubLMQ 2/ VAS_positive 3/ realroot Ex1:poslbdLMQ(x^3-7*x+7) - + ''' return GiacMethods['poslbdLMQ'](self,*args) @@ -13143,9 +13143,9 @@ cdef class GiacMethods_base: Help for posubLMQ: posubLMQ(Poly(P)) Returns an upper bound on the values of the positive roots of P. Akritas-Strzebonski-Vigklas' Local Max Quadratic (LMQ) method is used. - See also: 1/ poslbdLMQ 2/ VAS_positive 3/ realroot + See also: 1/ poslbdLMQ 2/ VAS_positive 3/ realroot Ex1:posubLMQ(x^3-7*x+7) - + ''' return GiacMethods['posubLMQ'](self,*args) @@ -13154,9 +13154,9 @@ cdef class GiacMethods_base: Help for potential: potential(Vect(V),VectVar) Returns U such that derive(U,Vector_of_variable)=V. - See also: 1/ derive 2/ vpotential + See also: 1/ derive 2/ vpotential Ex1:potential([2*x*y+3,x^2-4*z,-4*y],[x,y,z]) - + ''' return GiacMethods['potential'](self,*args) @@ -13165,9 +13165,9 @@ cdef class GiacMethods_base: Help for pow2exp: pow2exp(Expr) Converts powers to exponentials. - See also: 1/ exp2pow + See also: 1/ exp2pow Ex1:pow2exp(a^b) - + ''' return GiacMethods['pow2exp'](self,*args) @@ -13176,11 +13176,11 @@ cdef class GiacMethods_base: Help for power_regression: power_regression(Lst|Mtrx(A),[Lst]) Returns the coefficients (m,b) of y=b*x^m : it is the best monomial which approx the points where the coordinates are the rows of A (or the 2 lists). - See also: 1/ polynomial_regression 2/ linear_regressiont + See also: 1/ polynomial_regression 2/ linear_regressiont Ex1:power_regression([[1.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]]) Ex2:power_regression([[1.0,2.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]]) Ex3:power_regression([1.0,2.0,3.0,4.0],[2.0,4.0,9.0,16.0]) - + ''' return GiacMethods['power_regression'](self,*args) @@ -13189,11 +13189,11 @@ cdef class GiacMethods_base: Help for power_regression_plot: power_regression_plot(Lst||Mtrx(A),[Lst]) Returns the plot of y=b*x^m : it is the best monomial which approx the points where the coordinates are the rows of A (or the 2 lists). - See also: 1/ polynomial_regression_plot 2/ linear_regression_plot + See also: 1/ polynomial_regression_plot 2/ linear_regression_plot Ex1:power_regression_plot([[1.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]]) Ex2:power_regression_plot([[1.0,2.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]]) Ex3:power_regression_plot([1.0,2.0,3.0,4.0],[2.0,4.0,9.0,16.0]) - + ''' return GiacMethods['power_regression_plot'](self,*args) @@ -13202,10 +13202,10 @@ cdef class GiacMethods_base: Help for powermod: powermod(Intg(a),Intg(n),Intg(p),[Expr(P(x))],[Var]) Computes a^n modulo p or modulo p,P(x) (fast algorithm). - See also: 1/ pow 2/ ^ + See also: 1/ pow 2/ ^ Ex1:powermod(17,452,19) Ex2:powermod(x+1,452,19,x^4+x+1,x) - + ''' return GiacMethods['powermod'](self,*args) @@ -13214,10 +13214,10 @@ cdef class GiacMethods_base: Help for powerpc: powerpc(Cercle,Pnt or Cplx) Returns the real number d^2-R^2 (d=distance between point and center, R=radius). - See also: 1/ radical_axis + See also: 1/ radical_axis Ex1:powerpc(circle(0,1+i),3+i) Ex2:powerpc(circle(0,point(1+i)),3+i) - + ''' return GiacMethods['powerpc'](self,*args) @@ -13226,10 +13226,10 @@ cdef class GiacMethods_base: Help for powexpand: powexpand(Expr) Expands the expression as a function of the exponent. - See also: 1/ + See also: 1/ Ex1:powexpand(2^(x+y)) Ex2:powexpand(3^(2*x)) - + ''' return GiacMethods['powexpand'](self,*args) @@ -13238,10 +13238,10 @@ cdef class GiacMethods_base: Help for powmod: powmod(Intg(a),Intg(n),Intg(p),[Expr(P(x))],[Var]) Computes a^n modulo p or modulo p,P(x) (fast algorithm). - See also: 1/ pow 2/ ^ + See also: 1/ pow 2/ ^ Ex1:powmod(17,452,19) Ex2:powmod(x+1,452,19,x^4+x+1,x) - + ''' return GiacMethods['powmod'](self,*args) @@ -13250,14 +13250,14 @@ cdef class GiacMethods_base: Help for prepend: prepend(Lst||Set||Str(L),Elem(n)) Adds an element to a set or at the beginning of a list or of a string (L:=prepend(L,a) or L.prepend(a)). - See also: 1/ append 2/ concat + See also: 1/ append 2/ concat Ex1:prepend([1,2],3) Ex2:prepend(set[1,2],3) Ex3: L:=[1,2];L:=prepend(L,3) - Ex4: L:=[1,2];L.prepend(L,3) + Ex4: L:=[1,2];L.prepend(L,3) Ex5: S:=set[1,2];S:=prepend(L,3) Ex6: S:=set[1,2];S.prepend(L,3) - + ''' return GiacMethods['prepend'](self,*args) @@ -13266,12 +13266,12 @@ cdef class GiacMethods_base: Help for preval: preval(Expr(F(Var)),Real(a),Real(b),[Var]) Returns F(b)-F(a). - See also: 1/ subst 2/ int + See also: 1/ subst 2/ int Ex1:preval(x^2-2,2,3) Ex2:preval(y^2-2,2,3,y) Ex3:preval(int(x),0,1) Ex4:preval(int(y,y),0,1,y) - + ''' return GiacMethods['preval'](self,*args) @@ -13280,10 +13280,10 @@ cdef class GiacMethods_base: Help for prevperm: prevperm(Intg(n)) Returns the previous permutation with the lexicographic order. - See also: 1/ nextperm 2/ is_permu + See also: 1/ nextperm 2/ is_permu Ex1:prevperm([0,1,3,2]) Ex2:prevperm([0,1,2,3]) - + ''' return GiacMethods['prevperm'](self,*args) @@ -13292,10 +13292,10 @@ cdef class GiacMethods_base: Help for prevprime: prevprime(Intg(a)) Previous prime or pseudo-prime before a given integer a. - See also: 1/ nextprime 2/ is_prime 3/ ithprime + See also: 1/ nextprime 2/ is_prime 3/ ithprime Ex1:prevprime(9856989898999) Ex2:prevprime(97160249868928888261606009) - + ''' return GiacMethods['prevprime'](self,*args) @@ -13304,10 +13304,10 @@ cdef class GiacMethods_base: Help for primpart: primpart(Poly(P),[Var]) Returns the polynomial P divided by the gcd of its coefficients. - See also: 1/ content + See also: 1/ content Ex1:primpart(2x^2+10x+6) Ex2:primpart(2t^2+10t+6,t) - + ''' return GiacMethods['primpart'](self,*args) @@ -13316,10 +13316,10 @@ cdef class GiacMethods_base: Help for printf: printf(Expr) 2d printing. - See also: 1/ print + See also: 1/ print Ex1:printf(sqrt(2)) Ex2:printf("%gen+%gen=%gen",a,b,a+b) - + ''' return GiacMethods['printf'](self,*args) @@ -13328,9 +13328,9 @@ cdef class GiacMethods_base: Help for prism: prism(LstPnt([A,B,C,D]),Pnt(A1)) Draws a prism with plane base ABCD...and with edges parallel to AA1 (the faces are parallelograms). - See also: 1/ cube 2/ polyhedron + See also: 1/ cube 2/ polyhedron Ex1:prism([[0,0,0],[5,0,0],[0,5,0],[-5,5,0]],[0,0,5]) - + ''' return GiacMethods['prism'](self,*args) @@ -13339,9 +13339,9 @@ cdef class GiacMethods_base: Help for prism_graph: prism_graph(Intg(n)) Returns the generalized Petersen graph GP(n,1). - See also: 1/ antiprism_graph 2/ web_graph + See also: 1/ antiprism_graph 2/ web_graph Ex1:prism_graph(5) - + ''' return GiacMethods['prism_graph'](self,*args) @@ -13350,7 +13350,7 @@ cdef class GiacMethods_base: Help for product: product(Expr||Lst,[Var||Lst],[Intg(a)],[Intg(b)],[Intg(p)]) Multiplies the values of the expression when the variable go from a to b with a step p (product(expression,var,begin,end,step) by default p=1) or product of the elements of a list or product element by element of 2 lists or matrices. - See also: 1/ sum + See also: 1/ sum Ex1:product(n,n,1,10,2) Ex2:product(1/n,n,1,10) Ex3:product(1/n,n,11,1) @@ -13358,7 +13358,7 @@ cdef class GiacMethods_base: Ex5:product([2,3,4,5]) Ex6:product([2,3,4],[5,6,7]) Ex7:product([[2,3,4],[5,6,7]],[[2,3,4],[5,6,7]]) - + ''' return GiacMethods['product'](self,*args) @@ -13367,11 +13367,11 @@ cdef class GiacMethods_base: Help for projection: projection(Curve,Pnt) projection(C,A) is the orthogonal projection of A on the curve C. - See also: 1/ perpendicular + See also: 1/ perpendicular Ex1: H:=projection(line(i,1-i),1+i) Ex2: K:=projection(circle(0,1),1+i) Ex3: J:=projection(circle(0,1),point(1+2*i)) - + ''' return GiacMethods['projection'](self,*args) @@ -13380,12 +13380,12 @@ cdef class GiacMethods_base: Help for proot: proot(Vect||Poly,[Intg(n)]) Returns all computed roots of a polynomial given by its coefficients (may not work if roots are not simple). - See also: 1/ pcoeff 2/ peval 3/ realroot 4/ complexroot 5/ rationalroot 6/ crationalroot + See also: 1/ pcoeff 2/ peval 3/ realroot 4/ complexroot 5/ rationalroot 6/ crationalroot Ex1:proot([1,0,-2]) Ex2:proot(x^2-2) Ex3:proot([1,2,-25,-26,120]) Ex4:proot(x^4+5x-3,30) - + ''' return GiacMethods['proot'](self,*args) @@ -13394,10 +13394,10 @@ cdef class GiacMethods_base: Help for propFrac: propFrac(Frac or RatFrac) Simplifies and writes the fraction (or rational fraction) A/B as Q+R/B with R=0 or, the (-n)th previous question if n<0 (by default n=-1 for the previous question). - See also: 1/ ans + See also: 1/ ans Ex1:quest() Ex2:quest(2) Ex3:quest(-2) - + ''' return GiacMethods['quest'](self,*args) @@ -13604,11 +13604,11 @@ cdef class GiacMethods_base: Help for quo: quo((Vect or Poly),(Vect or Poly),[Var]) Euclidean quotient of 2 polynomials. - See also: 1/ rem 2/ quorem 3/ Quo 4/ iquo + See also: 1/ rem 2/ quorem 3/ Quo 4/ iquo Ex1:quo([1,2,3,4],[-1,2]) Ex2:quo(x^3+2x^2+3x+4,-x+2) Ex3:quo(t^3+2t^2+3t+4,-t+2,t) - + ''' return GiacMethods['quo'](self,*args) @@ -13617,12 +13617,12 @@ cdef class GiacMethods_base: Help for quorem: quorem((Vect or Poly),(Vect or Poly),[Var]) Euclidean quotient and remainder of 2 polynomials. - See also: 1/ rem 2/ quo 3/ iquorem + See also: 1/ rem 2/ quo 3/ iquorem Ex1:quorem([1,2,3,4],[-1,2]) Ex2:quorem(x^3+2x^2+3x+4,-x+2) Ex3:quorem(t^3+2t^2+3t+4,-t+2,t) Ex4:quorem(t^4-1,(t+1)^2,t) - + ''' return GiacMethods['quorem'](self,*args) @@ -13631,11 +13631,11 @@ cdef class GiacMethods_base: Help for quote: quote(Expr) Returns its argument unevaluated (and also a:=quote(a) purges a). - See also: 1/ + See also: 1/ Ex1:quote(1+2) Ex2:quote(1/x+1/(x-1)) Ex3:quote((x+1)*(x-1)) - + ''' return GiacMethods['quote'](self,*args) @@ -13644,12 +13644,12 @@ cdef class GiacMethods_base: Help for r2e: r2e(Lst,Var) Gives the polynomial (or its value) : the first argument is the vector of coefficients and the second argument is the variable (by default x). - See also: 1/ e2r 2/ symb2poly + See also: 1/ e2r 2/ symb2poly Ex1:r2e([1,2,3]) Ex2:r2e([1,2,3],x) Ex3:r2e([1,2,3],-1) Ex4:r2e([1,2,-1],y) - + ''' return GiacMethods['r2e'](self,*args) @@ -13658,10 +13658,10 @@ cdef class GiacMethods_base: Help for radical_axis: radical_axis(Crcle,Crcle) Returns the line of points with same powerpc with respect to the 2 circles. - See also: 1/ powerpc + See also: 1/ powerpc Ex1:radical_axis(circle(0,1+i),circle(1,1+i)) Ex2:radical_axis(circle(0,point(1+i)),circle(1,point(1+i))) - + ''' return GiacMethods['radical_axis'](self,*args) @@ -13670,9 +13670,9 @@ cdef class GiacMethods_base: Help for radius: radius(Crcle) radius(C) gives the radius of the circle C. - See also: 1/ center 2/ circle + See also: 1/ center 2/ circle Ex1:radius(incircle(-1,1-i,i)) - + ''' return GiacMethods['radius'](self,*args) @@ -13681,9 +13681,9 @@ cdef class GiacMethods_base: Help for ramene: ramene(Str(fich_name)) Reads variables and their values from the file fich_name. - See also: 1/ write 2/ readrgb 3/ readwav 4/ csv2gen + See also: 1/ write 2/ readrgb 3/ readwav 4/ csv2gen Ex1:ramene("toto") - + ''' return GiacMethods['ramene'](self,*args) @@ -13692,7 +13692,7 @@ cdef class GiacMethods_base: Help for rand: rand(Intg(n) or Interval(p..n) or NULL,[Intg(b1) or Lst(L)],[Intg(b2)]) rand(n)=a random integer (resp rand(p,n)=a real or rand(p..n)=a real function) with uniform distribution in 0..n-1 (resp in [p;n])(rand()=rand(0,1)=a real in [0,1[) or rand(n,b1,b2)=n integers between b1 and b2 or rand(n,L)=list of n elements of L. - See also: 1/ srand 2/ randpoly 3/ ranm 4/ randvector 5/ hasard + See also: 1/ srand 2/ randpoly 3/ ranm 4/ randvector 5/ hasard Ex1:rand(4) Ex2:rand() Ex3:rand(0,2) @@ -13704,7 +13704,7 @@ cdef class GiacMethods_base: Ex9: L:=["r","r","r","b","n"];L3:=L.rand(3) Ex10: L:=["r","r","r","b","n"];a:=rand(L) Ex11: L:=["r","r","r","b","n"];a:=L.rand() - + ''' return GiacMethods['rand'](self,*args) @@ -13713,7 +13713,7 @@ cdef class GiacMethods_base: Help for randMat: randMat(Intg(n), [Intg(m)],[Interval or quote(DistribLaw)]) Returns a list of size n or an n*m matrix that contains random integers in the range -99 through 99 with uniform distribution or contains random numbers according to the law put between quotes. - See also: 1/ idn 2/ randPoly 3/ rand 4/ randvector + See also: 1/ idn 2/ randPoly 3/ rand 4/ randvector Ex1:randMat(3) Ex2:randMat(3,2) Ex3:randMat(3,2,6) @@ -13727,7 +13727,7 @@ cdef class GiacMethods_base: Ex11:randMat(3,2,1..2) Ex12:randMat(3,5,multinomial,[1/2,1/3,1/6],["R","V","B"]) Ex13: GF(2,8,g);ranm(3,3,g) - + ''' return GiacMethods['randMat'](self,*args) @@ -13736,10 +13736,10 @@ cdef class GiacMethods_base: Help for randNorm: randNorm(Real(mu),Real(sigma)) Returns a random real with normal distribution N(mu,sigma). - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randpoisson 8/ randgeometric 9/ randmultinomial + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randpoisson 8/ randgeometric 9/ randmultinomial Ex1:randNorm(0,1) Ex2:randNorm(2,1) - + ''' return GiacMethods['randNorm'](self,*args) @@ -13748,14 +13748,14 @@ cdef class GiacMethods_base: Help for randPoly: randPoly([Var(Var)],Intg(n),[law]) Returns a polynomial with variable var (or x), of degree n and where the coefficients are random integers in the range -99 through 99 with uniform distribution or according to a law. - See also: 1/ ranm 2/ randvector + See also: 1/ ranm 2/ randvector Ex1:randPoly(5) Ex2:randPoly(t,8) Ex3:randPoly(t,8,-1..1) Ex4:randPoly([x,y],[10,3]) Ex5:randPoly([x,y],[10,3],1 mod 7) Ex6: GF(2,8,g);randpoly(t,8,g);randpoly([x,y],[2,3],g) - + ''' return GiacMethods['randPoly'](self,*args) @@ -13764,10 +13764,10 @@ cdef class GiacMethods_base: Help for randbetad: randbetad(Real(a),Real(b)) Returns a random real according to the Beta distribution with parameters a>0 and b>0. - See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector + See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector Ex1:randbetad(1,2) Ex2:randbetad(1.5,4) - + ''' return GiacMethods['randbetad'](self,*args) @@ -13776,10 +13776,10 @@ cdef class GiacMethods_base: Help for randbinomial: randbinomial(Intg(n),Real(p)) Returns a random integer with binomial distribution B(n,p) i.e. the number of successes in n independant tests where for each test, the success of probability is p. - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randnorm 7/ randpoisson 8/ randgeometric 9/ randmultinomial + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randnorm 7/ randpoisson 8/ randgeometric 9/ randmultinomial Ex1:randbinomial(10,0.4) Ex2:randbinomial(100,0.8) - + ''' return GiacMethods['randbinomial'](self,*args) @@ -13788,10 +13788,10 @@ cdef class GiacMethods_base: Help for randchisquare: randchisquare(Intg(n)) Returns a random integer with chi^2 distribution, χ^2(n). - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randnorm 8/ randgeometric 9/ randmultinomial + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randnorm 8/ randgeometric 9/ randmultinomial Ex1:randchisquare(5) Ex2:randchisquare(2) - + ''' return GiacMethods['randchisquare'](self,*args) @@ -13800,10 +13800,10 @@ cdef class GiacMethods_base: Help for randexp: randexp(Real(a)) Returns a random real according to the exponential distribution with parameter a>0. - See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector + See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector Ex1:randexp(1) Ex2:randexp(2) - + ''' return GiacMethods['randexp'](self,*args) @@ -13812,10 +13812,10 @@ cdef class GiacMethods_base: Help for randfisher: randfisher(Intg(n),Intg(m)) Returns a random integer with Fisher-Snedecor distribution F(n,m). - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randnorm 8/ randgeometric 9/ randmultinomial + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randnorm 8/ randgeometric 9/ randmultinomial Ex1:randfisher(5,2) Ex2:randfisher(2,4) - + ''' return GiacMethods['randfisher'](self,*args) @@ -13824,10 +13824,10 @@ cdef class GiacMethods_base: Help for randgammad: randgammad(Real(a),Real(b)) Returns a random real according to the Gamma distribution with parameters a>0 and b>0. - See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector + See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector Ex1:randgammad(1,2) Ex2:randgammad(1.5,4) - + ''' return GiacMethods['randgammad'](self,*args) @@ -13836,9 +13836,9 @@ cdef class GiacMethods_base: Help for randgeometric: randgeometric(Real(p)) Returns a random integer following the geometric distribution with parameter p. - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randnorm 7/ randpoisson 8/ randbinomial 9/ randmultinomial + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randnorm 7/ randpoisson 8/ randbinomial 9/ randmultinomial Ex1:randgeometric(0.4) - + ''' return GiacMethods['randgeometric'](self,*args) @@ -13847,10 +13847,10 @@ cdef class GiacMethods_base: Help for randint: randint(Intg(n1),Intg(n2)) randint(n1,n2)=an integer in [n1, n2] or [n2,n1]. - See also: 1/ rand + See also: 1/ rand Ex1:randint(1,10) Ex2:randint(-1,-10) - + ''' return GiacMethods['randint'](self,*args) @@ -13859,10 +13859,10 @@ cdef class GiacMethods_base: Help for randmarkov: randmarkov(Mtrx(M) || Vctr(v),Intg(i0),[Intg(n)]) Returns a random sequence of n states (Markov chain) starting from i0, with probability transition matrix M, or returns a stochastic matrix with p recurrent loops v=[n1,..,np] and i0 transient states. - See also: 1/ markov 2/ plotproba + See also: 1/ markov 2/ plotproba Ex1:randmarkov([[0,0,1/2,0,1/2],[0,0,1,0,0],[1/4,1/4,0,1/4,1/4],[0,0,1/2,0,1/2],[0,0,0,0,1]],2,20) Ex2:randmarkov([1,2,1,3],4) - + ''' return GiacMethods['randmarkov'](self,*args) @@ -13871,7 +13871,7 @@ cdef class GiacMethods_base: Help for randmatrix: randmatrix(Intg(n), [Intg(m)],[Interval or quote(DistribLaw)]) Returns a list of size n or an n*m matrix that contains random integers in the range -99 through 99 with uniform distribution or contains random numbers according to the law put between quotes. - See also: 1/ idn 2/ randPoly 3/ rand 4/ randvector + See also: 1/ idn 2/ randPoly 3/ rand 4/ randvector Ex1:randmatrix(3) Ex2:randmatrix(3,2) Ex3:randmatrix(3,2,6) @@ -13885,7 +13885,7 @@ cdef class GiacMethods_base: Ex11:randmatrix(3,2,1..2) Ex12:randmatrix(3,5,multinomial,[1/2,1/3,1/6],["R","V","B"]) Ex13: GF(2,8,g);ranm(3,3,g) - + ''' return GiacMethods['randmatrix'](self,*args) @@ -13894,10 +13894,10 @@ cdef class GiacMethods_base: Help for randmultinomial: randmultinomial(List(P),[List(K)]) Returns a random index or list element according to a multinomial distribution probability list P. - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randnorm 7/ randpoisson 8/ randgeometric 9/ randbinomial + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randnorm 7/ randpoisson 8/ randgeometric 9/ randbinomial Ex1:randmultinomial([1/2,1/3,1/6]) Ex2:randmultinomial([1/2,1/3,1/6],["R","V","B"]) - + ''' return GiacMethods['randmultinomial'](self,*args) @@ -13906,10 +13906,10 @@ cdef class GiacMethods_base: Help for randnorm: randnorm(Real(mu),Real(sigma)) Returns a random real with normal distribution N(mu,sigma). - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randpoisson 8/ randgeometric 9/ randmultinomial + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randpoisson 8/ randgeometric 9/ randmultinomial Ex1:randnorm(0,1) Ex2:randnorm(2,1) - + ''' return GiacMethods['randnorm'](self,*args) @@ -13918,7 +13918,7 @@ cdef class GiacMethods_base: Help for random: random(Intg(n) or Interval(p..n) or NULL,[Intg(b1) or Lst(L)],[Intg(b2)]) rand(n)=a random integer (resp rand(p,n)=a real or rand(p..n)=a real function) with uniform distribution in 0..n-1 (resp in [p;n])(rand()=rand(0,1)=a real in [0,1[) or rand(n,b1,b2)=n integers between b1 and b2 or rand(n,L)=list of n elements of L. - See also: 1/ srand 2/ randpoly 3/ ranm 4/ randvector 5/ hasard + See also: 1/ srand 2/ randpoly 3/ ranm 4/ randvector 5/ hasard Ex1:random(4) Ex2:random() Ex3:random(0,2) @@ -13930,7 +13930,7 @@ cdef class GiacMethods_base: Ex9: L:=["r","r","r","b","n"];L3:=L.rand(3) Ex10: L:=["r","r","r","b","n"];a:=rand(L) Ex11: L:=["r","r","r","b","n"];a:=L.rand() - + ''' return GiacMethods['random'](self,*args) @@ -13939,10 +13939,10 @@ cdef class GiacMethods_base: Help for random_bipartite_graph: random_bipartite_graph(Intg(n)||Lst(a,b),Real(p)||Intg(m)) Returns a random undirected unweighted bipartite graph with n vertices where each possible edge is present with probability p or where m edges are created at random. When the first argument is list [a,b] of integers, two groups of vertices with sizes a and b are created. - See also: 1/ random_digraph 2/ random_graph 3/ random_planar_graph 4/ random_regular_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree + See also: 1/ random_digraph 2/ random_graph 3/ random_planar_graph 4/ random_regular_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree Ex1:random_bipartite_graph(10,0.5) Ex2:random_bipartite_graph([2,3],1.0) - + ''' return GiacMethods['random_bipartite_graph'](self,*args) @@ -13951,10 +13951,10 @@ cdef class GiacMethods_base: Help for random_digraph: random_digraph(Intg(n)||Lst(V),Real(p)||Intg(m)) Returns a random directed unweighted graph with n vertices (list V of labels may me specified) where two vertices are connected with probability p or where m edges are created at random. - See also: 1/ random_bipartite_graph 2/ random_graph 3/ random_planar_graph 4/ random_regular_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree + See also: 1/ random_bipartite_graph 2/ random_graph 3/ random_planar_graph 4/ random_regular_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree Ex1:random_digraph(8,0.5) Ex2:random_digraph(8,10) - + ''' return GiacMethods['random_digraph'](self,*args) @@ -13963,10 +13963,10 @@ cdef class GiacMethods_base: Help for random_graph: random_graph(Intg(n)||Lst(V),Real(p)||Intg(m)) Returns a random undirected unweighted graph with n vertices (list V of labels may be specified) where two vertices are connected with probability p or where m edges are created at random. - See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_planar_graph 4/ random_regular_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree + See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_planar_graph 4/ random_regular_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree Ex1:random_graph(8,0.5) Ex2:random_graph(8,10) - + ''' return GiacMethods['random_graph'](self,*args) @@ -13975,11 +13975,11 @@ cdef class GiacMethods_base: Help for random_network: random_network(Intg(a),Intg(b),[Real(p)],[opts]) Returns a random network with b grid frames of size a*a in which every edge appears with the probability p (by default 0.5). - See also: 1/ is_network 2/ maxflow + See also: 1/ is_network 2/ maxflow Ex1:random_network(3,3) Ex2:random_network(3,3,acyclic) Ex3:random_network(3,4,0.75) - + ''' return GiacMethods['random_network'](self,*args) @@ -13988,8 +13988,8 @@ cdef class GiacMethods_base: Help for random_planar_graph: random_planar_graph(Intg(n)||Lst(V),Real(p),[Intg(c)]) Returns a random planar graph with n vertices, which can also be specified as a list V of their labels, obtained by trying to remove each edge of a random triangulated graph with probability 0<=p<1 [c is connectivity level : 0 - any, 1 - connected, 2 - biconnected, 3 - triconnected (by default, c=1)]. - See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_graph 4/ random_regular_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree - + See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_graph 4/ random_regular_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree + ''' return GiacMethods['random_planar_graph'](self,*args) @@ -13998,9 +13998,9 @@ cdef class GiacMethods_base: Help for random_regular_graph: random_regular_graph(Intg(n)||Lst(V),Intg(d),[connected]) Returns a random d-regular graph with n vertices, which may be specified as list V of their labels. - See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_graph 4/ random_planar_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree + See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_graph 4/ random_planar_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree Ex1:random_regular_graph(100,80,connected) - + ''' return GiacMethods['random_regular_graph'](self,*args) @@ -14009,9 +14009,9 @@ cdef class GiacMethods_base: Help for random_sequence_graph: random_sequence_graph(Lst(L)) Returns a random undirected graph with degree sequence L. - See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_graph 4/ random_planar_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree + See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_graph 4/ random_planar_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree Ex1:random_sequence_graph([1,3,3,2,1,2,2,2,3,3]) - + ''' return GiacMethods['random_sequence_graph'](self,*args) @@ -14020,9 +14020,9 @@ cdef class GiacMethods_base: Help for random_tournament: random_tournament(Intg(n)||Lst(V)) Returns a random tournament graph with n vertices, which may be specified as list V of their labels. - See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_graph 4/ random_planar_graph 5/ random_regular_graph 6/ random_sequence_graph 7/ random_tree + See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_graph 4/ random_planar_graph 5/ random_regular_graph 6/ random_sequence_graph 7/ random_tree Ex1:random_tournament(5) - + ''' return GiacMethods['random_tournament'](self,*args) @@ -14031,8 +14031,8 @@ cdef class GiacMethods_base: Help for random_tree: random_tree(Intg(n)||Lst(V),[Intg(d)||root[=Vrtx(v)]]) Returns a random tree graph with n vertices, which may be specified as list V of their labels [with the upper bound d (positive integer) for the degree of graph or 'root' for rooted trees]. - See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_graph 4/ random_planar_graph 5/ random_regular_graph 6/ random_sequence_graph 7/ random_tournament - + See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_graph 4/ random_planar_graph 5/ random_regular_graph 6/ random_sequence_graph 7/ random_tournament + ''' return GiacMethods['random_tree'](self,*args) @@ -14041,7 +14041,7 @@ cdef class GiacMethods_base: Help for random_variable: random_variable(Lst(W)||Mtrx(M)||Fnc(f),[params]) Returns a random variable from a probability density function f or from list of weights (discrete variable). - See also: 1/ randvector 2/ randmatrix 3/ rand + See also: 1/ randvector 2/ randmatrix 3/ rand Ex1:random_variable(fisher,2,3) Ex2:random_variable([["apple",1/3],["orange",1/4],["pear",1/5],["plum",13/60]]) Ex3:random_variable(k->1-(k/10)^2,range=-10..10) @@ -14052,7 +14052,7 @@ cdef class GiacMethods_base: Ex8:random_variable(weibull,mean=12.5,variance=1) Ex9:random_variable(uniform,mean=10,stddev=2) Ex10:random_variable(uniform,e..pi) - + ''' return GiacMethods['random_variable'](self,*args) @@ -14061,13 +14061,13 @@ cdef class GiacMethods_base: Help for randperm: randperm(Intg(n)||Lst(L)) Returns a random permutation of [0,1,2,..,n-1] or of the list L. - See also: 1/ permu2cycles 2/ is_permu 3/ permu2mat + See also: 1/ permu2cycles 2/ is_permu 3/ permu2mat Ex1:randperm(4) Ex2:randperm(7) Ex3:randperm([1,3,5,7,9]) Ex4: L:=[1,3,5,7,9];L:=randperm(L) Ex5: L:=[1,3,5,7,9];L.randperm() - + ''' return GiacMethods['randperm'](self,*args) @@ -14076,10 +14076,10 @@ cdef class GiacMethods_base: Help for randpoisson: randpoisson(Real(λ)) Returns a random integer with poisson distribution P(λ). - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randnorm 8/ randgeometric 9/ randmultinomial + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randnorm 8/ randgeometric 9/ randmultinomial Ex1:randpoisson(5.4) Ex2:randpoisson(2.8) - + ''' return GiacMethods['randpoisson'](self,*args) @@ -14088,14 +14088,14 @@ cdef class GiacMethods_base: Help for randpoly: randpoly([Var(Var)],Intg(n),[law]) Returns a polynomial with variable var (or x), of degree n and where the coefficients are random integers in the range -99 through 99 with uniform distribution or according to a law. - See also: 1/ ranm 2/ randvector + See also: 1/ ranm 2/ randvector Ex1:randpoly(5) Ex2:randpoly(t,8) Ex3:randpoly(t,8,-1..1) Ex4:randpoly([x,y],[10,3]) Ex5:randpoly([x,y],[10,3],1 mod 7) Ex6: GF(2,8,g);randpoly(t,8,g);randpoly([x,y],[2,3],g) - + ''' return GiacMethods['randpoly'](self,*args) @@ -14104,10 +14104,10 @@ cdef class GiacMethods_base: Help for randseed: randseed() srand returns an integer and initializes the sequence of random numbers. - See also: 1/ RandSeed + See also: 1/ RandSeed Ex1:randseed(12) Ex2: srand - + ''' return GiacMethods['randseed'](self,*args) @@ -14116,10 +14116,10 @@ cdef class GiacMethods_base: Help for randstudent: randstudent(Intg(n)) Returns a random integer with Student distribution S(n). - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randnorm 8/ randgeometric 9/ randmultinomial + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randnorm 8/ randgeometric 9/ randmultinomial Ex1:randstudent(5) Ex2:randstudent(2) - + ''' return GiacMethods['randstudent'](self,*args) @@ -14128,7 +14128,7 @@ cdef class GiacMethods_base: Help for randvar: randvar(Lst(W)||Mtrx(M)||Fnc(f),[params]) Returns a random variable from a probability density function f or from list of weights (discrete variable). - See also: 1/ randvector 2/ randmatrix 3/ rand + See also: 1/ randvector 2/ randmatrix 3/ rand Ex1:randvar(fisher,2,3) Ex2:randvar([["apple",1/3],["orange",1/4],["pear",1/5],["plum",13/60]]) Ex3:randvar(k->1-(k/10)^2,range=-10..10) @@ -14139,7 +14139,7 @@ cdef class GiacMethods_base: Ex8:randvar(weibull,mean=12.5,variance=1) Ex9:randvar(uniform,mean=10,stddev=2) Ex10:randvar(uniform,e..pi) - + ''' return GiacMethods['randvar'](self,*args) @@ -14148,7 +14148,7 @@ cdef class GiacMethods_base: Help for randvector: randvector(Intg(n), [Intg(m)],[Interval or quote(DistribLaw)]) Returns a list of size n that contains random integers in the range -99 through 99 (or in 0..m-1) with uniform distribution or contains random numbers according to the law put between quotes. - See also: 1/ idn 2/ randPoly 3/ rand 4/ ranm + See also: 1/ idn 2/ randPoly 3/ rand 4/ ranm Ex1:randvector(3) Ex2:randvector(3,6) Ex3:randvector(3,normald,0,1) @@ -14159,7 +14159,7 @@ cdef class GiacMethods_base: Ex8:randvector(3,'rand(3)') Ex9:randvector(3,1..2) Ex10: GF(2,8,g);randvector(3,g) - + ''' return GiacMethods['randvector'](self,*args) @@ -14168,10 +14168,10 @@ cdef class GiacMethods_base: Help for randweibulld: randweibulld(Real(a),Real(b)) Returns a random real according to the Weibull distribution with parameters a>0 and b>0. - See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector + See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector Ex1:randweibulld(1,2) Ex2:randweibulld(1.5,4) - + ''' return GiacMethods['randweibulld'](self,*args) @@ -14180,10 +14180,10 @@ cdef class GiacMethods_base: Help for rank: rank(Mtrx) Returns the rank of the matrix. - See also: 1/ det 2/ image + See also: 1/ det 2/ image Ex1:rank([[1,1,2],[2,1,3],[3,1,4]]) Ex2:rank([[1,1,2],[2,1,3],[3,1,5]]) - + ''' return GiacMethods['rank'](self,*args) @@ -14192,7 +14192,7 @@ cdef class GiacMethods_base: Help for ranm: ranm(Intg(n), [Intg(m)],[Interval or quote(DistribLaw)]) Returns a list of size n or an n*m matrix that contains random integers in the range -99 through 99 with uniform distribution or contains random numbers according to the law put between quotes. - See also: 1/ idn 2/ randPoly 3/ rand 4/ randvector + See also: 1/ idn 2/ randPoly 3/ rand 4/ randvector Ex1:ranm(3) Ex2:ranm(3,2) Ex3:ranm(3,2,6) @@ -14206,7 +14206,7 @@ cdef class GiacMethods_base: Ex11:ranm(3,2,1..2) Ex12:ranm(3,5,multinomial,[1/2,1/3,1/6],["R","V","B"]) Ex13: GF(2,8,g);ranm(3,3,g) - + ''' return GiacMethods['ranm'](self,*args) @@ -14215,7 +14215,7 @@ cdef class GiacMethods_base: Help for ranv: ranv(Intg(n), [Intg(m)],[Interval or quote(DistribLaw)]) Returns a list of size n that contains random integers in the range -99 through 99 (or in 0..m-1) with uniform distribution or contains random numbers according to the law put between quotes. - See also: 1/ idn 2/ randPoly 3/ rand 4/ ranm + See also: 1/ idn 2/ randPoly 3/ rand 4/ ranm Ex1:ranv(3) Ex2:ranv(3,6) Ex3:ranv(3,normald,0,1) @@ -14226,7 +14226,7 @@ cdef class GiacMethods_base: Ex8:ranv(3,'rand(3)') Ex9:ranv(3,1..2) Ex10: GF(2,8,g);randvector(3,g) - + ''' return GiacMethods['ranv'](self,*args) @@ -14235,9 +14235,9 @@ cdef class GiacMethods_base: Help for rassembler_trigo: rassembler_trigo(Expr) Collects trigonometric expressions. - See also: 1/ texpand 2/ tlin + See also: 1/ texpand 2/ tlin Ex1:rassembler_trigo(sin(x)+cos(x)) - + ''' return GiacMethods['rassembler_trigo'](self,*args) @@ -14246,11 +14246,11 @@ cdef class GiacMethods_base: Help for rat_jordan: rat_jordan(Mtrx) Returns the list made by the transition matrix and the rational Jordan form of a matrix. - See also: 1/ egv 2/ egvl 3/ jordan 4/ companion + See also: 1/ egv 2/ egvl 3/ jordan 4/ companion Ex1:rat_jordan([[0,2],[1,0]]) Ex2:rat_jordan([[-2,-2,1],[-2,1,-2],[1,-2,-2]]) Ex3:rat_jordan([[1,1,-1,2,-1],[2,0,1,-4,-1],[0,1,1,1,1],[0,1,2,0,1],[0,0,-3,3,-1]]) - + ''' return GiacMethods['rat_jordan'](self,*args) @@ -14259,11 +14259,11 @@ cdef class GiacMethods_base: Help for rational: rational(Opt) DOM_RAT or rational is the type of a rational, as returned by the type command. It is also an option of the assume command. - See also: 1/ type 2/ assume 3/ DOM_INT 4/ DOM_FLOAT + See also: 1/ type 2/ assume 3/ DOM_INT 4/ DOM_FLOAT Ex1: assume(a,rational) Ex2: assume(a,DOM_RAT) Ex3: a:=1/2;type(a) - + ''' return GiacMethods['rational'](self,*args) @@ -14272,9 +14272,9 @@ cdef class GiacMethods_base: Help for rationalroot: rationalroot(Poly(P)) Returns the list of rational roots of P without indicating the multiplicity. - See also: 1/ proot 2/ froot 3/ complexroot 4/ realroot 5/ crationalroot + See also: 1/ proot 2/ froot 3/ complexroot 4/ realroot 5/ crationalroot Ex1:rationalroot(2*x^3-9*x^2+13*x-6) - + ''' return GiacMethods['rationalroot'](self,*args) @@ -14283,11 +14283,11 @@ cdef class GiacMethods_base: Help for ratnormal: ratnormal(Expr) Rewrites as an irreducible rational fraction. - See also: 1/ normal 2/ simplify 3/ factor 4/ expand + See also: 1/ normal 2/ simplify 3/ factor 4/ expand Ex1:ratnormal((x^2-1)/(x^3-1)) Ex2:ratnormal(c/d+b/d+a/d) Ex3:ratnormal((x^2-1)/(x^3-1)+(x-1)/(x^3-1)+1) - + ''' return GiacMethods['ratnormal'](self,*args) @@ -14296,10 +14296,10 @@ cdef class GiacMethods_base: Help for rdiv: rdiv(Expr(a),Expr(b)) Division of a by b (prefixed version of /). - See also: 1/ / + See also: 1/ / Ex1:rdiv(3,5) Ex2:rdiv(3.2,5.4) - + ''' return GiacMethods['rdiv'](self,*args) @@ -14308,11 +14308,11 @@ cdef class GiacMethods_base: Help for re: re(Cplx or LstCplx) Returns the real part of a complex number. - See also: 1/ im 2/ conj + See also: 1/ im 2/ conj Ex1:re(1+2*i) Ex2:re((1+2*i)^2) Ex3:re([1+2*i,(1+2*i)^2]) - + ''' return GiacMethods['re'](self,*args) @@ -14321,9 +14321,9 @@ cdef class GiacMethods_base: Help for read: read(Str(fich_name)) Reads variables and their values from the file fich_name. - See also: 1/ write 2/ readrgb 3/ readwav 4/ csv2gen + See also: 1/ write 2/ readrgb 3/ readwav 4/ csv2gen Ex1:read("toto") - + ''' return GiacMethods['read'](self,*args) @@ -14332,10 +14332,10 @@ cdef class GiacMethods_base: Help for readrgb: readrgb(Str(s),[Intg(w)],[Intg(h)]) Reads a picture file, using it's natural dimensions, or using specified dimensions. - See also: 1/ writergb 2/ readwav + See also: 1/ writergb 2/ readwav Ex1:readrgb("image.png") Ex2:readrgb("image.png",50,50) - + ''' return GiacMethods['readrgb'](self,*args) @@ -14344,9 +14344,9 @@ cdef class GiacMethods_base: Help for readwav: readwav(Str(s)) Reads a WAV sound file. - See also: 1/ writewav 2/ readrgb + See also: 1/ writewav 2/ readrgb Ex1:readwav("pop.wav") - + ''' return GiacMethods['readwav'](self,*args) @@ -14355,11 +14355,11 @@ cdef class GiacMethods_base: Help for real: real(Cplx or LstCplx) Returns the real part of a complex number. - See also: 1/ im 2/ conj + See also: 1/ im 2/ conj Ex1:real(1+2*i) Ex2:real((1+2*i)^2) Ex3:real([1+2*i,(1+2*i)^2]) - + ''' return GiacMethods['real'](self,*args) @@ -14368,14 +14368,14 @@ cdef class GiacMethods_base: Help for realroot: realroot([sturm],Poly(P),[Real(l)],[Cplx(a)],[Cplx(b)]) Returns the list of intervals of length <=l containing the real roots of P inside a..b with their multiplicity. By default the Vincent-Akritas-Strzebonski (VAS) method is used. realroot(sturm,P) uses Sturm's method. - See also: 1/ proot 2/ froot 3/ complexroot 4/ rationalroot 5/ crationalroot 6/ sturmab 7/ VAS + See also: 1/ proot 2/ froot 3/ complexroot 4/ rationalroot 5/ crationalroot 6/ sturmab 7/ VAS Ex1:realroot(x^3+7,0.1) Ex2:realroot(x^3-7*x+7) Ex3:realroot(sturm,x^3-7*x+7) Ex4:realroot(x^5-2*x^4+x^3+1) Ex5:realroot(x^5-2*x^4+x^3+1,0.1) Ex6:realroot(x^3+x+8,1e-5,-4,4) - + ''' return GiacMethods['realroot'](self,*args) @@ -14384,10 +14384,10 @@ cdef class GiacMethods_base: Help for reciprocation: reciprocation(Crcle,Lst(Pnt,Line)) Returns the list where the points (resp lines) are replaced with their polars (resp poles) with respect to the circle C. - See also: 1/ pole 2/ polar + See also: 1/ pole 2/ polar Ex1:reciprocation(circle(0,1),[point((1+i)/2), line(1,-1+i)]) Ex2:reciprocation(circle(0,1),[line(1+i,2),point(1+i*2)]) - + ''' return GiacMethods['reciprocation'](self,*args) @@ -14396,9 +14396,9 @@ cdef class GiacMethods_base: Help for rect: rect(Expr(x)) Returns the value of the rectangle function at x. - See also: 1/ boxcar 2/ tri 3/ Heaviside + See also: 1/ boxcar 2/ tri 3/ Heaviside Ex1:rect(x/2) - + ''' return GiacMethods['rect'](self,*args) @@ -14407,12 +14407,12 @@ cdef class GiacMethods_base: Help for rectangle: rectangle(Pnt(A)||Cplx,Pnt(B)||Cplx,Real(k)||Pnt(P)||Lst(P,k),[Var(D)],[Var(C)]) Returns and draws the rectangle ABCD, AD=k*AB; if k>0 ABCD is direct else indirect (in the plane ABP AD=AP or AD=k*AB). - See also: 1/ quadrilateral 2/ square + See also: 1/ quadrilateral 2/ square Ex1:rectangle(-i,1,2) Ex2:rectangle(-i,1,-2,D,C) Ex3:rectangle(point(0,0,0),point(3,3,3),point(0,0,3),D,C) Ex4:rectangle(point(0,0,0),point(3,3,3),2,D,C) - + ''' return GiacMethods['rectangle'](self,*args) @@ -14421,14 +14421,14 @@ cdef class GiacMethods_base: Help for rectangle_droit: rectangle_droit(Opt) Option of the plotarea command and of the area command. - See also: 1/ plotarea 2/ area + See also: 1/ plotarea 2/ area Ex1: plotarea(x^2,x=0..1,5,trapezoid) Ex2: plotarea(x^2,x=0..1,5,middle_point) Ex3: plotarea(x^2,x=0..1,5,right_rectangle) Ex4: plotarea(x^2,x=0..1,5,left_rectangle) Ex5: area(x^2,x=0..1,5,middle_point) Ex6: area(x^2,x=0..1,5,trapezoid) - + ''' return GiacMethods['rectangle_droit'](self,*args) @@ -14437,14 +14437,14 @@ cdef class GiacMethods_base: Help for rectangle_gauche: rectangle_gauche(Opt) Option of the plotarea command and of the area command. - See also: 1/ plotarea 2/ area + See also: 1/ plotarea 2/ area Ex1: plotarea(x^2,x=0..1,5,trapezoid) Ex2: plotarea(x^2,x=0..1,5,middle_point) Ex3: plotarea(x^2,x=0..1,5,right_rectangle) Ex4: plotarea(x^2,x=0..1,5,left_rectangle) Ex5: area(x^2,x=0..1,5,middle_point) Ex6: area(x^2,x=0..1,5,trapezoid) - + ''' return GiacMethods['rectangle_gauche'](self,*args) @@ -14453,11 +14453,11 @@ cdef class GiacMethods_base: Help for rectangle_plein: rectangle_plein(Real(a),[Real(b)]) Draws a full direct rectangle (resp square) with sides a,b (resp a) from the turtle position and on the left (by default b=a). - See also: 1/ triangle_plein + See also: 1/ triangle_plein Ex1: rectangle_plein 20 Ex2:rectangle_plein(20) Ex3:rectangle_plein(20,40) - + ''' return GiacMethods['rectangle_plein'](self,*args) @@ -14466,10 +14466,10 @@ cdef class GiacMethods_base: Help for rectangular_coordinates: rectangular_coordinates(LstPolCoord) Returns the list of the abscissa and of the ordinate of a point given by the list of its polar coordinates. - See also: 1/ abscissa 2/ ordinate 3/ rectangular_coordinates 4/ polar_point + See also: 1/ abscissa 2/ ordinate 3/ rectangular_coordinates 4/ polar_point Ex1:rectangular_coordinates([1,pi/4]) Ex2:rectangular_coordinates(polar_point(1,pi/4)) - + ''' return GiacMethods['rectangular_coordinates'](self,*args) @@ -14478,10 +14478,10 @@ cdef class GiacMethods_base: Help for recule: recule(NULL or Real(n)) The turtle takes n steps back (by default n=10). - See also: 1/ avance 2/ saute + See also: 1/ avance 2/ saute Ex1: recule 30 Ex2:recule(30) - + ''' return GiacMethods['recule'](self,*args) @@ -14490,10 +14490,10 @@ cdef class GiacMethods_base: Help for red: red(Opt) Option of the display command to display with color. - See also: 1/ display + See also: 1/ display Ex1: F:=display(point(2+1.5*i),red) Ex2: F:=display(point(2+1.5*i),point_point+green) - + ''' return GiacMethods['red'](self,*args) @@ -14502,12 +14502,12 @@ cdef class GiacMethods_base: Help for reduced_conic: reduced_conic(Expr,[LstVar]) Returns the origin and the matrix of a base in which the conic given by its equation is reduced, 0 or 1 (0 if the conic is degenerate) and the equation of the conic in this base and also its parametric equation. - See also: 1/ gauss 2/ conic + See also: 1/ gauss 2/ conic Ex1:reduced_conic(x^2+2*x-2*y+1) Ex2:reduced_conic(a*x^2-2*x*y+a*y^2-2*x+2*y+3,[x,y]) Ex3:reduced_conic(2*u^2+2*u*v+2*v^2+5*u+3,[u,v]) Ex4:reduced_conic((x+y)^2-2*x+1,x,y) - + ''' return GiacMethods['reduced_conic'](self,*args) @@ -14516,12 +14516,12 @@ cdef class GiacMethods_base: Help for reduced_quadric: reduced_quadric(Expr, [LstVar]) Returns the origin and the matrix of a basis in which the quadric (given by its equation) is reduced, the list of its eigenvalues, the equation of the quadric in this basis and its parametric equation. - See also: 1/ gauss 2/ quadric + See also: 1/ gauss 2/ quadric Ex1:reduced_quadric(4*x^2+y^2+z^2-4*x*y+4*x*z-2*y*z+8*x-4*y+4*z+2) Ex2:reduced_quadric(x^2+3*y^2-3*z^2-8*y*z+2*z*x-4*x*y-1,x,y,z) Ex3:reduced_quadric((u+v)*(v-w)+3*u-5*v,[u,v,w]) Ex4:reduced_quadric(7*x^2+4*y^2+4*z^2+4*x*y-4*x*z-2*y*z-4*x+5*y+4*z-18,[x,y,z]) - + ''' return GiacMethods['reduced_quadric'](self,*args) @@ -14530,10 +14530,10 @@ cdef class GiacMethods_base: Help for ref: ref(Mtrx(M)) Gaussian reduction of AX=b (M=A|(-b)). - See also: 1/ rref 2/ det + See also: 1/ rref 2/ det Ex1:ref([[3,1,-2],[3,2,2]]) Ex2:ref([[2,1,1,-1],[1,1,2,-1],[1,2,1,-4]]) - + ''' return GiacMethods['ref'](self,*args) @@ -14542,11 +14542,11 @@ cdef class GiacMethods_base: Help for reflection: reflection((Pnt(A) or Line(D)),(Pnt(C) or Curve(C))) reflection(D,C) (or reflection(A,C))=symmetry of C with the symmetry-line D (or sym-point A). - See also: 1/ rotation 2/ translation + See also: 1/ rotation 2/ translation Ex1:reflection(line(0,1+i),A) Ex2:reflection(B,A) Ex3:reflection(line(0,1+i),circle(i,1+i)) - + ''' return GiacMethods['reflection'](self,*args) @@ -14555,9 +14555,9 @@ cdef class GiacMethods_base: Help for regroup: regroup(Expr) Collects terms in an expression. - See also: 1/ simplify 2/ normal + See also: 1/ simplify 2/ normal Ex1:regroup(x+3*x+5*4/x) - + ''' return GiacMethods['regroup'](self,*args) @@ -14566,9 +14566,9 @@ cdef class GiacMethods_base: Help for relabel_vertices: relabel_vertices(Graph(G),Lst(L)) Returns a copy of G with vertex labels changed to those in the list L. - See also: 1/ graph_vertices 2/ isomorphic_copy 3/ permute_vertices + See also: 1/ graph_vertices 2/ isomorphic_copy 3/ permute_vertices Ex1:relabel_vertices(graph([a,b,c]),["first","second","third"]) - + ''' return GiacMethods['relabel_vertices'](self,*args) @@ -14577,10 +14577,10 @@ cdef class GiacMethods_base: Help for reliability_polynomial: reliability_polynomial(Graph(G),[Var(p)]) Returns the reliability polynomial [or its value at point p] of undirected graph G. If G is weighted, all weights must be positive integers and are interpreted as edge multiplicities. - See also: 1/ chromatic_polynomial 2/ flow_polynomial 3/ tutte_polynomial + See also: 1/ chromatic_polynomial 2/ flow_polynomial 3/ tutte_polynomial Ex1:reliability_polynomial(graph("petersen")) Ex2:reliability_polynomial(graph("petersen"),0.5) - + ''' return GiacMethods['reliability_polynomial'](self,*args) @@ -14589,11 +14589,11 @@ cdef class GiacMethods_base: Help for rem: rem((Vect or Poly),(Vect or Poly),[Var]) Euclidean remainder of 2 polynomials. - See also: 1/ quo 2/ quorem 3/ Rem 4/ irem + See also: 1/ quo 2/ quorem 3/ Rem 4/ irem Ex1:rem([1,2,3,4],[-1,2]) Ex2:rem(x^3+2x^2+3x+4,-x+2) Ex3:rem(t^3+2t^2+3t+4,-t+2,t) - + ''' return GiacMethods['rem'](self,*args) @@ -14602,12 +14602,12 @@ cdef class GiacMethods_base: Help for remain: remain(Intg(a),Intg(b)) Euclidean remainder of 2 integers. - See also: 1/ iquo 2/ smod 3/ rem 4/ mod + See also: 1/ iquo 2/ smod 3/ rem 4/ mod Ex1:remain(125,15) Ex2:remain(125,41) Ex3:remain(-7,3) Ex4:remain(25+12*i,5+7*i) - + ''' return GiacMethods['remain'](self,*args) @@ -14616,10 +14616,10 @@ cdef class GiacMethods_base: Help for remove: remove(FncBool(f)||a,Lst(l)) Remove the occurrences a of l or the elements a such that f(a)=true. - See also: 1/ select 2/ suppress + See also: 1/ select 2/ suppress Ex1:remove(x->x>=5,[1,2,6,7]) Ex2:remove(5,[1,2,5,6,7,5]) - + ''' return GiacMethods['remove'](self,*args) @@ -14628,10 +14628,10 @@ cdef class GiacMethods_base: Help for reorder: reorder(Expr, LstVar) Reorders the variables in E according to the order of the 2nd argument. - See also: 1/ + See also: 1/ Ex1:reorder(-2) Ex2:reorder(x^2+2*x+y^2,[y,x]) - + ''' return GiacMethods['reorder'](self,*args) @@ -14640,10 +14640,10 @@ cdef class GiacMethods_base: Help for resample: resample(Lst(clip),[Intg(s),[Intg(q)]]) Returns a copy of the input audio clip resampled to the rate s (by default 44100), optionally with quality level q (from 0 to 4, by default 2). - See also: 1/ samplerate 2/ playsnd 3/ readwav 4/ writewav + See also: 1/ samplerate 2/ playsnd 3/ readwav 4/ writewav Ex1:resample(readwav("/some/file"),48000) Ex2:resample(readwav("/some/file"),48000,3) - + ''' return GiacMethods['resample'](self,*args) @@ -14652,12 +14652,12 @@ cdef class GiacMethods_base: Help for residue: residue(Expr,Var(v),Cplx(a)) Returns the residue in a of the expression with v as variable. - See also: 1/ series + See also: 1/ series Ex1:residue(1/z,z,0) Ex2:residue(5/z,z=0) Ex3:residue(cos(z)/(z*(z-b)),z,0) Ex4:residue(c/(z*(z-b)),z=b) - + ''' return GiacMethods['residue'](self,*args) @@ -14666,12 +14666,12 @@ cdef class GiacMethods_base: Help for resoudre: resoudre(Expr,[Var]) Solves a (or a set of) polynomial equation. - See also: 1/ linsolve 2/ proot 3/ fsolve 4/ csolve 5/ nSolve + See also: 1/ linsolve 2/ proot 3/ fsolve 4/ csolve 5/ nSolve Ex1:resoudre(x^2-3=1) Ex2:resoudre(x^3-3*y,y) Ex3:resoudre([y-z=0,z-x=0,x-y=0,x-1+y+z=0],[x,y,z]) Ex4:resoudre([x^2-y^2=0,x^2-z^2=0],[x,y,z]) - + ''' return GiacMethods['resoudre'](self,*args) @@ -14680,12 +14680,12 @@ cdef class GiacMethods_base: Help for resoudre_dans_C: resoudre_dans_C(LstEq,LstVar) Returns the list of complex solutions of an equation or a matrix where the rows are ℂ-solutions of a system of polynomial equations. - See also: 1/ cZeros 2/ solve 3/ fslove + See also: 1/ cZeros 2/ solve 3/ fslove Ex1:resoudre_dans_C(x^4-1,x) Ex2:resoudre_dans_C(x^4-y^4 and x+y=2,[x,y]) Ex3:resoudre_dans_C(x^4-y^4 and x+y=0 and x^2=2*x,[x,y]) Ex4:resoudre_dans_C(u*v-u=v and v^2=u,[u,v]) - + ''' return GiacMethods['resoudre_dans_C'](self,*args) @@ -14694,17 +14694,17 @@ cdef class GiacMethods_base: Help for resoudre_systeme_lineaire: resoudre_systeme_lineaire(LstLinEq,LstVar) Linear equations system solver. - See also: 1/ solve 2/ proot 3/ simult 4/ gaussjord 5/ pivot 6/ ref 7/ conjugate_gradient + See also: 1/ solve 2/ proot 3/ simult 4/ gaussjord 5/ pivot 6/ ref 7/ conjugate_gradient Ex1:resoudre_systeme_lineaire([x+y+z=1,x-y=2,2*x-z=3],[x,y,z]) Ex2:resoudre_systeme_lineaire([m*x+y=a,x+m*y=b],[x,y]) Ex3:resoudre_systeme_lineaire([x+y-z-1,x-y+1,x-y-z-1]%2,[x,y,z]) Ex4:resoudre_systeme_lineaire([[3,4],[1,2]],[0,1]) - Ex5: p,l,u:=lu([[3,4],[1,2]]); linsolve(p,l,u,[0,1]) + Ex5: p,l,u:=lu([[3,4],[1,2]]); linsolve(p,l,u,[0,1]) Ex6:resoudre_systeme_lineaire([2*x+y+z=1,x+y+2*z=1,x+2*y+z=4],[x,y,z]) Ex7:resoudre_systeme_lineaire([[2,1,1],[1,1,2],[1,2,1]],[1,1,4]) Ex8: p,l,u:=lu([[2,1,1],[1,1,2],[1,2,1]]);linsolve(p,l,u,[1,1,4]) Ex9: a:=[[100,2],[2,100]];linsolve(evalf(a),[0,1]); - + ''' return GiacMethods['resoudre_systeme_lineaire'](self,*args) @@ -14713,10 +14713,10 @@ cdef class GiacMethods_base: Help for resultant: resultant(Poly,Poly,Var) Resultant of two polynomials. - See also: 1/ sylvester 2/ gcd + See also: 1/ sylvester 2/ gcd Ex1:resultant(x^2-1,x^3-1,x) Ex2:resultant(x^3-p*x+q,3*x^2-p,x) - + ''' return GiacMethods['resultant'](self,*args) @@ -14729,7 +14729,7 @@ cdef class GiacMethods_base: Ex2: L:=[1,2,3,4];L:=revlist(L) Ex3: L:=[1,2,3,4];L.revlist() Ex4: L:=[1,2,3,4];L.reverse() - + ''' return GiacMethods['reverse'](self,*args) @@ -14738,9 +14738,9 @@ cdef class GiacMethods_base: Help for reverse_graph: reverse_graph(Graph(G)) Returns the copy of G with the directions of all edges reversed. - See also: 1/ digraph + See also: 1/ digraph Ex1:reverse_graph(digraph(%{[1,2],[1,3],[2,3]%})) - + ''' return GiacMethods['reverse_graph'](self,*args) @@ -14749,9 +14749,9 @@ cdef class GiacMethods_base: Help for reverse_rsolve: reverse_rsolve(Vect(v)) If v=[v_0 ... v_(2n-1)], returns [b_n,...,b_0] such that b_n*v_{n+k}+...+b_0*v_k=0 for k=0..n-1. - See also: 1/ rsolve + See also: 1/ rsolve Ex1:reverse_rsolve([1,-1,3,3]) - + ''' return GiacMethods['reverse_rsolve'](self,*args) @@ -14760,9 +14760,9 @@ cdef class GiacMethods_base: Help for revert: revert(Expr) Returns the inverse expansion of a series expansion at 0. - See also: 1/ series + See also: 1/ series Ex1:revert(x+x^2+x^4) - + ''' return GiacMethods['revert'](self,*args) @@ -14771,8 +14771,8 @@ cdef class GiacMethods_base: Help for revlex: revlex(Opt) Option of the gbasis or greduce command to specify an order for monomials (complete degree then inverse lexicographic order). - See also: 1/ gbasis 2/ greduce - + See also: 1/ gbasis 2/ greduce + ''' return GiacMethods['revlex'](self,*args) @@ -14785,7 +14785,7 @@ cdef class GiacMethods_base: Ex2: L:=[1,2,3,4];L:=revlist(L) Ex3: L:=[1,2,3,4];L.revlist() Ex4: L:=[1,2,3,4];L.reverse() - + ''' return GiacMethods['revlist'](self,*args) @@ -14794,14 +14794,14 @@ cdef class GiacMethods_base: Help for rgb: rgb(Opt) Option of the display (or affichage) command to defined colors RGB. - See also: 1/ display 2/ filled + See also: 1/ display 2/ filled Ex1: redcolor:=rgb(0.99,0,0);display(square(0,2+i),filled+redcolor) Ex2: greencolor:=rgb(0,0.99,0);display(square(0,2+i),filled+greencolor) Ex3: bluecolor:=rgb(0,0,0.99);display(square(0,2+i),filled+bluecolor) Ex4: greycolor:=rgb(0.5,0.5,0.5);display(square(0,2+i),filled+greycolor) Ex5: F:=display(square(0,2+i),filled+rgb(rand(),rand(),rand())) Ex6: L:=rand(),rand(),rand();affichage(square(0,2+i),rgb(L)+rempli);legend(0.2,[L]) - + ''' return GiacMethods['rgb'](self,*args) @@ -14810,13 +14810,13 @@ cdef class GiacMethods_base: Help for rhombus: rhombus(Pnt(A)||Cplx,Pnt(B)||Cplx,Angle(a)||Pnt(P)||Lst(P,a)),[Var(C)],[Var(D)]) Returns and draws the rhombus ABCD such that the angle (AB,AD)=a (or in the plane ABP angle(AB,AD)=angle(AB,AP) or such that angle(AB,AD)=a). - See also: 1/ square 2/ quadrilateral + See also: 1/ square 2/ quadrilateral Ex1:rhombus(i,1+i,pi/4) Ex2:rhombus(i,1+i,pi/4,C,D) Ex3:rhombus(point(0,0,0),point(3,3,3),[point(0,0,3),pi/4]) Ex4:rhombus(point(0,0,0),point(3,3,3),point(0,0,3),C,D) Ex5:rhombus(point(0,0,0),point(3,3,3),[point(0,0,3),pi/4],C,D) - + ''' return GiacMethods['rhombus'](self,*args) @@ -14825,10 +14825,10 @@ cdef class GiacMethods_base: Help for rhombus_point: rhombus_point(Opt) Option of the display command for a point. - See also: 1/ display + See also: 1/ display Ex1: F:=display(point(2+1.5*i),point_point) Ex2: F:=display(point(2+1.5*i),rhombus_point) - + ''' return GiacMethods['rhombus_point'](self,*args) @@ -14837,12 +14837,12 @@ cdef class GiacMethods_base: Help for rhs: rhs(Equal(a=b) or Interval(a..b) or Str,Intg) Returns the right part of an equality, of an interval, of a list or of a string. - See also: 1/ left 2/ mid 3/ tail 4/ head + See also: 1/ left 2/ mid 3/ tail 4/ head Ex1:rhs(a=b) Ex2:rhs(x^2+1=5) Ex3:rhs(1..5) Ex4:rhs("abcdefg",3) - + ''' return GiacMethods['rhs'](self,*args) @@ -14851,9 +14851,9 @@ cdef class GiacMethods_base: Help for riemann_window: riemann_window(Lst,[Interval(n1..n2)]) Applies the Riemann windowing function to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ bartlett_hann_window 12/ triangle_window 13/ tukey_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ bartlett_hann_window 12/ triangle_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(riemann_window(randvector(1000,0..1))) - + ''' return GiacMethods['riemann_window'](self,*args) @@ -14862,12 +14862,12 @@ cdef class GiacMethods_base: Help for right: right(Equal(a=b) or Interval(a..b) or Str,Intg) Returns the right part of an equality, of an interval, of a list or of a string. - See also: 1/ left 2/ mid 3/ tail 4/ head + See also: 1/ left 2/ mid 3/ tail 4/ head Ex1:right(a=b) Ex2:right(x^2+1=5) Ex3:right(1..5) Ex4:right("abcdefg",3) - + ''' return GiacMethods['right'](self,*args) @@ -14876,14 +14876,14 @@ cdef class GiacMethods_base: Help for right_rectangle: right_rectangle(Opt) Option of the plotarea command and of the area command. - See also: 1/ plotarea 2/ area + See also: 1/ plotarea 2/ area Ex1: plotarea(x^2,x=0..1,5,trapezoid) Ex2: plotarea(x^2,x=0..1,5,middle_point) Ex3: plotarea(x^2,x=0..1,5,right_rectangle) Ex4: plotarea(x^2,x=0..1,5,left_rectangle) Ex5: area(x^2,x=0..1,5,middle_point) Ex6: area(x^2,x=0..1,5,trapezoid) - + ''' return GiacMethods['right_rectangle'](self,*args) @@ -14892,13 +14892,13 @@ cdef class GiacMethods_base: Help for right_triangle: right_triangle((Pnt(A) or Cplx),(Pnt(B) or Cplx),(Real(k) or Pnt(P) or Lst(P,k)),[Var(C)]) Draws the A_rectangular triangle ABC with AC=k*AB (or in the plane ABP AC=AP or AC=k*AB). - See also: 1/ triangle + See also: 1/ triangle Ex1:right_triangle(1,i,tan(pi/3)) Ex2:right_triangle(1,i,1/2,C) Ex3:right_triangle(point(0,0,0),point(3,3,3),point(0,0,3)) Ex4:right_triangle(point(0,0,0),point(3,3,3),[point(0,0,3),1/2],C) Ex5:right_triangle(point(0,0,0),point(3,3,3),[point(0,0,3),1/2],C) - + ''' return GiacMethods['right_triangle'](self,*args) @@ -14907,11 +14907,11 @@ cdef class GiacMethods_base: Help for risch: risch(Expr,[Var]) Returns a primitive of the expression calculated with the Risch algorithm. - See also: 1/ int + See also: 1/ int Ex1:risch(ln(x),x) Ex2:risch(ln(x)) Ex3:risch(exp(x^2),x) - + ''' return GiacMethods['risch'](self,*args) @@ -14920,9 +14920,9 @@ cdef class GiacMethods_base: Help for rm_a_z: rm_a_z(NULL) Erases all the variable name made up of only one lowercase a..z character. - See also: 1/ rm_all_vars + See also: 1/ rm_all_vars Ex1:rm_a_z() - + ''' return GiacMethods['rm_a_z'](self,*args) @@ -14931,9 +14931,9 @@ cdef class GiacMethods_base: Help for rm_all_vars: rm_all_vars(NULL) Erases all the variable names. - See also: 1/ rm_a_z + See also: 1/ rm_a_z Ex1:rm_all_vars() - + ''' return GiacMethods['rm_all_vars'](self,*args) @@ -14942,9 +14942,9 @@ cdef class GiacMethods_base: Help for rmbreakpoint: rmbreakpoint(Intg) Removes a breakpoint. - See also: 1/ breakpoint + See also: 1/ breakpoint Ex1:rmbreakpoint(1) - + ''' return GiacMethods['rmbreakpoint'](self,*args) @@ -14953,9 +14953,9 @@ cdef class GiacMethods_base: Help for rmmod: rmmod(Str(pwd)) Removes the installed dynamic libraries. - See also: 1/ lsmod 2/ insmod + See also: 1/ lsmod 2/ insmod Ex1:rmmod("/home/parisse/giac/src/libprogfr.so") - + ''' return GiacMethods['rmmod'](self,*args) @@ -14964,9 +14964,9 @@ cdef class GiacMethods_base: Help for rmwatch: rmwatch(Var) Clears a variables from the table of displayed variables in step/step. - See also: 1/ watch + See also: 1/ watch Ex1:rmwatch(a) - + ''' return GiacMethods['rmwatch'](self,*args) @@ -14975,11 +14975,11 @@ cdef class GiacMethods_base: Help for romberg: romberg(Expr(f(x)),Var(x),Real(a),Real(b)) Returns the approximate value of integrate(f(x),x,a,b) by Romberg's method. - See also: 1/ integrate 2/ gaussquad + See also: 1/ integrate 2/ gaussquad Ex1:romberg(exp(x^2),x,0,1) Ex2:romberg(x^2,x,0,1) Ex3:romberg(exp(-x^2),x,-1,1) - + ''' return GiacMethods['romberg'](self,*args) @@ -14988,12 +14988,12 @@ cdef class GiacMethods_base: Help for rombergm: rombergm(Opt) Option of the area command. - See also: 1/ area + See also: 1/ area Ex1: area(x^2,x=0..1,5,simpson) Ex2: area(x^2,x=0..1,5,rombergt) Ex3: area(x^2,x=0..1,5,rombergm) Ex4:rombergm(area(x^2,x=0..1,5,gauss15)) - + ''' return GiacMethods['rombergm'](self,*args) @@ -15002,12 +15002,12 @@ cdef class GiacMethods_base: Help for rombergt: rombergt(Opt) Option of the area command. - See also: 1/ area + See also: 1/ area Ex1: area(x^2,x=0..1,5,simpson) Ex2: area(x^2,x=0..1,5,rombergt) Ex3: area(x^2,x=0..1,5,rombergm) Ex4:rombergt(area(x^2,x=0..1,5,gauss15)) - + ''' return GiacMethods['rombergt'](self,*args) @@ -15016,12 +15016,12 @@ cdef class GiacMethods_base: Help for rond: rond(Real(r),[Real(a)],[Real(b)]) Draws a circle (resp a arc) with radius r (resp and with angle (0,a) or (a,b)), tangent at the turtle position. - See also: 1/ disque + See also: 1/ disque Ex1: rond 30 Ex2:rond(40) Ex3:rond(40,90) Ex4:rond(40,10,100) - + ''' return GiacMethods['rond'](self,*args) @@ -15030,12 +15030,12 @@ cdef class GiacMethods_base: Help for root: root(Expr(a),Expr(b)) Returns b^(1/a) (root(2,3)=sqrt(3)). - See also: 1/ + See also: 1/ Ex1:root(3,2) Ex2:root(1/3,2) Ex3:root(3,1.2) Ex4:root(3.2,1.2) - + ''' return GiacMethods['root'](self,*args) @@ -15044,11 +15044,11 @@ cdef class GiacMethods_base: Help for rootof: rootof(LstPoly(P),LstPoly(Q)) Polynomial in terms of a root of an irreducible polynomial on Q. Returns P(a) with a the greatest root of Q. - See also: 1/ + See also: 1/ Ex1: normal(1/rootof([1,0],[1,0,10,0,1])) Ex2: normal(1/rootof([1,0,0],[1,1,0,-1])) - Ex3: rootof(x^4+x+1):='j'; normal(j^5); - + Ex3: rootof(x^4+x+1):='j'; normal(j^5); + ''' return GiacMethods['rootof'](self,*args) @@ -15057,10 +15057,10 @@ cdef class GiacMethods_base: Help for roots: roots(Poly,[Var]) Returns a matrix having 2 columns and where the rows are the roots of the polynomial with their multiplicity (for 1 variable). - See also: 1/ proot 2/ cZeros + See also: 1/ proot 2/ cZeros Ex1:roots(t^3-1,t) Ex2:roots(x^5-2*x^4+x^3) - + ''' return GiacMethods['roots'](self,*args) @@ -15069,7 +15069,7 @@ cdef class GiacMethods_base: Help for rotate: rotate(Lst||Str(L),[Intg(n)]) Returns the list where the last element [or the tail beginning with the n-th element] is moved to the first element (by default n=-1);L:=rotate(L,n) or L.rotate(n). - See also: 1/ tail 2/ mid 3/ shift + See also: 1/ tail 2/ mid 3/ shift Ex1:rotate([0,1,2,3],2) Ex2:rotate([[1,2,3],[4,5,6],[7,8,9]]) Ex3:rotate([0,1,2,3,4]) @@ -15078,7 +15078,7 @@ cdef class GiacMethods_base: Ex6: L:=[0,1,2,3,4];L.rotate() Ex7: L:=[0,1,2,3];L:=rotate([0,1,2,3],2) Ex8: L:=[0,1,2,3];L.rotate(2) - + ''' return GiacMethods['rotate'](self,*args) @@ -15087,13 +15087,13 @@ cdef class GiacMethods_base: Help for rotation: rotation((Pnt(B) or Cplx or Dr3),Angle(a1),(Pnt(A) or Curve)) rotation(B,a1,A) (resp rotation(d,a1,A)) is the transformation of A by rotation with center B (resp of axis d) and angle a1. - See also: 1/ translation 2/ reflection + See also: 1/ translation 2/ reflection Ex1:rotation(point(1+i),pi/2,point(i)) Ex2:rotation(1+i,pi/3,line(i,1)) Ex3:rotation(line(x=y,y=z),pi/2,point(1,-1,2)) Ex4: r:=rotation(1+i,pi/2);r(i) Ex5: r:=rotation(line(x=y,y=z),pi/2);r(point(1,-1,2)) - + ''' return GiacMethods['rotation'](self,*args) @@ -15102,13 +15102,13 @@ cdef class GiacMethods_base: Help for round: round(Real or Cplx,[Intg(n)]) Rounds the real or complex to the nearest integer (resp the nearest decimal number) or to the nearest element of ℤ[i], (resp with n decimals). - See also: 1/ floor 2/ ceil + See also: 1/ floor 2/ ceil Ex1:round(2.5) Ex2:round(-2.4) Ex3:round(-2.5+i*2.4) Ex4:round(1.237,2) Ex5:round(sqrt(2)+i*sqrt(5),4) - + ''' return GiacMethods['round'](self,*args) @@ -15117,11 +15117,11 @@ cdef class GiacMethods_base: Help for row: row(Mtrx(A),Intg(n)||Interval(n1..n2)) Returns row n or the sequence of the rows n1..n2 of the matrix A, or optional argument of count,count_eq,count_inf,count_sup. - See also: 1/ col 2/ count 3/ count_eq 4/ count_inf 5/ count_sup + See also: 1/ col 2/ count 3/ count_eq 4/ count_inf 5/ count_sup Ex1:row([[1,2,3],[4,5,6],[7,8,9]],1) Ex2:row([[1,2,3],[4,5,6],[7,8,9]],0..1) Ex3: count_eq(3,[[1,2,3],[4,3,2],[3,2,1]],row) - + ''' return GiacMethods['row'](self,*args) @@ -15130,9 +15130,9 @@ cdef class GiacMethods_base: Help for rowAdd: rowAdd(Mtrx(A),Intg(n1),Intg(n2)) Returns the matrix obtained from A by replacing the n2-th row by the sum of the n1-th and n2-th rows. - See also: 1/ rowSwap + See also: 1/ rowSwap Ex1:rowAdd([[1,2],[3,4],[5,6]],1,2) - + ''' return GiacMethods['rowAdd'](self,*args) @@ -15141,10 +15141,10 @@ cdef class GiacMethods_base: Help for rowDim: rowDim(Mtrx) Number of rows of a matrix. - See also: 1/ ncols + See also: 1/ ncols Ex1:rowDim([[1,2,3],[4,5,6]]) Ex2:rowDim([[1,2],[3,4],[5,6]]) - + ''' return GiacMethods['rowDim'](self,*args) @@ -15153,10 +15153,10 @@ cdef class GiacMethods_base: Help for rowNorm: rowNorm(Vect or Mtrx) Returns the max of the l1_norm of the rows of a matrix: rowNorm(a_{j,k})=max_j(sum_k(|a_{j,k}|)). - See also: 1/ norm + See also: 1/ norm Ex1:rowNorm([[1,2],[3,-4]]) Ex2:rowNorm([[1,2,3,-4],[-5,3,2,1]]) - + ''' return GiacMethods['rowNorm'](self,*args) @@ -15165,9 +15165,9 @@ cdef class GiacMethods_base: Help for rowSwap: rowSwap(Mtrx(A),Intg(n1),Intg(n2)) Returns the matrix obtained from A by swapping the n1-th row and the n2-th row. - See also: 1/ rowAdd 2/ colSwap + See also: 1/ rowAdd 2/ colSwap Ex1:rowSwap([[1,2],[3,4],[5,6]],1,2) - + ''' return GiacMethods['rowSwap'](self,*args) @@ -15176,10 +15176,10 @@ cdef class GiacMethods_base: Help for rowdim: rowdim(Mtrx) Number of rows of a matrix. - See also: 1/ ncols + See also: 1/ ncols Ex1:rowdim([[1,2,3],[4,5,6]]) Ex2:rowdim([[1,2],[3,4],[5,6]]) - + ''' return GiacMethods['rowdim'](self,*args) @@ -15188,10 +15188,10 @@ cdef class GiacMethods_base: Help for rownorm: rownorm(Vect or Mtrx) Returns the max of the l1_norm of the rows of a matrix: rowNorm(a_{j,k})=max_j(sum_k(|a_{j,k}|)). - See also: 1/ norm + See also: 1/ norm Ex1:rownorm([[1,2],[3,-4]]) Ex2:rownorm([[1,2,3,-4],[-5,3,2,1]]) - + ''' return GiacMethods['rownorm'](self,*args) @@ -15200,10 +15200,10 @@ cdef class GiacMethods_base: Help for rowspace: rowspace(Mtrx(A), [Var(d)]) Returns a matrix where the rows are a basis of the vector space generated by the rows of the matrix A [d is the dimension of this space]. - See also: 1/ colspace + See also: 1/ colspace Ex1:rowspace([[1,2,3],[1,2,3],[1,2,4],[1,2,5]]) Ex2:rowspace([[1,2,3],[1,3,6],[2,5,9]],d) - + ''' return GiacMethods['rowspace'](self,*args) @@ -15212,9 +15212,9 @@ cdef class GiacMethods_base: Help for rowswap: rowswap(Mtrx(A),Intg(n1),Intg(n2)) Returns the matrix obtained from A by swapping the n1-th row and the n2-th row. - See also: 1/ rowAdd 2/ colSwap + See also: 1/ rowAdd 2/ colSwap Ex1:rowswap([[1,2],[3,4],[5,6]],1,2) - + ''' return GiacMethods['rowswap'](self,*args) @@ -15223,12 +15223,12 @@ cdef class GiacMethods_base: Help for rref: rref(Mtrx(M),[Intg(k)]||Opt) Row reduction to echelon form of AX=b (M=A|(-b)) [Reduction on columns 0..k-1]. - See also: 1/ ker 2/ image 3/ det 4/ Rref 5/ pivot 6/ ref 7/ keep_pivot + See also: 1/ ker 2/ image 3/ det 4/ Rref 5/ pivot 6/ ref 7/ keep_pivot Ex1:rref([[3,1,-2],[3,2,2]]) Ex2:rref([[2,1,1,-1],[1,1,2,-1],[1,2,1,-4]]) Ex3:rref([[2,1,1,-1],[1,1,2,-1],[1,2,1,-4]],2) Ex4:rref([[1,1,0,0,-a1],[0,1,1,0,-a2],[0,0,1,1,-a3],[1,0,0,1,-a4]],keep_pivot) - + ''' return GiacMethods['rref'](self,*args) @@ -15237,13 +15237,13 @@ cdef class GiacMethods_base: Help for rsolve: rsolve((Expr or LstExpr),(Var or LstVar),(InitVal or LstInitVal)) Gives the value of a recurrent sequence or of a system of recurrent sequences. - See also: 1/ seqsolve 2/ plotseq 3/ tableseq 4/ reverse_rsolve + See also: 1/ seqsolve 2/ plotseq 3/ tableseq 4/ reverse_rsolve Ex1:rsolve(u(n+1)=2*u(n)+n,u(n),u(0)=1) Ex2:rsolve(u(n+1)=2*u(n)+n,u(n),u(1)^2=1) Ex3:rsolve(u(n+1)=(u(n)-1)/(u(n)-2),u(n),u(0)=4) Ex4:rsolve(u(n+2)=u(n)+2*u(n+1)+n+1,u(n),[u(0)=0,u(1)=1]) Ex5:rsolve([u(n+1)=3*v(n)+u(n),v(n+1)=v(n)+u(n)],[u(n),v(n)],[u(0)=1,v(0)=2]) - + ''' return GiacMethods['rsolve'](self,*args) @@ -15252,10 +15252,10 @@ cdef class GiacMethods_base: Help for same: same(Expr,Expr) Equality test. - See also: 1/ + See also: 1/ Ex1:same(a,b) Ex2:same((2-1)^2,2^2-2*2+1) - + ''' return GiacMethods['same'](self,*args) @@ -15264,14 +15264,14 @@ cdef class GiacMethods_base: Help for sample: sample(Lst(L),Intg(n)) sample(L,n)= rand(n,L)=list of the n extracted elements of L without replacement. - See also: 1/ rand + See also: 1/ rand Ex1:sample([1,2,3,4,5,6],6) Ex2:sample([1,2,3,4,5,6],3) Ex3:sample(["r","r","r","b","n"],3) Ex4: L:=[1,2,3,4,5,6];L:=sample(L,3) Ex5: L:=[1,2,3,4,5,6];L.sample(3) - Ex6: - + Ex6: + ''' return GiacMethods['sample'](self,*args) @@ -15280,9 +15280,9 @@ cdef class GiacMethods_base: Help for samplerate: samplerate(Lst(clip)) Returns the sampling rate of an audio clip, in Hertz. - See also: 1/ bit_depth 2/ channels 3/ channel_data 4/ duration + See also: 1/ bit_depth 2/ channels 3/ channel_data 4/ duration Ex1:samplerate(readwav("/some/file")) - + ''' return GiacMethods['samplerate'](self,*args) @@ -15291,13 +15291,13 @@ cdef class GiacMethods_base: Help for sans_factoriser: sans_factoriser(Opt.) Option of the plotimplicit command. - See also: 1/ plotimplicit + See also: 1/ plotimplicit Ex1: plotimplicit(x^2+y^2-1,x,y,unfactored) Ex2: plotimplicit(x^2+y^2-1,[x,y],unfactored) Ex3: plotimplicit(x^2+y^2+z^2-1,x,y,z,xstep=0.2,ystep=0.2,zstep=0.2,unfactored) Ex4: plotimplicit(x^2+y^2+z^2-1,[x,y,z],xstep=0.2,ystep=0.2,zstep=0.2,unfactored) Ex5: plotimplicit(x^2+y^2+z^2-1,x=0..1,y=0..1,z=0..1,xstep=0.2,ystep=0.2,zstep=0.2,unfactored) - + ''' return GiacMethods['sans_factoriser'](self,*args) @@ -15306,10 +15306,10 @@ cdef class GiacMethods_base: Help for saute: saute(NULL or Real(n)) The turtle takes n steps forward without traces (by default n=10). - See also: 1/ avance 2/ recule + See also: 1/ avance 2/ recule Ex1: saute 30 Ex2:saute(30) - + ''' return GiacMethods['saute'](self,*args) @@ -15318,11 +15318,11 @@ cdef class GiacMethods_base: Help for scalarProduct: scalarProduct(Vect(v1),Vect(v2)) Scalar product. - See also: 1/ * 2/ cross 3/ .* 4/ hadamard + See also: 1/ * 2/ cross 3/ .* 4/ hadamard Ex1:scalarProduct([1,2],[3,4]) Ex2:scalarProduct([3,2,4],[3,2,4]) Ex3:scalarProduct([[1,2],[3,4]],[[3,2],[4,5]]) - + ''' return GiacMethods['scalarProduct'](self,*args) @@ -15331,11 +15331,11 @@ cdef class GiacMethods_base: Help for scalar_product: scalar_product(Vect(v1),Vect(v2)) Scalar product. - See also: 1/ * 2/ cross 3/ .* 4/ hadamard + See also: 1/ * 2/ cross 3/ .* 4/ hadamard Ex1:scalar_product([1,2],[3,4]) Ex2:scalar_product([3,2,4],[3,2,4]) Ex3:scalar_product([[1,2],[3,4]],[[3,2],[4,5]]) - + ''' return GiacMethods['scalar_product'](self,*args) @@ -15344,9 +15344,9 @@ cdef class GiacMethods_base: Help for scatterplot: scatterplot(Mtrx) Draws for k=0..nrows, the points (xk,yk) where xk=element row k column 0 and yk=element row k column j (j=1..ncols). - See also: 1/ polygonplot 2/ polygonscatterplot 3/ listplot + See also: 1/ polygonplot 2/ polygonscatterplot 3/ listplot Ex1:scatterplot([[1,2,3],[2,0,1],[-1,2,3]]) - + ''' return GiacMethods['scatterplot'](self,*args) @@ -15355,10 +15355,10 @@ cdef class GiacMethods_base: Help for schur: schur(Mtrx(A)) Matrix reduction to Hessenberg form. Returns [P,B] such that B=inv(P)*A*P:SCHUR(A)=hessenberg(A,-1). - See also: 1/ hessenberg + See also: 1/ hessenberg Ex1:schur([[1,2,3],[4,5,6],[7,8,1]]) Ex2:schur([[1,2,3,4],[4,5,6,7],[7,8,9,0],[0,1,2,3]]) - + ''' return GiacMethods['schur'](self,*args) @@ -15367,9 +15367,9 @@ cdef class GiacMethods_base: Help for sec: sec(Expr) Secant: sec(x)=1/cos(x). - See also: 1/ cos 2/ asec + See also: 1/ cos 2/ asec Ex1:sec(pi/3) - + ''' return GiacMethods['sec'](self,*args) @@ -15378,14 +15378,14 @@ cdef class GiacMethods_base: Help for secant_solver: secant_solver(Opt) Argument for fsolve giving the method for solving a numerical equation. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve(cos(x)=x,x,0..1,bisection_solver) Ex2: fsolve(cos(x)=x,x,0..1,brent_solver) Ex3: fsolve(cos(x)=x,x,0..1,falsepos_solver) Ex4: fsolve(cos(x)=x,x,0,newton_solver) Ex5: fsolve(cos(x)=x,x,0,secant_solver) Ex6: fsolve(cos(x)=x,x,0,steffenson_solver) - + ''' return GiacMethods['secant_solver'](self,*args) @@ -15394,7 +15394,7 @@ cdef class GiacMethods_base: Help for segment: segment((Pnt or Cplx or Lst([xM,yM])),(Pnt or Cplx or Lst([xN,yN]),[Var],[Var] or Opt) segment(A,B) draws the segment AB and segment([xM,yM],[xN,yN]) draws the vector as origin [xM,yM], of coordinates [xN,yN] (i.e draws segment(M,point(M+N)) or Option of the arc command. - See also: 1/ line 2/ arc + See also: 1/ line 2/ arc Ex1:segment(i,1+i) Ex2:segment(point(i),point(1+i)) Ex3:segment(point(i),point(1+i),A,B) @@ -15402,7 +15402,7 @@ cdef class GiacMethods_base: Ex5:segment([-1,0],point([-1,0]+[2,1])) Ex6: arc(i,1,pi/4,segment) Ex7: affichage( arc(i,1,pi/4,segment),1+rempli) - + ''' return GiacMethods['segment'](self,*args) @@ -15411,9 +15411,9 @@ cdef class GiacMethods_base: Help for seidel_spectrum: seidel_spectrum(Graph(G)) Returns the Seidel spectrum of G as a list of lists with two elements, each containing an eigenvalue and its multiplicity. - See also: 1/ graph_spectrum + See also: 1/ graph_spectrum Ex1:seidel_spectrum(graph("clebsch")) - + ''' return GiacMethods['seidel_spectrum'](self,*args) @@ -15422,9 +15422,9 @@ cdef class GiacMethods_base: Help for seidel_switch: seidel_switch(Graph(G),Lst(V)) Returns a copy of G in which the edges between vertices in list V and vertices not in V are inverted (replaced with a set of edges from V to other vertices which are not present in G). - See also: 1/ neighbors 2/ graph_complement + See also: 1/ neighbors 2/ graph_complement Ex1:seidel_switch(cycle_graph(5),[1,2]) - + ''' return GiacMethods['seidel_switch'](self,*args) @@ -15433,10 +15433,10 @@ cdef class GiacMethods_base: Help for select: select(FncBool(f),Lst(l)) Selects the elements e of l such that f(e)=true. - See also: 1/ remove 2/ range + See also: 1/ remove 2/ range Ex1:select(x->x>=5,[1,2,6,7]) Ex2:select(x->isprime(x),range(20)).^2 - + ''' return GiacMethods['select'](self,*args) @@ -15445,9 +15445,9 @@ cdef class GiacMethods_base: Help for semi_augment: semi_augment(Mtrx(A),Mtrx(B)) Returns a matrix made with A and B, with n1+n2 rows and p columns if dim(A)=[n1,p] and dim(B)=[n2,p]. - See also: 1/ augment + See also: 1/ augment Ex1:semi_augment([[68,-21],[56,59],[1,2]],[[68,-21],[56,59]]) - + ''' return GiacMethods['semi_augment'](self,*args) @@ -15455,8 +15455,8 @@ cdef class GiacMethods_base: r'''From Giac's documentation: Help for seq: seq(Expr(Xpr),Var(Var)=Int(a..b),[Real(p)]||Expr(Xpr),Var(Var),Real(a),Real(b),[Real(p)]) - Returns the sequence (2 or 3 arg) or the list (4 or 5 arg) obtained when var goes from a to b (step p) in Xpr (or the Xpr is repeated n times or returns the sequence of reals from a to b (step p)). And also seq(expression,variable,list) is equivalent to map(list,unapply(expression,variable)) - See also: 1/ $ 2/ makelist 3/ range 4/ map 5/ unapply + Returns the sequence (2 or 3 arg) or the list (4 or 5 arg) obtained when var goes from a to b (step p) in Xpr (or the Xpr is repeated n times or returns the sequence of reals from a to b (step p)). And also seq(expression,variable,list) is equivalent to map(list,unapply(expression,variable)) + See also: 1/ $ 2/ makelist 3/ range 4/ map 5/ unapply Ex1:seq(0.3,4) Ex2:seq(t,4) Ex3:seq(0,0) @@ -15466,9 +15466,9 @@ cdef class GiacMethods_base: Ex7:seq(2^k,k,0,8) Ex8:seq(2^k,k,0,8,2) Ex9:seq(x^3,x,[1,2,3]) - Ex10: [seq(0.3..2,0.2)] + Ex10: [seq(0.3..2,0.2)] Ex11: a:=(1,2,3);eval(seq(a,4)) - + ''' return GiacMethods['seq'](self,*args) @@ -15477,11 +15477,11 @@ cdef class GiacMethods_base: Help for seqplot: seqplot(Expr(f(Var)),Var=[a,xm,xM],Intg(p)) For seeing the pth terms of the sequence u(0)=a,u(n)=f(u(n-1)). - See also: 1/ seqsolve 2/ rsolve + See also: 1/ seqsolve 2/ rsolve Ex1:seqplot(sqrt(2+x),6,5) Ex2:seqplot(sqrt(2+t),t=6,5) Ex3:seqplot(sqrt(2+x),x=[6,1,7],5,affichage=epaisseur_ligne_2) - + ''' return GiacMethods['seqplot'](self,*args) @@ -15490,14 +15490,14 @@ cdef class GiacMethods_base: Help for seqsolve: seqsolve((Expr or LstExpr),(Var or LstVar),(InitVal or LstInitVal)) Gives the value of a recurrent sequence (u_{n+1}=f(u_n) or u_{n+k}=f(u_n,u_{n+1}...u_{n+k-1})) or of a system of recurrent sequences. - See also: 1/ rsolve 2/ plotseq 3/ tableseq + See also: 1/ rsolve 2/ plotseq 3/ tableseq Ex1:seqsolve(2x+n,[x,n],1) Ex2:seqsolve(2x+n*3^n,[x,n],1) Ex3:seqsolve(x+y,[x,y,n],[1,1]) Ex4:seqsolve(x+2*y+n+1,[x,y,n],[0,1]) Ex5:seqsolve([x+2*y,n+1+x],[x,y,n],[0,1]) Ex6:seqsolve([x+2*y+n+1,x],[x,y,n],[0,1]) - + ''' return GiacMethods['seqsolve'](self,*args) @@ -15506,9 +15506,9 @@ cdef class GiacMethods_base: Help for sequence_graph: sequence_graph(Lst(L)) Returns an undirected graph with the degree sequence equal to the list L. - See also: 1/ degree_sequence 2/ is_graphic_sequence + See also: 1/ degree_sequence 2/ is_graphic_sequence Ex1:sequence_graph(degree_sequence(sequence_graph([3,2,4,2,3,4,5,7]))) - + ''' return GiacMethods['sequence_graph'](self,*args) @@ -15517,13 +15517,13 @@ cdef class GiacMethods_base: Help for series: series(Expr,Equal(var=limit_point),[Order],[Dir(1,0,-1)]) Series expansion at finite or infinite points. - See also: 1/ limit 2/ taylor 3/ pad 4/ polynom 5/ truncate + See also: 1/ limit 2/ taylor 3/ pad 4/ polynom 5/ truncate Ex1:series(sin(x)/x,x=0) Ex2:series(sin(x),x=0,6,polynom) Ex3:series(ln(x+x^2)-ln(x),x=0,1) Ex4:series((x^4+x+2)/(x^2+1),x=0,5) Ex5: series("h",8); ln(1+h); - Ex6:series(1/(1+x+y),[x,y],[0,0],5) + Ex6:series(1/(1+x+y),[x,y],[0,0],5) Ex7:series(sin(x*y),[x,y],[1,pi/2],3) Ex8:series(sin((1+h*t)*(pi/2+k*t)),t=0,3,polynom)(t=1) Ex9:series(y^2/x^3,[x,y],[1,-1],3) @@ -15531,7 +15531,7 @@ cdef class GiacMethods_base: Ex11:series(subst(sin(x+y)+cos(y*x),[x,y],h*[x,y]),h=0,6,polynom) Ex12:series(subst(sin(x+y)+cos(y*x),[x,y],h*[x,y]),h=0,6,polynom)(h=1) Ex13: truncate(series(sin(x),x=0,6),6) - + ''' return GiacMethods['series'](self,*args) @@ -15540,9 +15540,9 @@ cdef class GiacMethods_base: Help for set_edge_attribute: set_edge_attribute(Graph(G),Edge(e),Seq(tag1=value1,tag2=value2,..)) Stores the attributes to edge e and returns the modified copy of G. - See also: 1/ discard_edge_attribute 2/ get_edge_attribute 3/ list_edge_attributes + See also: 1/ discard_edge_attribute 2/ get_edge_attribute 3/ list_edge_attributes Ex1:set_edge_attribute(cycle_graph(3),[1,2],"cost"=12.4) - + ''' return GiacMethods['set_edge_attribute'](self,*args) @@ -15551,9 +15551,9 @@ cdef class GiacMethods_base: Help for set_edge_weight: set_edge_weight(Graph(G),Edge(e),Real(w)) Sets the weight of the edge e in the weighted graph G to w and returns the modified copy of G. - See also: 1/ is_weighted 2/ get_edge_weight 3/ make_weighted 4/ weight_matrix + See also: 1/ is_weighted 2/ get_edge_weight 3/ make_weighted 4/ weight_matrix Ex1:set_edge_weight(graph(%{[1,2],[2,3]%}),[1,2],5) - + ''' return GiacMethods['set_edge_weight'](self,*args) @@ -15562,9 +15562,9 @@ cdef class GiacMethods_base: Help for set_graph_attribute: set_graph_attribute(Graph(G),Seq(tag1=value1,tag2=value2,..)) Stores the attributes where each tag is a string, and returns the modified copy of G. - See also: 1/ discard_graph_attribute 2/ get_graph_attribute 3/ list_graph_attributes + See also: 1/ discard_graph_attribute 2/ get_graph_attribute 3/ list_graph_attributes Ex1:set_graph_attribute(cycle_graph(3),"name"="cycle graph") - + ''' return GiacMethods['set_graph_attribute'](self,*args) @@ -15573,9 +15573,9 @@ cdef class GiacMethods_base: Help for set_pixel: set_pixel(Intg(x),Intg(y),Intg(col)) Pixel on and adds to the list of pixels. Run show_pixels() to display - See also: 1/ clear 2/ show_pixels 3/ draw_line 4/ draw_rectangle 5/ draw_polygon + See also: 1/ clear 2/ show_pixels 3/ draw_line 4/ draw_rectangle 5/ draw_polygon Ex1: clear(); set_pixel(4); draw_pixel(1,2,red); show_pixels(); - + ''' return GiacMethods['set_pixel'](self,*args) @@ -15584,9 +15584,9 @@ cdef class GiacMethods_base: Help for set_vertex_attribute: set_vertex_attribute(Graph(G),Vrtx(v),Seq(tag1=value1,tag2=value2,..)) Stores the attributes to vertex v and returns the modified copy of G. - See also: 1/ discard_vertex_attribute 2/ get_vertex_attribute 3/ list_vertex_attributes + See also: 1/ discard_vertex_attribute 2/ get_vertex_attribute 3/ list_vertex_attributes Ex1:set_vertex_attribute(cycle_graph(3),1,"supply"=27) - + ''' return GiacMethods['set_vertex_attribute'](self,*args) @@ -15595,9 +15595,9 @@ cdef class GiacMethods_base: Help for set_vertex_positions: set_vertex_positions(Graph(G),Lst(vp)) Sets the coordinates, given in the list vp, to the vertices of G and returns the modified copy of G. - See also: 1/ draw_graph + See also: 1/ draw_graph Ex1: G:=graph([1,2,3,4,5,6],%{[1,2],[1,4],[4,5],[2,5],[2,3],[3,6],[5,6]%}); G:=set_vertex_positions(G,[[0,0],[0.5,0],[1,0],[0,0.5],[0.5,0.5],[1,0.5]]) - + ''' return GiacMethods['set_vertex_positions'](self,*args) @@ -15606,13 +15606,13 @@ cdef class GiacMethods_base: Help for shift: shift(Lst,[Intg(n)]) Returns the list where the last element [or the tail beginning with the n-th element] is moved to the first element and then completed with 0s (by default n=-1);L:=shift(L,2) o L.shift(2). - See also: 1/ rotate 2/ tail + See also: 1/ rotate 2/ tail Ex1:shift([0,1,2,3],2) Ex2:shift([0,1,2,3]) Ex3:shift([0,1,2,3,4]) Ex4: L:=[0,1,2,3];L:=shift(L,2) Ex5: L:=[0,1,2,3];L.shift(2) - + ''' return GiacMethods['shift'](self,*args) @@ -15621,14 +15621,14 @@ cdef class GiacMethods_base: Help for shift_phase: shift_phase(Expr) shift_phase returns the expressions where the phase of the evaluated trigonometric expressions is increased by pi/2. - See also: 1/ series + See also: 1/ series Ex1:shift_phase(sin(x)) Ex2:shift_phase('sin(x+pi/2)') Ex3:shift_phase(x+sin(x)) Ex4:shift_phase(x+sin(x)) Ex5:shift_phase(cos(t)) Ex6:shift_phase(tan(u)) - + ''' return GiacMethods['shift_phase'](self,*args) @@ -15637,9 +15637,9 @@ cdef class GiacMethods_base: Help for shortest_path: shortest_path(Graph(G),Vrtx(s),Vrtx(t)||Lst(T)) Returns the shortest path from vertex s to vertex t in G. If such path does not exist, returns an empty list. If vector T of vertices from G is given, the list of shortest paths from s to each t int T is returned. - See also: 1/ dijkstra 2/ vertex_distance + See also: 1/ dijkstra 2/ vertex_distance Ex1:shortest_path(cycle_graph(6),1,5) - + ''' return GiacMethods['shortest_path'](self,*args) @@ -15648,9 +15648,9 @@ cdef class GiacMethods_base: Help for show_pixels: show_pixels(NULL) Displays the list of pixels. - See also: 1/ set_pixel 2/ clear + See also: 1/ set_pixel 2/ clear Ex1:show_pixels() - + ''' return GiacMethods['show_pixels'](self,*args) @@ -15659,13 +15659,13 @@ cdef class GiacMethods_base: Help for shuffle: shuffle(Intg(n)||Lst(L)) Returns a random permutation of [0,1,2,..,n-1] or of the list L. - See also: 1/ permu2cycles 2/ is_permu 3/ permu2mat + See also: 1/ permu2cycles 2/ is_permu 3/ permu2mat Ex1:shuffle(4) Ex2:shuffle(7) Ex3:shuffle([1,3,5,7,9]) Ex4: L:=[1,3,5,7,9];L:=randperm(L) Ex5: L:=[1,3,5,7,9];L.randperm() - + ''' return GiacMethods['shuffle'](self,*args) @@ -15674,13 +15674,13 @@ cdef class GiacMethods_base: Help for sierpinski_graph: sierpinski_graph(Intg(n),Intg(k),[triangle]) Returns Sierpiński (triangle) graph S(n,k) (resp. ST(n,k)). - See also: 1/ graph + See also: 1/ graph Ex1:sierpinski_graph(2,4) Ex2:sierpinski_graph(4,3) Ex3:sierpinski_graph(3,4) Ex4:sierpinski_graph(3,2) Ex5:sierpinski_graph(3,3,at_triangle) - + ''' return GiacMethods['sierpinski_graph'](self,*args) @@ -15689,10 +15689,10 @@ cdef class GiacMethods_base: Help for sign: sign(Expr) Returns the sign (-1,0,+1) of its argument. - See also: 1/ abs + See also: 1/ abs Ex1:sign(-4) Ex2:sign(4-5) - + ''' return GiacMethods['sign'](self,*args) @@ -15701,9 +15701,9 @@ cdef class GiacMethods_base: Help for signature: signature(Permut) Returns the signature of a permutation. - See also: 1/ permu2cycles 2/ is_permu + See also: 1/ permu2cycles 2/ is_permu Ex1:signature([1,0,3,4,2]) - + ''' return GiacMethods['signature'](self,*args) @@ -15712,10 +15712,10 @@ cdef class GiacMethods_base: Help for signe: signe(Str(s)) Writes the string s with the font 20 at the point [10,10]. - See also: 1/ ecris + See also: 1/ ecris Ex1:signe("Thomas") Ex2:signe(Thomas) - + ''' return GiacMethods['signe'](self,*args) @@ -15724,12 +15724,12 @@ cdef class GiacMethods_base: Help for similarity: similarity(Pnt or Dr3,Real,Angle,Pnt) similarity(B,k,a1,A)=transformation of A in the similarity (center B or axis d, coeff k,angle a1) (or also homothety(B,k*exp(i*a1),A)). - See also: 1/ homothety + See also: 1/ homothety Ex1:similarity(1+i,2,pi/3,i) Ex2:similarity(line(x=y,y=z),2,pi/3,point(-1,2,1)) Ex3: s:=similarity(1+i,2,pi/3);s(i) Ex4: s:=similarity(line(x=y,y=z),2,pi/3),s(point(-1,2,1)) - + ''' return GiacMethods['similarity'](self,*args) @@ -15738,10 +15738,10 @@ cdef class GiacMethods_base: Help for simp2: simp2(Intg(A) or Poly(A),Intg(B) or Poly(B)) Returns the list [A/gcd(A,B),B/gcd(A,B)]. - See also: 1/ gcd + See also: 1/ gcd Ex1:simp2(12,18) Ex2:simp2(x^3-1,x^2-1) - + ''' return GiacMethods['simp2'](self,*args) @@ -15755,7 +15755,7 @@ cdef class GiacMethods_base: Ex3:simplex_reduce([[-3,2],[1,1]],[3,4],[1,2]) Ex4:simplex_reduce([[-3,2,1,0,3],[1,1,0,1,4],[-1,-2,0,0,0]]) Ex5:simplex_reduce([[2,1,1,1,0,0,2],[1,2,3,0,1,0,5],[2,2,1,0,0,1,6],[-3,-1,-3,1,-1,2,0]]) - + ''' return GiacMethods['simplex_reduce'](self,*args) @@ -15764,11 +15764,11 @@ cdef class GiacMethods_base: Help for simplifier: simplifier(Expr) Simplifies an expression. - See also: 1/ normal + See also: 1/ normal Ex1:simplifier(4*atan(1/5)-atan(1/239)) Ex2:simplifier(texpand((sin(3*x)+sin(7*x))/sin(5*x))) Ex3:simplifier(texpand((cos(3*x)+cos(7*x))/cos(5*x))) - + ''' return GiacMethods['simplifier'](self,*args) @@ -15777,11 +15777,11 @@ cdef class GiacMethods_base: Help for simplify: simplify(Expr) Simplifies an expression. - See also: 1/ normal + See also: 1/ normal Ex1:simplify(4*atan(1/5)-atan(1/239)) Ex2:simplify(texpand((sin(3*x)+sin(7*x))/sin(5*x))) Ex3:simplify(texpand((cos(3*x)+cos(7*x))/cos(5*x))) - + ''' return GiacMethods['simplify'](self,*args) @@ -15790,12 +15790,12 @@ cdef class GiacMethods_base: Help for simpson: simpson(Opt) Option of the area command. - See also: 1/ area + See also: 1/ area Ex1: area(x^2,x=0..1,5,simpson) Ex2: area(x^2,x=0..1,5,rombergt) Ex3: area(x^2,x=0..1,5,rombergm) Ex4:simpson(area(x^2,x=0..1,5,gauss15)) - + ''' return GiacMethods['simpson'](self,*args) @@ -15804,10 +15804,10 @@ cdef class GiacMethods_base: Help for simult: simult(Mtrx(A),Mtrx(B)) Returns the matrix where the column of index k is solution of A*X=column of index k of B (=B[0..nr-1,k..k] with nr=number of rows of B). - See also: 1/ rref 2/ linsolve + See also: 1/ rref 2/ linsolve Ex1:simult([[3,1],[3,2]],[[-2],[2]]) Ex2:simult([[3,1],[3,2]],[[-2,1],[2,-1]]) - + ''' return GiacMethods['simult'](self,*args) @@ -15816,10 +15816,10 @@ cdef class GiacMethods_base: Help for sin: sin(Expr or Opt) Sine or option of the convert or convertir command (id trigsin). - See also: 1/ asin 2/ convert 3/ trigsin + See also: 1/ asin 2/ convert 3/ trigsin Ex1:sin(0) Ex2: convert(cos(x)^4+sin(x)^2,sin) - + ''' return GiacMethods['sin'](self,*args) @@ -15828,9 +15828,9 @@ cdef class GiacMethods_base: Help for sin2costan: sin2costan(Expr) Replaces sin(x) by cos(x)*tan(x) in the argument. - See also: 1/ tan2sincos 2/ cos2sintan 3/ tan2sincos2 4/ tan2cossin2 + See also: 1/ tan2sincos 2/ cos2sintan 3/ tan2sincos2 4/ tan2cossin2 Ex1:sin2costan(sin(x)) - + ''' return GiacMethods['sin2costan'](self,*args) @@ -15839,9 +15839,9 @@ cdef class GiacMethods_base: Help for sinc: sinc(Expr(x)) Returns the value of the cardinal sine function at x. - See also: 1/ sin + See also: 1/ sin Ex1:sinc(pi*x) - + ''' return GiacMethods['sinc'](self,*args) @@ -15850,11 +15850,11 @@ cdef class GiacMethods_base: Help for sincos: sincos(Expr or Opt) Transforms the complex exponential into sine and cosine (id exp2trig) or option of the convert or convertir command (id sincos). - See also: 1/ trig2trig 2/ trig2exp 3/ atrig2ln 4/ convert + See also: 1/ trig2trig 2/ trig2exp 3/ atrig2ln 4/ convert Ex1:sincos(exp(i*x)) Ex2:sincos(exp(-i*x)) Ex3: convert(exp(i*x),sincos) - + ''' return GiacMethods['sincos'](self,*args) @@ -15863,7 +15863,7 @@ cdef class GiacMethods_base: Help for single_inter: single_inter(Curve,Curve,[Pnt(A)||LstPnt(L)]) Gives one of the points of intersection of 2 curves or surfaces (or the intersection near A or not in L). - See also: 1/ intersect 2/ head + See also: 1/ intersect 2/ head Ex1:single_inter(line(i,1-i),line(0,1)) Ex2:single_inter(line(i,1-i),circle(0,1)) Ex3:single_inter(line(i,1+2*i),circle(0,1),[point(i)]) @@ -15871,7 +15871,7 @@ cdef class GiacMethods_base: Ex5:single_inter(circle(1,sqrt(2)),circle(0,1)) Ex6:single_inter(plane(x=y),plane(y=z)) Ex7:single_inter(line(x=y+1,y=2*z),plane(y=z)) - + ''' return GiacMethods['single_inter'](self,*args) @@ -15880,9 +15880,9 @@ cdef class GiacMethods_base: Help for sinh: sinh(Expr) Hyperbolic sine. - See also: 1/ asinh + See also: 1/ asinh Ex1:sinh(0) - + ''' return GiacMethods['sinh'](self,*args) @@ -15891,9 +15891,9 @@ cdef class GiacMethods_base: Help for sizes: sizes(Lst or Str or Seq) Returns the list of sizes of a list of lists. - See also: 1/ size 2/ dim + See also: 1/ size 2/ dim Ex1:sizes([[1,2,3],[1,2],[1]]) - + ''' return GiacMethods['sizes'](self,*args) @@ -15902,7 +15902,7 @@ cdef class GiacMethods_base: Help for slope: slope(Line||Pnt||Cplx,[Pnt||Cplx]) Returns the slope of the line defined in the argument or is an attribute of line. - See also: 1/ line 2/ tangent 3/ LinTan 4/ slopeatraw 5/ slopeat + See also: 1/ line 2/ tangent 3/ LinTan 4/ slopeatraw 5/ slopeat Ex1:slope(line(1,2i)) Ex2:slope(segment(1,2i)) Ex3:slope(1,2i) @@ -15911,7 +15911,7 @@ cdef class GiacMethods_base: Ex6:slope(tangent(plotfunc(sin(x)),pi/4)) Ex7:slope(LineTan(sin(x),pi/4)) Ex8: line(point(1,2),slope=-1) - + ''' return GiacMethods['slope'](self,*args) @@ -15920,11 +15920,11 @@ cdef class GiacMethods_base: Help for slopeat: slopeat(Line, Pnt||Cplx(z0)) slopeat(d,z0) displays at the point(z0), with a legend, the value of the slope of the line or segment d. - See also: 1/ slope 2/ slopeatraw + See also: 1/ slope 2/ slopeatraw Ex1: A:=point(0);B:=point(1+i);slopeat(droite(A,B),(1+i)/2) Ex2: s:=segment(1-i,i);slopeat(s,point(0.4)) Ex3: t:=tangent(plotfunc(sin(x)),pi/4);slopeat(t,0) - + ''' return GiacMethods['slopeat'](self,*args) @@ -15933,12 +15933,12 @@ cdef class GiacMethods_base: Help for slopeatraw: slopeatraw(Line, Pnt||Cplx(z0)) slopeatraw(d,z0) displays at point(z0), the value of the slope of the line or segment d. - See also: 1/ slope 2/ slopeat + See also: 1/ slope 2/ slopeat Ex1: A:=point(0);B:=point(1+i);slopeatraw(droite(A,B),(1+i)/2) Ex2: s:=segment(1-i,i);slopeatraw(s,point(0.4)) Ex3:slopeatraw(tangent(plotfunc(sin(x)),pi/4),0) Ex4:slopeatraw((LineTan sin(x),pi/4),i) - + ''' return GiacMethods['slopeatraw'](self,*args) @@ -15947,10 +15947,10 @@ cdef class GiacMethods_base: Help for smith: smith(Mtrx(A)) Smith normal form of a matrix with polynomial coefficients : returns U,D,V such that U and V are invertible, D is diagonal, and U*A*V=D. - See also: 1/ hermite 2/ ismith 3/ ihermite + See also: 1/ hermite 2/ ismith 3/ ihermite Ex1: n:=10; A:=ranm(n,n) % 17; U,D,V:=smith(x*idn(n)-A);normal(U*(x*idn(n)-A)*V-D); diag(D); Ex2: GF(3,5,g); n:=3; A:=ranm(n,n,g); U,D,V:=smith(x*idn(n)-A);normal(U*(x*idn(n)-A)*V-D); diag(D); - + ''' return GiacMethods['smith'](self,*args) @@ -15959,11 +15959,11 @@ cdef class GiacMethods_base: Help for smod: smod(Intg,Intg) Returns the Euclidean symmetric remainder of two integers. - See also: 1/ irem 2/ iquo 3/ mod 4/ fracmod + See also: 1/ irem 2/ iquo 3/ mod 4/ fracmod Ex1:smod(8,3) Ex2:smod(10,4) Ex3:smod(11,7) - + ''' return GiacMethods['smod'](self,*args) @@ -15972,12 +15972,12 @@ cdef class GiacMethods_base: Help for snedecor: snedecor(Intg(n),Intg(m),Real(x0)) Returns the probability density of the Fisher-Snedecor law (n and m are the numbers of degrees of freedom). - See also: 1/ fisher_cdf 2/ fisher_icdf 3/ randvector 4/ ranm + See also: 1/ fisher_cdf 2/ fisher_icdf 3/ randvector 4/ ranm Ex1:snedecor(4,10,2.1) Ex2:snedecor(4,4,2.1) Ex3: randvector(5,fisher,4,6) Ex4: ranm(2,3,fisher,4,6) - + ''' return GiacMethods['snedecor'](self,*args) @@ -15986,10 +15986,10 @@ cdef class GiacMethods_base: Help for snedecor_cdf: snedecor_cdf(Intg(n),Intg(m),Real(x0)) Returns the probability that a Fisher-Snedecor random variable is less than x0 (n and m are the numbers of degrees of freedom). - See also: 1/ UTPF 2/ fisher_icdf 3/ fisherd + See also: 1/ UTPF 2/ fisher_icdf 3/ fisherd Ex1:snedecor_cdf(4,4,2.1) Ex2:snedecor_cdf(4,10,3.5) - + ''' return GiacMethods['snedecor_cdf'](self,*args) @@ -15998,10 +15998,10 @@ cdef class GiacMethods_base: Help for snedecor_icdf: snedecor_icdf(Intg(n),Intg(m),Real(p)) Returns h such as the probability that a Fisher-Snedecor random variable is less than h is p (n and m are the numbers of degrees of freedom and 0<=p<=1). - See also: 1/ fisher_cdf 2/ fisherd + See also: 1/ fisher_cdf 2/ fisherd Ex1:snedecor_icdf(4,10,0.95) Ex2:snedecor_icdf(4,10,0.05) - + ''' return GiacMethods['snedecor_icdf'](self,*args) @@ -16010,12 +16010,12 @@ cdef class GiacMethods_base: Help for snedecord: snedecord(Intg(n),Intg(m),Real(x0)) Returns the probability density of the Fisher-Snedecor law (n and m are the numbers of degrees of freedom). - See also: 1/ fisher_cdf 2/ fisher_icdf 3/ randvector 4/ ranm + See also: 1/ fisher_cdf 2/ fisher_icdf 3/ randvector 4/ ranm Ex1:snedecord(4,10,2.1) Ex2:snedecord(4,4,2.1) Ex3: randvector(5,fisher,4,6) Ex4: ranm(2,3,fisher,4,6) - + ''' return GiacMethods['snedecord'](self,*args) @@ -16024,10 +16024,10 @@ cdef class GiacMethods_base: Help for snedecord_cdf: snedecord_cdf(Intg(n),Intg(m),Real(x0)) Returns the probability that a Fisher-Snedecor random variable is less than x0 (n and m are the numbers of degrees of freedom). - See also: 1/ UTPF 2/ fisher_icdf 3/ fisherd + See also: 1/ UTPF 2/ fisher_icdf 3/ fisherd Ex1:snedecord_cdf(4,4,2.1) Ex2:snedecord_cdf(4,10,3.5) - + ''' return GiacMethods['snedecord_cdf'](self,*args) @@ -16036,10 +16036,10 @@ cdef class GiacMethods_base: Help for snedecord_icdf: snedecord_icdf(Intg(n),Intg(m),Real(p)) Returns h such as the probability that a Fisher-Snedecor random variable is less than h is p (n and m are the numbers of degrees of freedom and 0<=p<=1). - See also: 1/ fisher_cdf 2/ fisherd + See also: 1/ fisher_cdf 2/ fisherd Ex1:snedecord_icdf(4,10,0.95) Ex2:snedecord_icdf(4,10,0.05) - + ''' return GiacMethods['snedecord_icdf'](self,*args) @@ -16048,10 +16048,10 @@ cdef class GiacMethods_base: Help for solid_line: solid_line(Opt) Option of the display command for a line. - See also: 1/ display + See also: 1/ display Ex1: display(line(y=x),green+dash_line+line_width_2) Ex2: d:=display(line(2+i,1),cap_round_line) - + ''' return GiacMethods['solid_line'](self,*args) @@ -16060,12 +16060,12 @@ cdef class GiacMethods_base: Help for solve: solve(Expr,[Var]) Solves a (or a set of) polynomial equation. - See also: 1/ linsolve 2/ proot 3/ fsolve 4/ csolve 5/ nSolve + See also: 1/ linsolve 2/ proot 3/ fsolve 4/ csolve 5/ nSolve Ex1:solve(x^2-3=1) Ex2:solve(x^3-3*y,y) Ex3:solve([y-z=0,z-x=0,x-y=0,x-1+y+z=0],[x,y,z]) Ex4:solve([x^2-y^2=0,x^2-z^2=0],[x,y,z]) - + ''' return GiacMethods['solve'](self,*args) @@ -16074,7 +16074,7 @@ cdef class GiacMethods_base: Help for somme: somme(Expr,Var,VarMin(a),VarMax(b),[VarStep(p)]) Discrete sum (with 2 or 4 arguments return then sum from a to b if a<=b or of the opposite of the sum from b+1 to a-1 if a>b+1 or 0 if a=b+1) or the discrete primitive or sum of the elements of a list or a sequence. - See also: 1/ + + See also: 1/ + Ex1:somme(1/n^2,n,1,17) Ex2:somme(1/n^2,n=1..17) Ex3:somme(1/n^2,n,17,1) @@ -16085,7 +16085,7 @@ cdef class GiacMethods_base: Ex8:somme([[1,2,3,4,5,6,7,8,9],[1,2,3,4,5,6,7,8,9]]) Ex9:somme(1/(x*(x+1)),x) Ex10:somme(cos(n*x),n) - + ''' return GiacMethods['somme'](self,*args) @@ -16094,10 +16094,10 @@ cdef class GiacMethods_base: Help for sommet: sommet(Op or Fnct) Returns the top of an operator. - See also: 1/ feuille 2/ quote + See also: 1/ feuille 2/ quote Ex1:sommet(quote(gcd(45,123))) Ex2:sommet('gcd(45,123)') - + ''' return GiacMethods['sommet'](self,*args) @@ -16106,13 +16106,13 @@ cdef class GiacMethods_base: Help for sort: sort(LstReal or Seq [Fnc]) Returns the sorted list (or sequence) with increasing order according to the second argument which defines a weak strict ordering or sorts and collects equal terms in sums and products. - See also: 1/ SortA 2/ SortD + See also: 1/ SortA 2/ SortD Ex1:sort([3,2,2,4,1,0]) Ex2:sort(3,2.1,2,4,1,0) Ex3:sort([3,4,2],(x,y)->x>y) Ex4:sort([[1,2],[2,3],[4,3]],(x,y)->when(x[1]==y[1],x[0]>y[0],x[1]>y[1])) Ex5:sort(y*x*2+x*y) - + ''' return GiacMethods['sort'](self,*args) @@ -16121,11 +16121,11 @@ cdef class GiacMethods_base: Help for sorta: sorta(LstReal||Seq×||Mtrx) Sorts the list in increasing order or sorts the columns of the matrix so the first row is in increasing order. - See also: 1/ SortA 2/ sortd 3/ sort + See also: 1/ SortA 2/ sortd 3/ sort Ex1:sorta(3,4,2) Ex2:sorta([3,4,2]) Ex3:sorta([[3,4,2],[6,4,5]]) - + ''' return GiacMethods['sorta'](self,*args) @@ -16134,11 +16134,11 @@ cdef class GiacMethods_base: Help for sortd: sortd(LstReal||Seq||Mtrx) Sorts the list in decreasing order or sorts the columns of the matrix so the first row is in decreasing order. - See also: 1/ SortD 2/ sorta 3/ sort + See also: 1/ SortD 2/ sorta 3/ sort Ex1:sortd(3,4,2) Ex2:sortd([3,4,2]) Ex3:sortd([[3,4,2],[6,4,5]]) - + ''' return GiacMethods['sortd'](self,*args) @@ -16147,13 +16147,13 @@ cdef class GiacMethods_base: Help for sorted: sorted(LstReal or Seq [Fnc]) Returns the sorted list (or sequence) with increasing order according to the second argument which defines a weak strict ordering or sorts and collects equal terms in sums and products. - See also: 1/ SortA 2/ SortD + See also: 1/ SortA 2/ SortD Ex1:sorted([3,2,2,4,1,0]) Ex2:sorted(3,2.1,2,4,1,0) Ex3:sorted([3,4,2],(x,y)->x>y) Ex4:sorted([[1,2],[2,3],[4,3]],(x,y)->when(x[1]==y[1],x[0]>y[0],x[1]>y[1])) Ex5:sorted(y*x*2+x*y) - + ''' return GiacMethods['sorted'](self,*args) @@ -16162,10 +16162,10 @@ cdef class GiacMethods_base: Help for soundsec: soundsec(Intg(n),[Intg(N)]) Generates a vector coding n seconds of time/N (default N=44100). - See also: 1/ readwav 2/ writewav 3/ playsnd + See also: 1/ readwav 2/ writewav 3/ playsnd Ex1:soundsec(1) Ex2:soundsec(1,22100) - + ''' return GiacMethods['soundsec'](self,*args) @@ -16174,10 +16174,10 @@ cdef class GiacMethods_base: Help for spanning_tree: spanning_tree(Graph(G),[Vrtx(r)]) Returns a spanning tree of undirected graph G [with the vertex r as the root node]. - See also: 1/ number_of_spanning_trees 2/ minimal_spanning_tree + See also: 1/ number_of_spanning_trees 2/ minimal_spanning_tree Ex1:spanning_tree(graph("petersen")) Ex2:spanning_tree(graph("petersen"),5) - + ''' return GiacMethods['spanning_tree'](self,*args) @@ -16186,10 +16186,10 @@ cdef class GiacMethods_base: Help for sphere: sphere((Pnt or Vect),(Pnt or Real)) sphere(A,B) (resp sphere(A,r)) draws the sphere with diameter AB (resp center A and radius r) in 3D space. - See also: 1/ circle + See also: 1/ circle Ex1:sphere([0,0,0],[2,2,2]) Ex2:sphere([1,1,1],1) - + ''' return GiacMethods['sphere'](self,*args) @@ -16198,9 +16198,9 @@ cdef class GiacMethods_base: Help for spline: spline(Lst(lx),Lst(ly),Var(x),Intg(d)) Natural spline through the points given by the lx and ly lists, variable x, degree d. - See also: 1/ lagrange + See also: 1/ lagrange Ex1:spline([0,1,2],[1,3,0],x,3) - + ''' return GiacMethods['spline'](self,*args) @@ -16209,10 +16209,10 @@ cdef class GiacMethods_base: Help for split: split(Expr(Xpr),Lst(var1,var2)) Splits the two variables var1,var2 of the expression Xpr (without denominator) or returns [0]. - See also: 1/ factor + See also: 1/ factor Ex1:split(x^3*y^2-y^2+x^3-1,[x,y]) Ex2:split(x^3*y^2-y^2+x^3+1,[x,y]) - + ''' return GiacMethods['split'](self,*args) @@ -16221,8 +16221,8 @@ cdef class GiacMethods_base: Help for spring: spring(Opt) Option for the draw_graph command. - See also: 1/ planar 2/ tree 3/ draw_graph - + See also: 1/ planar 2/ tree 3/ draw_graph + ''' return GiacMethods['spring'](self,*args) @@ -16231,10 +16231,10 @@ cdef class GiacMethods_base: Help for sq: sq(Seq) Is the name of the function (ℝ^n -> ℝ)=sum of the squares of the arguments. - See also: 1/ sqrt + See also: 1/ sqrt Ex1:sq(5) Ex2:sq(1,2,3) - + ''' return GiacMethods['sq'](self,*args) @@ -16243,10 +16243,10 @@ cdef class GiacMethods_base: Help for sqrfree: sqrfree(Expr) Factorization of the its argument gathering the terms with the same exponent. - See also: 1/ factor + See also: 1/ factor Ex1:sqrfree(x^4-2*x^2+1) Ex2:sqrfree((x-2)^7*(x+2)^7*(x^4-2*x^2+1)) - + ''' return GiacMethods['sqrfree'](self,*args) @@ -16255,10 +16255,10 @@ cdef class GiacMethods_base: Help for sqrt: sqrt(Expr) Square root. - See also: 1/ surd 2/ ^ + See also: 1/ surd 2/ ^ Ex1:sqrt(50) Ex2:sqrt(x^2) - + ''' return GiacMethods['sqrt'](self,*args) @@ -16267,12 +16267,12 @@ cdef class GiacMethods_base: Help for square: square((Pnt(A) or Cplx),(Pnt(B) or Cplx),[Pnt(P),Var(C),Var(D)]) Returns and draws the square of side AB (ABCD is direct) (in the plane ABP). - See also: 1/ rhombus 2/ quadrilateral + See also: 1/ rhombus 2/ quadrilateral Ex1:square(i,1+i) Ex2:square(i,1+i,C,D) Ex3:square(point(0,0,0),point(3,3,3),point(0,0,3)) Ex4:square(point(0,0,0),point(3,3,3),point(0,0,3),C,D) - + ''' return GiacMethods['square'](self,*args) @@ -16281,10 +16281,10 @@ cdef class GiacMethods_base: Help for square_point: square_point(Opt) Option of the display command for a point. - See also: 1/ display + See also: 1/ display Ex1: F:=display(point(2+1.5*i),point_point) Ex2: F:=display(point(2+1.5*i),rhombus_point) - + ''' return GiacMethods['square_point'](self,*args) @@ -16293,10 +16293,10 @@ cdef class GiacMethods_base: Help for srand: srand() srand returns an integer and initializes the sequence of random numbers. - See also: 1/ RandSeed + See also: 1/ RandSeed Ex1:srand(12) Ex2: srand - + ''' return GiacMethods['srand'](self,*args) @@ -16305,9 +16305,9 @@ cdef class GiacMethods_base: Help for sst: sst(NULL) Steps 1 instruction. - See also: 1/ + See also: 1/ Ex1:sst() - + ''' return GiacMethods['sst'](self,*args) @@ -16316,9 +16316,9 @@ cdef class GiacMethods_base: Help for sst_in: sst_in(NULL) Enters into a function in step-by-step mode. - See also: 1/ + See also: 1/ Ex1:sst_in() - + ''' return GiacMethods['sst_in'](self,*args) @@ -16327,9 +16327,9 @@ cdef class GiacMethods_base: Help for st_ordering: st_ordering(Graph(G),Vrtx(s),Vrtx(t)) Returns ST numbering for the biconnected graph G with source s and sink (target) t. - See also: 1/ is_biconnected + See also: 1/ is_biconnected Ex1:st_ordering(graph("petersen"),1,2) - + ''' return GiacMethods['st_ordering'](self,*args) @@ -16338,9 +16338,9 @@ cdef class GiacMethods_base: Help for star_graph: star_graph(Intg(n)) Returns the complete bipartite graph complete_graph(1,n). - See also: 1/ complete_graph 2/ wheel_graph + See also: 1/ complete_graph 2/ wheel_graph Ex1:star_graph(5) - + ''' return GiacMethods['star_graph'](self,*args) @@ -16349,10 +16349,10 @@ cdef class GiacMethods_base: Help for star_point: star_point(Opt) Option of the display command for a point. - See also: 1/ display + See also: 1/ display Ex1: F:=display(point(2+1.5*i),point_point) Ex2: F:=display(point(2+1.5*i),rhombus_point) - + ''' return GiacMethods['star_point'](self,*args) @@ -16361,11 +16361,11 @@ cdef class GiacMethods_base: Help for stdDev: stdDev(Lst||Mtrx,[Lst]) Returns an unbiased estimate of the population standard deviation of the sample (first argument) with an optional list of weight as second argument. - See also: 1/ mean 2/ stddev + See also: 1/ mean 2/ stddev Ex1:stdDev([1,2,3]) Ex2:stdDev([1,2,3],[1,2,1]) Ex3:stdDev([[1,2,3],[5,6,7]]) - + ''' return GiacMethods['stdDev'](self,*args) @@ -16374,11 +16374,11 @@ cdef class GiacMethods_base: Help for stddev: stddev(Lst||Mtrx,[Lst]) Returns the standard deviation of the elements of its argument with an optional second argument as weight or the list of standard deviations of the columns of a matrix. - See also: 1/ mean 2/ variance 3/ stddevp + See also: 1/ mean 2/ variance 3/ stddevp Ex1:stddev([1,2,3]) Ex2:stddev([1,2,3],[1,2,1]) Ex3:stddev([[1,2,3],[5,6,7]]) - + ''' return GiacMethods['stddev'](self,*args) @@ -16387,11 +16387,11 @@ cdef class GiacMethods_base: Help for stddevp: stddevp(Lst||Mtrx,[Lst]) Returns an unbiased estimate of the population standard deviation of the sample (first argument) with an optional list of weight as second argument. - See also: 1/ mean 2/ stddev + See also: 1/ mean 2/ stddev Ex1:stddevp([1,2,3]) Ex2:stddevp([1,2,3],[1,2,1]) Ex3:stddevp([[1,2,3],[5,6,7]]) - + ''' return GiacMethods['stddevp'](self,*args) @@ -16400,14 +16400,14 @@ cdef class GiacMethods_base: Help for steffenson_solver: steffenson_solver(Opt) Argument for fsolve giving the method for solving a numerical equation. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve(cos(x)=x,x,0..1,bisection_solver) Ex2: fsolve(cos(x)=x,x,0..1,brent_solver) Ex3: fsolve(cos(x)=x,x,0..1,falsepos_solver) Ex4: fsolve(cos(x)=x,x,0,newton_solver) Ex5: fsolve(cos(x)=x,x,0,secant_solver) Ex6: fsolve(cos(x)=x,x,0,steffenson_solver) - + ''' return GiacMethods['steffenson_solver'](self,*args) @@ -16416,9 +16416,9 @@ cdef class GiacMethods_base: Help for stereo2mono: stereo2mono(Lst(clip)) Returns an audio clip with all channels in the input clip downmixed to a single one. - See also: 1/ channel_data 2/ mean 3/ createwav + See also: 1/ channel_data 2/ mean 3/ createwav Ex1:stereo2mono(readwav("/some/file")) - + ''' return GiacMethods['stereo2mono'](self,*args) @@ -16427,12 +16427,12 @@ cdef class GiacMethods_base: Help for str: str(Expr or Opt) Returns the evaluated expression as a string or is an option of the convert or convertir command (id string). - See also: 1/ expr 2/ format 3/ convert + See also: 1/ expr 2/ format 3/ convert Ex1:str(1.23) Ex2:str(a:=12) Ex3:str(quote(a:=12)) Ex4: convert(quote(a:=12),string) - + ''' return GiacMethods['str'](self,*args) @@ -16441,9 +16441,9 @@ cdef class GiacMethods_base: Help for strongly_connected_components: strongly_connected_components(Graph(G)) Returns the list of strongly connected components in digraph G. - See also: 1/ connected_components 2/ is_connected 3/ is_strongly_connected + See also: 1/ connected_components 2/ is_connected 3/ is_strongly_connected Ex1:strongly_connected_components(digraph([1,2,3],%{[1,2],[1,3],[2,3],[3,2]%})) - + ''' return GiacMethods['strongly_connected_components'](self,*args) @@ -16452,10 +16452,10 @@ cdef class GiacMethods_base: Help for student: student(Intg(n),Real(x0)) Returns the probability density of the Student law (n is the number of degrees of freedom). - See also: 1/ student_cdf 2/ student_icdf + See also: 1/ student_cdf 2/ student_icdf Ex1:student(3,5.2) Ex2:student(1,5.2) - + ''' return GiacMethods['student'](self,*args) @@ -16464,10 +16464,10 @@ cdef class GiacMethods_base: Help for student_cdf: student_cdf(Intg(n),Real(x0)) Returns the probability that a Student random variable is less than x0 (n is the number of degrees of freedom). - See also: 1/ UTPT 2/ student_icdf 3/ studentd + See also: 1/ UTPT 2/ student_icdf 3/ studentd Ex1:student_cdf(3,2.35) Ex2:student_cdf(3,-3.2) - + ''' return GiacMethods['student_cdf'](self,*args) @@ -16476,10 +16476,10 @@ cdef class GiacMethods_base: Help for student_icdf: student_icdf(Intg(n),Real(p)) Returns h such as the probability that a Student random variable is less than h is p (n is the number of degrees of freedom and 0<=p<=1). - See also: 1/ student_cdf 2/ studentd + See also: 1/ student_cdf 2/ studentd Ex1:student_icdf(3,0.95) Ex2:student_icdf(3,0.05) - + ''' return GiacMethods['student_icdf'](self,*args) @@ -16488,10 +16488,10 @@ cdef class GiacMethods_base: Help for studentd: studentd(Intg(n),Real(x0)) Returns the probability density of the Student law (n is the number of degrees of freedom). - See also: 1/ student_cdf 2/ student_icdf + See also: 1/ student_cdf 2/ student_icdf Ex1:studentd(3,5.2) Ex2:studentd(1,5.2) - + ''' return GiacMethods['studentd'](self,*args) @@ -16500,10 +16500,10 @@ cdef class GiacMethods_base: Help for studentt: studentt(Lst,Real,[Real],Fnc,[Real]) T-Test/Student law: arg1=[success,trial] or [mean,sample size] or data, arg2=proportion or data, arg3 optional if data=sigma, arg4 alternative '!=' or '>' or '<', arg5 optional alpha confidence level. - See also: 1/ normalt 2/ chisquaret 3/ kolmogorovt + See also: 1/ normalt 2/ chisquaret 3/ kolmogorovt Ex1:studentt([10,20],.5,.02,'!=',0.1) Ex2:studentt([0.48,20],0.5,0.1,'<') - + ''' return GiacMethods['studentt'](self,*args) @@ -16512,13 +16512,13 @@ cdef class GiacMethods_base: Help for sturm: sturm(Poly,[Var],[Cplx(a)],[Cplx(b)]) Sturm sequence corresponding to a polynomial or number of sign changes of this polynomial in ]a;b]. - See also: 1/ sturmseq 2/ sturmab + See also: 1/ sturmseq 2/ sturmab Ex1:sturm(x^3-1,x) Ex2:sturm(x^5-x^3,x) Ex3:sturm((x^5-x^3)/(x+2),x) Ex4:sturm(x^5-x^3,x,-2,5) Ex5:sturm(x^3-1,x,-2-i,5+3i) - + ''' return GiacMethods['sturm'](self,*args) @@ -16527,10 +16527,10 @@ cdef class GiacMethods_base: Help for sturmab: sturmab(Poly,Var,Cplx(a),Cplx(b)) Number of sign changes of a polynomial in ]a;b] or of complex roots in a..b if a or b is non-real. - See also: 1/ sturm 2/ sturmseq 3/ realroot + See also: 1/ sturm 2/ sturmseq 3/ realroot Ex1:sturmab(x^3-1,x,-2,5) Ex2:sturmab(x^3-1,x,-2-i,5+3i) - + ''' return GiacMethods['sturmab'](self,*args) @@ -16539,11 +16539,11 @@ cdef class GiacMethods_base: Help for sturmseq: sturmseq(Poly,[Var]) Sturm sequence corresponding to a polynomial or to a rational fraction. - See also: 1/ sturm 2/ sturmab + See also: 1/ sturm 2/ sturmab Ex1:sturmseq(x^3-1,x) Ex2:sturmseq(x^5-x^3,x) Ex3:sturmseq((x^5-x^3)/(x+2),x) - + ''' return GiacMethods['sturmseq'](self,*args) @@ -16552,10 +16552,10 @@ cdef class GiacMethods_base: Help for style: style(Opt) Local option (Maple compatibility) of a graphic command to plot a line with dots with style=point. - See also: 1/ line_width + See also: 1/ line_width Ex1: segment(0,point(1,1),style=point) Ex2: line(y=x,style=point,display=green+line_width_2) - + ''' return GiacMethods['style'](self,*args) @@ -16564,9 +16564,9 @@ cdef class GiacMethods_base: Help for subMat: subMat(Mtrx(A),Intg(n1),Intg(n2),Intg(n3),Intg(n4).) Extracts a sub matrix with first element=A[n1,n2] and last element=A[n3,n4]. - See also: 1/ mid + See also: 1/ mid Ex1:subMat([[1,2],[3,4],[5,6]],1,0,2,1) - + ''' return GiacMethods['subMat'](self,*args) @@ -16575,9 +16575,9 @@ cdef class GiacMethods_base: Help for subdivide_edges: subdivide_edges(Graph(G),Lst(E),[Intg(r)]) Inserts r (by default 1) new vertices to each edge/arc in G contained in the list E (which may be a single edge/arc) and returns the modified copy of G. New vertices are labelled with smallest available integers. - See also: 1/ edges + See also: 1/ edges Ex1:subdivide_edges(complete_graph(2,3),[[1,3],[1,4]],2) - + ''' return GiacMethods['subdivide_edges'](self,*args) @@ -16586,9 +16586,9 @@ cdef class GiacMethods_base: Help for subgraph: subgraph(Graph(G),Lst(E)) Returns the subgraph of G defined by the edges in list E. - See also: 1/ induced_subgraph 2/ highlight_subgraph + See also: 1/ induced_subgraph 2/ highlight_subgraph Ex1:subgraph(complete_graph(5),[[1,2],[2,3],[3,4],[4,1]]) - + ''' return GiacMethods['subgraph'](self,*args) @@ -16597,11 +16597,11 @@ cdef class GiacMethods_base: Help for subs: subs(Expr or Var=value,Var=value or Expr) Equivalent of subst except in maple_mode where the arguments are switched over, in maple_mode choose the second example. - See also: 1/ subst 2/ maple_mode 3/ algsubs 4/ () + See also: 1/ subst 2/ maple_mode 3/ algsubs 4/ () Ex1:subs(1/(4+x^2),x=2) Ex2:subs(x=2,1/(4+x^2)) Ex3: f:=1/(4+x^2);f(x=2) - + ''' return GiacMethods['subs'](self,*args) @@ -16614,7 +16614,7 @@ cdef class GiacMethods_base: Ex2:subsop([[1,2],[3,4]],[1,1]=5) Ex3:subsop([[1,2],[3,4]],1=[10,8]) Ex4:subsop([0,1,2,3],'1=NULL') - + ''' return GiacMethods['subsop'](self,*args) @@ -16623,7 +16623,7 @@ cdef class GiacMethods_base: Help for subst: subst(Expr,Var(v)=value(a)) Substitutes a value for a variable in an expression. - See also: 1/ eval 2/ algsubs 3/ subs 4/ () + See also: 1/ eval 2/ algsubs 3/ subs 4/ () Ex1:subst(1/(4+x^2),x=2) Ex2:subst(1/(x^2+y^2),x=2,y=3) Ex3:subst(1/(x^2+y^2+z^2),[x=2,y=3,z=1]) @@ -16631,7 +16631,7 @@ cdef class GiacMethods_base: Ex5:subst('integrate(sin(x^2)*x,x)',x=sqrt(t)) Ex6:subst('sum(x^(n+1)/((n+p+1)*(n+1)),n,0,inf)',n=k-1) Ex7: f:=1/(x^2+y^2;f(x=2,y=3) - + ''' return GiacMethods['subst'](self,*args) @@ -16640,7 +16640,7 @@ cdef class GiacMethods_base: Help for substituer: substituer(Expr,Var(v)=value(a)) Substitutes a value for a variable in an expression. - See also: 1/ eval 2/ algsubs 3/ subs 4/ () + See also: 1/ eval 2/ algsubs 3/ subs 4/ () Ex1:substituer(1/(4+x^2),x=2) Ex2:substituer(1/(x^2+y^2),x=2,y=3) Ex3:substituer(1/(x^2+y^2+z^2),[x=2,y=3,z=1]) @@ -16648,7 +16648,7 @@ cdef class GiacMethods_base: Ex5:substituer('integrate(sin(x^2)*x,x)',x=sqrt(t)) Ex6:substituer('sum(x^(n+1)/((n+p+1)*(n+1)),n,0,inf)',n=k-1) Ex7: f:=1/(x^2+y^2;f(x=2,y=3) - + ''' return GiacMethods['substituer'](self,*args) @@ -16657,12 +16657,12 @@ cdef class GiacMethods_base: Help for subtype: subtype(Expr) Returns 1 for a sequence,2 for a set, 10 for a polynomial and 0 otherwise. - See also: 1/ DOM_LIST 2/ type + See also: 1/ DOM_LIST 2/ type Ex1:subtype(1,2,3) Ex2:subtype(set[1,2,3]) Ex3:subtype(poly1[1,2,3]) Ex4:subtype([1,2,3]) - + ''' return GiacMethods['subtype'](self,*args) @@ -16671,7 +16671,7 @@ cdef class GiacMethods_base: Help for sum: sum(Expr,Var,VarMin(a),VarMax(b),[VarStep(p)]) Discrete sum (with 2 or 4 arguments return then sum from a to b if a<=b or of the opposite of the sum from b+1 to a-1 if a>b+1 or 0 if a=b+1) or the discrete primitive or sum of the elements of a list or a sequence. - See also: 1/ + + See also: 1/ + Ex1:sum(1/n^2,n,1,17) Ex2:sum(1/n^2,n=1..17) Ex3:sum(1/n^2,n,17,1) @@ -16682,7 +16682,7 @@ cdef class GiacMethods_base: Ex8:sum([[1,2,3,4,5,6,7,8,9],[1,2,3,4,5,6,7,8,9]]) Ex9:sum(1/(x*(x+1)),x) Ex10:sum(cos(n*x),n) - + ''' return GiacMethods['sum'](self,*args) @@ -16691,11 +16691,11 @@ cdef class GiacMethods_base: Help for sum_riemann: sum_riemann(Expr(Xpr),Lst(var1,var2)) Returns an equivalent when var1=+infinity of the sum of Xpr(var1,var2) for var2 from 1 to var1 when the sum is a Riemann sum. - See also: 1/ + See also: 1/ Ex1:sum_riemann(1/(n+k),[n,k]) Ex2:sum_riemann(n/(n^2+k),[n,k]) Ex3:sum_riemann(n/(n^2+k^2),[n,k]) - + ''' return GiacMethods['sum_riemann'](self,*args) @@ -16704,12 +16704,12 @@ cdef class GiacMethods_base: Help for suppress: suppress(Vect(L)||Str(l),Intg(n)) Returns L without the element of index n; L:=suppress(L,n) or L.suppress(n). - See also: 1/ tail 2/ mid 3/ remove 4/ insert + See also: 1/ tail 2/ mid 3/ remove 4/ insert Ex1:suppress([0,1,2,3],2) Ex2:suppress("0123",2) Ex3: L:=[0,1,2,3];L:=suppress(L,2) Ex4: L:=[0,1,2,3];L.suppress(2) - + ''' return GiacMethods['suppress'](self,*args) @@ -16718,10 +16718,10 @@ cdef class GiacMethods_base: Help for surd: surd(Expr,Intg(n)) Power 1/n. - See also: 1/ sqrt 2/ ^ + See also: 1/ sqrt 2/ ^ Ex1:surd(8,3) Ex2:surd(-8,3) - + ''' return GiacMethods['surd'](self,*args) @@ -16731,7 +16731,7 @@ cdef class GiacMethods_base: svd(Mtrx(A)) For a square numerical real matrix A, returns U orthogonal, S vector of singular values, Q orthogonal such that A=U*diag(S)*tran(Q). Ex1:svd([[1,2],[3,4]]) - + ''' return GiacMethods['svd'](self,*args) @@ -16740,9 +16740,9 @@ cdef class GiacMethods_base: Help for swapcol: swapcol(Mtrx(A),Intg(n1),Intg(n2)) Returns the matrix obtained from A by swapping the n1-th column and the n2-th column. - See also: 1/ rowSwap + See also: 1/ rowSwap Ex1:swapcol([[1,2],[3,4],[5,6]],0,1) - + ''' return GiacMethods['swapcol'](self,*args) @@ -16751,9 +16751,9 @@ cdef class GiacMethods_base: Help for swaprow: swaprow(Mtrx(A),Intg(n1),Intg(n2)) Returns the matrix obtained from A by swapping the n1-th row and the n2-th row. - See also: 1/ rowAdd 2/ colSwap + See also: 1/ rowAdd 2/ colSwap Ex1:swaprow([[1,2],[3,4],[5,6]],1,2) - + ''' return GiacMethods['swaprow'](self,*args) @@ -16762,11 +16762,11 @@ cdef class GiacMethods_base: Help for switch_axes: switch_axes([Intg(0 or 1)]) switch_axes() puts or erases the axes of the graphic-screen. - See also: 1/ gl_showaxes 2/ axes + See also: 1/ gl_showaxes 2/ axes Ex1:switch_axes() Ex2:switch_axes(0) Ex3:switch_axes(1) - + ''' return GiacMethods['switch_axes'](self,*args) @@ -16775,10 +16775,10 @@ cdef class GiacMethods_base: Help for sylvester: sylvester(Poly,Poly,Var) Sylvester matrix of two polynomials. - See also: 1/ resultant + See also: 1/ resultant Ex1:sylvester(x^2-1,x^3-1,x) Ex2:sylvester(x^3-p*x+q,3*x^2-p,x) - + ''' return GiacMethods['sylvester'](self,*args) @@ -16787,14 +16787,14 @@ cdef class GiacMethods_base: Help for symb2poly: symb2poly(Expr, LstVar or [Var]) Returns the coefficients of a polynomial with respect to the 2nd argument or if the second argument is a list the internal format of the polynomial. - See also: 1/ poly2symb 2/ r2e + See also: 1/ poly2symb 2/ r2e Ex1:symb2poly(x*3+2.1) Ex2:symb2poly(3*x*y+2*y+1,y) Ex3:symb2poly(3*x*y+2*y+1,x,y) Ex4:symb2poly(3*x*y+2*y+1,[x,y]) Ex5:symb2poly(-x^4+x*3*y+2+y^2*z,[x,y,z]) Ex6:symb2poly(-x^4+x*3*y+2+y^2*z,[x,y,z]) - + ''' return GiacMethods['symb2poly'](self,*args) @@ -16803,12 +16803,12 @@ cdef class GiacMethods_base: Help for symbol: symbol(Opt) DOM_SYMBOLIC or symbol is the type of a symbolic variable, as returned by the type command. It is also an option of the assume command. - See also: 1/ type 2/ assume 3/ DOM_INT 4/ DOM_FLOAT + See also: 1/ type 2/ assume 3/ DOM_INT 4/ DOM_FLOAT Ex1: assume(a,symbol) Ex2: assume(a,DOM_SYMBOLIC) Ex3: a:=sqrt(2);type(a) Ex4: type(2x+1) - + ''' return GiacMethods['symbol'](self,*args) @@ -16817,9 +16817,9 @@ cdef class GiacMethods_base: Help for syst2mat: syst2mat(LstLinEq,LstVar) Returns the matrix M=A|(-b) associate to the system Y=AX+b. - See also: 1/ linsolve 2/ rref + See also: 1/ linsolve 2/ rref Ex1:syst2mat([x-y=1,x+2*y],[x,y]) - + ''' return GiacMethods['syst2mat'](self,*args) @@ -16828,9 +16828,9 @@ cdef class GiacMethods_base: Help for tCollect: tCollect(Expr) Collects trigonometric expressions. - See also: 1/ texpand 2/ tlin + See also: 1/ texpand 2/ tlin Ex1:tCollect(sin(x)+cos(x)) - + ''' return GiacMethods['tCollect'](self,*args) @@ -16839,11 +16839,11 @@ cdef class GiacMethods_base: Help for tExpand: tExpand(Expr) Expands transcendental expressions. - See also: 1/ tcollect 2/ tlin 3/ lin 4/ trigexpand + See also: 1/ tcollect 2/ tlin 3/ lin 4/ trigexpand Ex1:tExpand(sin(2*x)+exp(x+y)) Ex2:tExpand(cos(x+y)) Ex3:tExpand(cos(3*x)) - + ''' return GiacMethods['tExpand'](self,*args) @@ -16852,11 +16852,11 @@ cdef class GiacMethods_base: Help for table: table(SeqEqual(index=value)) Defines an array where the indices are strings or real numbers or defines a table with a matrix. - See also: 1/ matrix 2/ convert 3/ array + See also: 1/ matrix 2/ convert 3/ array Ex1:table(3=-10,"a"=10,"b"=20,"c"=30,"d"=40) - Ex2: A:=[[0,1],[2,3]];table(A) + Ex2: A:=[[0,1],[2,3]];table(A) Ex3: B:=table([1,2]=12,[2,5]=25);matrix(B) - + ''' return GiacMethods['table'](self,*args) @@ -16865,10 +16865,10 @@ cdef class GiacMethods_base: Help for tablefunc: tablefunc(Expr,Var) Table of values of a function : you must be in a spreadsheet. - See also: 1/ tabvar 2/ tableseq + See also: 1/ tabvar 2/ tableseq Ex1:tablefunc(sin(x),x) Ex2:tablefunc(x^2-x-2,x) - + ''' return GiacMethods['tablefunc'](self,*args) @@ -16877,10 +16877,10 @@ cdef class GiacMethods_base: Help for tableseq: tableseq(Expr,(Var or LstVar),(InitVal or LstInitVal)) Table of values of a sequence (in a spreadsheet.) - See also: 1/ tablefunc + See also: 1/ tablefunc Ex1:tableseq(cos(x),x,0.0) Ex2:tableseq(x+y,[x,y],[1,1]) - + ''' return GiacMethods['tableseq'](self,*args) @@ -16889,11 +16889,11 @@ cdef class GiacMethods_base: Help for tabsign: tabsign(Expr,Var) Table of signs of a function. - See also: 1/ tablefunc 2/ tabvar + See also: 1/ tablefunc 2/ tabvar Ex1:tabsign(x^2-x,x) Ex2:tabsign(x^2,x,-3,5) Ex3:tabsign(sin(x),x) - + ''' return GiacMethods['tabsign'](self,*args) @@ -16902,13 +16902,13 @@ cdef class GiacMethods_base: Help for tabvar: tabvar(Expr,Var) Table of variations of a function with its graph on DispG. - See also: 1/ tablefunc 2/ tabsign + See also: 1/ tablefunc 2/ tabsign Ex1:tabvar(sin(x),x) Ex2:tabvar(1/ln(x^2-1),x,diff=1) Ex3:tabvar(x^2+x+1,x) Ex4:tabvar(x^2,x,-3,5) Ex5:tabvar([sin(2t),cos(3t)]) - + ''' return GiacMethods['tabvar'](self,*args) @@ -16917,11 +16917,11 @@ cdef class GiacMethods_base: Help for tail: tail(Lst or Seq or Str) Returns the list (or sequence or string) without its first element. - See also: 1/ head 2/ mid 3/ left 4/ right 5/ back + See also: 1/ head 2/ mid 3/ left 4/ right 5/ back Ex1:tail([3,2,4,1,0]) Ex2:tail(3,2,4,1,0) Ex3:tail("bonjour") - + ''' return GiacMethods['tail'](self,*args) @@ -16930,11 +16930,11 @@ cdef class GiacMethods_base: Help for tan: tan(Expr) Tangent or option of the convert or convertir command (id halftan). - See also: 1/ atan or Opt 2/ convert 3/ halftan + See also: 1/ atan or Opt 2/ convert 3/ halftan Ex1:tan(0) Ex2:tan(pi/4) Ex3: convert(tan(x),tan) - + ''' return GiacMethods['tan'](self,*args) @@ -16943,9 +16943,9 @@ cdef class GiacMethods_base: Help for tan2cossin2: tan2cossin2(Expr) Replaces tan(x) by (1-cos(2*x))/sin(2*x) in the argument. - See also: 1/ tan2sincos2 2/ tan2sincos 3/ sin2costan 4/ cos2sintan + See also: 1/ tan2sincos2 2/ tan2sincos 3/ sin2costan 4/ cos2sintan Ex1:tan2cossin2(tan(x)) - + ''' return GiacMethods['tan2cossin2'](self,*args) @@ -16954,9 +16954,9 @@ cdef class GiacMethods_base: Help for tan2sincos: tan2sincos(Expr) Replaces tan(x) by sin(x)/cos(x) in the argument. - See also: 1/ sin2costan 2/ cos2sintan 3/ tan2sincos2 4/ tan2cossin2 + See also: 1/ sin2costan 2/ cos2sintan 3/ tan2sincos2 4/ tan2cossin2 Ex1:tan2sincos(tan(x)) - + ''' return GiacMethods['tan2sincos'](self,*args) @@ -16965,9 +16965,9 @@ cdef class GiacMethods_base: Help for tan2sincos2: tan2sincos2(Expr) Replaces tan(x) by sin(2*x)/(1+cos(2*x)) in the argument. - See also: 1/ tan2cossin2 2/ tan2sincos 3/ sin2costan 4/ cos2sintan + See also: 1/ tan2cossin2 2/ tan2sincos 3/ sin2costan 4/ cos2sintan Ex1:tan2sincos2(tan(x)) - + ''' return GiacMethods['tan2sincos2'](self,*args) @@ -16976,7 +16976,7 @@ cdef class GiacMethods_base: Help for tangent: tangent(Curve(C),Pnt(A)) tangent(C,A) draws the tangents (line or plane) to C through A. - See also: 1/ LineTan 2/ droite_tangente + See also: 1/ LineTan 2/ droite_tangente Ex1:tangent(circle(i,1+i),A) Ex2:tangent(plotfunc(sin(x)),3*pi/4) Ex3:tangent(plotfunc(sin(x)),point(3*pi/4+i*sqrt(2)/2)) @@ -16985,7 +16985,7 @@ cdef class GiacMethods_base: Ex6:tangent(plotparam(3*exp(t/2)*exp(i*t),t),7) Ex7:tangent(plotpolar(3*exp(t/2),t),7) Ex8: equation(tangente([2*cos(t),2*sin(t),3*t],t)) - + ''' return GiacMethods['tangent'](self,*args) @@ -16994,7 +16994,7 @@ cdef class GiacMethods_base: Help for tangente: tangente(Curve(C),Pnt(A)) tangent(C,A) draws the tangents (line or plane) to C through A. - See also: 1/ LineTan 2/ droite_tangente + See also: 1/ LineTan 2/ droite_tangente Ex1:tangente(circle(i,1+i),A) Ex2:tangente(plotfunc(sin(x)),3*pi/4) Ex3:tangente(plotfunc(sin(x)),point(3*pi/4+i*sqrt(2)/2)) @@ -17003,7 +17003,7 @@ cdef class GiacMethods_base: Ex6:tangente(plotparam(3*exp(t/2)*exp(i*t),t),7) Ex7:tangente(plotpolar(3*exp(t/2),t),7) Ex8: equation(tangente([2*cos(t),2*sin(t),3*t],t)) - + ''' return GiacMethods['tangente'](self,*args) @@ -17012,10 +17012,10 @@ cdef class GiacMethods_base: Help for tanh: tanh(Expr) Hyperbolic tangent. - See also: 1/ atanh 2/ hyp2exp + See also: 1/ atanh 2/ hyp2exp Ex1:tanh(0) Ex2:tanh(hyp2exp(tanh(1))) - + ''' return GiacMethods['tanh'](self,*args) @@ -17024,11 +17024,11 @@ cdef class GiacMethods_base: Help for taux_accroissement: taux_accroissement(Expr,Var,Val1,(Val1+Var or Val2)) Returns the rate of change of an expression when the variable goes from Val1 to Val2 (by default Var=x). - See also: 1/ diff 2/ limit + See also: 1/ diff 2/ limit Ex1:taux_accroissement(x^2,1,1+h) Ex2:taux_accroissement(x^2,1,2) Ex3:taux_accroissement(a^2,a,1,1+h) - + ''' return GiacMethods['taux_accroissement'](self,*args) @@ -17037,7 +17037,7 @@ cdef class GiacMethods_base: Help for taylor: taylor(Expr,[Var=limit_point],[Order]) Series expansion at finite or infinite points (by default x=0, and relative order=5). - See also: 1/ series 2/ limit 3/ pade 4/ polynom + See also: 1/ series 2/ limit 3/ pade 4/ polynom Ex1:taylor(sin(x)/x,x,0) Ex2:taylor(sin(x),x=0,5,polynom) Ex3:taylor(ln(y+y^2)-ln(y),y) @@ -17045,10 +17045,10 @@ cdef class GiacMethods_base: Ex5:taylor(ln(x+x^2)-ln(x),x=0,2) Ex6:taylor(ln(x+x^2)-ln(x),x=1,2) Ex7:taylor((x^4+x+2)/(x^2+1),x,5) - Ex8:taylor(sin(t*x+t*y)+cos(t*x*t*y),t=0,6,polynom)(h=1) + Ex8:taylor(sin(t*x+t*y)+cos(t*x*t*y),t=0,6,polynom)(h=1) Ex9:taylor(sin((1+h*t)*(pi/2+k*t)),t=0,3,polynom)(t=1) Ex10:taylor((-1+k*t)^2/(1+h*t)^3,t=0,3,polynom)(t=1) - + ''' return GiacMethods['taylor'](self,*args) @@ -17057,9 +17057,9 @@ cdef class GiacMethods_base: Help for tchebyshev1: tchebyshev1(Intg(n)) Returns the n-th Tchebyshev polynomial of first kind. - See also: 1/ tchebyshev2 2/ hermite + See also: 1/ tchebyshev2 2/ hermite Ex1:tchebyshev1(3) - + ''' return GiacMethods['tchebyshev1'](self,*args) @@ -17068,9 +17068,9 @@ cdef class GiacMethods_base: Help for tchebyshev2: tchebyshev2(Intg(n)) Returns the nt-h Tchebyshev polynomial of second kind. - See also: 1/ tchebyshev1 2/ hermite + See also: 1/ tchebyshev1 2/ hermite Ex1:tchebyshev2(3) - + ''' return GiacMethods['tchebyshev2'](self,*args) @@ -17079,10 +17079,10 @@ cdef class GiacMethods_base: Help for tcoeff: tcoeff(Poly||Lst) Returns the coefficient of the term of lowest degree of a polynomial (t=trailing). - See also: 1/ lcoeff + See also: 1/ lcoeff Ex1:tcoeff(-2*x^3+x^2+7*x) Ex2:tcoeff([-2,1,7,0]) - + ''' return GiacMethods['tcoeff'](self,*args) @@ -17091,9 +17091,9 @@ cdef class GiacMethods_base: Help for tcollect: tcollect(Expr) Collects trigonometric expressions. - See also: 1/ texpand 2/ tlin + See also: 1/ texpand 2/ tlin Ex1:tcollect(sin(x)+cos(x)) - + ''' return GiacMethods['tcollect'](self,*args) @@ -17102,8 +17102,8 @@ cdef class GiacMethods_base: Help for tdeg: tdeg(Opt) Option of the gbasis or greduce command to specify an order for monomials (complete degree then lexicographic order). - See also: 1/ gbasis 2/ greduce - + See also: 1/ gbasis 2/ greduce + ''' return GiacMethods['tdeg'](self,*args) @@ -17112,9 +17112,9 @@ cdef class GiacMethods_base: Help for tensor_product: tensor_product(Seq(G1,G2,..)) Returns the tensor product of the input graphs G1, G2, ... with vertices labelled as "u:v:..." where u, v, ... are vertices from G1, G2, ..., respectively. - See also: 1/ cartesian_product + See also: 1/ cartesian_product Ex1:tensor_product(graph(trail(1,2,3,4,5,2)),star_graph(3)) - + ''' return GiacMethods['tensor_product'](self,*args) @@ -17123,10 +17123,10 @@ cdef class GiacMethods_base: Help for tetrahedron: tetrahedron(Pnt(A),Pnt(B),Pnt(C),[Pnt(D)]) Draws the regular direct pyramid ABCD with vertices A,B and a face in the plane (A,B,C) when there is 3 arguments and the pyramid ABCD when there are 4 arguments. - See also: 1/ cube 2/ cylinder 3/ icosahedron 4/ dodecahedron 5/ octahedron + See also: 1/ cube 2/ cylinder 3/ icosahedron 4/ dodecahedron 5/ octahedron Ex1:tetrahedron([0,0,0],[3,0,0],[0,1,0]) Ex2:tetrahedron([0,0,0],[3,0,0],[0,3,0],[0,0,4]) - + ''' return GiacMethods['tetrahedron'](self,*args) @@ -17135,11 +17135,11 @@ cdef class GiacMethods_base: Help for texpand: texpand(Expr) Expands transcendental expressions. - See also: 1/ tcollect 2/ tlin 3/ lin 4/ trigexpand + See also: 1/ tcollect 2/ tlin 3/ lin 4/ trigexpand Ex1:texpand(sin(2*x)+exp(x+y)) Ex2:texpand(cos(x+y)) Ex3:texpand(cos(3*x)) - + ''' return GiacMethods['texpand'](self,*args) @@ -17148,10 +17148,10 @@ cdef class GiacMethods_base: Help for thickness: thickness(Opt) Option (Maple compatibility) of a graphic command to define the thickness of lines. - See also: 1/ line_width + See also: 1/ line_width Ex1: segment(0,point(1,1),thickness=5) Ex2: segment(0,point(1,1),epaisseur=5) - + ''' return GiacMethods['thickness'](self,*args) @@ -17160,10 +17160,10 @@ cdef class GiacMethods_base: Help for threshold: threshold(Lst,Real(bound)[=Expr(repl)] or Lst[Real(lower)[=Expr(rl)],Real(upper)[=Expr(ru)]],[Fnc(compare)],[abs[=true or false]]) Performs thresholding operations on a list of real or complex numbers. - See also: 1/ max 2/ min + See also: 1/ max 2/ min Ex1:threshold([1,3,2,4,5,4,3,2,3,1],3,'>=') Ex2:threshold([-10,-5,0,5,10],7=a,abs=true) - + ''' return GiacMethods['threshold'](self,*args) @@ -17172,10 +17172,10 @@ cdef class GiacMethods_base: Help for throw: throw(Str) Generates the display of an error in a program. - See also: 1/ try 2/ catch + See also: 1/ try 2/ catch Ex1:throw("Argument should be integer") Ex2:throw("je provoque une erreur") - + ''' return GiacMethods['throw'](self,*args) @@ -17184,10 +17184,10 @@ cdef class GiacMethods_base: Help for title: title(Opt) Global option of a graphic command to put a title in a graphic. - See also: 1/ line_width + See also: 1/ line_width Ex1: title="segment";segment(0,point(1,1),epaisseur=5) Ex2: titre="segment";segment(0,point(1,1),epaisseur=5) - + ''' return GiacMethods['title'](self,*args) @@ -17196,10 +17196,10 @@ cdef class GiacMethods_base: Help for titre: titre(Opt) Global option of a graphic command to put a title in a graphic. - See also: 1/ line_width + See also: 1/ line_width Ex1: title="segment";segment(0,point(1,1),epaisseur=5) Ex2: titre="segment";segment(0,point(1,1),epaisseur=5) - + ''' return GiacMethods['titre'](self,*args) @@ -17208,10 +17208,10 @@ cdef class GiacMethods_base: Help for tlin: tlin(ExprTrig) Trigonometric linearization. - See also: 1/ texpand 2/ lin + See also: 1/ texpand 2/ lin Ex1:tlin(sin(x)^3) Ex2:tlin(cos(x)*cos(y)) - + ''' return GiacMethods['tlin'](self,*args) @@ -17220,10 +17220,10 @@ cdef class GiacMethods_base: Help for tonnetz: tonnetz(Intg(a),Intg(b),Intg(c),[Intg(d)]) Returns the graph corresponding to the [a,b,c] resp. [a,b,c,d] tone network (tonnetz) used in neo-Riemannian music theory. - See also: 1/ is_regular 2/ clique_stats + See also: 1/ is_regular 2/ clique_stats Ex1:tonnetz(3,4,5) Ex2:tonnetz(2,3,3,4) - + ''' return GiacMethods['tonnetz'](self,*args) @@ -17232,9 +17232,9 @@ cdef class GiacMethods_base: Help for topologic_sort: topologic_sort(Graph(G)) Returns the list of vertices sorted according to the topological ordering in the directed acyclic graph G. - See also: 1/ digraph 2/ is_acyclic + See also: 1/ digraph 2/ is_acyclic Ex1:topologic_sort(digraph(%{[c,a],[c,b],[c,d],[a,d],[b,d],[a,b]%})) - + ''' return GiacMethods['topologic_sort'](self,*args) @@ -17243,9 +17243,9 @@ cdef class GiacMethods_base: Help for topological_sort: topological_sort(Graph(G)) Returns the list of vertices sorted according to the topological ordering in the directed acyclic graph G. - See also: 1/ digraph 2/ is_acyclic + See also: 1/ digraph 2/ is_acyclic Ex1:topological_sort(digraph(%{[c,a],[c,b],[c,d],[a,d],[b,d],[a,b]%})) - + ''' return GiacMethods['topological_sort'](self,*args) @@ -17254,9 +17254,9 @@ cdef class GiacMethods_base: Help for torus_grid_graph: torus_grid_graph(Intg(m),Intg(n)) Returns a torus grid graph on m*n vertices, where m,n>=3. - See also: 1/ grid_graph + See also: 1/ grid_graph Ex1:torus_grid_graph(6,12) - + ''' return GiacMethods['torus_grid_graph'](self,*args) @@ -17265,9 +17265,9 @@ cdef class GiacMethods_base: Help for total_degree: total_degree(Poly(P),Lst(Vars)) Total degree of the polynomial P with respect to the second argument. - See also: 1/ valuation 2/ size 3/ degree + See also: 1/ valuation 2/ size 3/ degree Ex1:total_degree(x^3*y+x*y,[x,y]) - + ''' return GiacMethods['total_degree'](self,*args) @@ -17276,10 +17276,10 @@ cdef class GiacMethods_base: Help for tourne_droite: tourne_droite(NULL or Real(n)) The turtle turns right by n degrees (by default n=90). - See also: 1/ tourne_gauche 2/ pas_de_cote + See also: 1/ tourne_gauche 2/ pas_de_cote Ex1: tourne_droite 60 Ex2:tourne_droite(60) - + ''' return GiacMethods['tourne_droite'](self,*args) @@ -17288,10 +17288,10 @@ cdef class GiacMethods_base: Help for tourne_gauche: tourne_gauche(NULL or Real(n)) The turtle turns left by n degrees (by defaults n=90). - See also: 1/ tourne_droite + See also: 1/ tourne_droite Ex1: tourne_gauche 60 Ex2:tourne_gauche(60) - + ''' return GiacMethods['tourne_gauche'](self,*args) @@ -17304,7 +17304,7 @@ cdef class GiacMethods_base: Ex2:tpsolve([7,10,8,8,9,6],[9,6,12,8,10],[[36,40,32,43,29],[28,27,29,40,38],[34,35,41,29,31],[41,42,35,27,36],[25,28,40,34,38],[31,30,43,38,40]]) Ex3:tpsolve([95,70,165,165],[195,150,30,45,75],[[15,M,45,M,0],[12,40,M,M,0],[0,15,25,25,0],[M,0,M,12,0]]) Ex4:tpsolve([1,1,1,1],[1,1,1,1],[[10,12,9,11],[5,10,7,8],[12,14,13,11],[8,15,11,9]]) - + ''' return GiacMethods['tpsolve'](self,*args) @@ -17313,12 +17313,12 @@ cdef class GiacMethods_base: Help for trace: trace(Mtrx or GeoObj) Returns the trace of a square matrix or draws the trace of a geometric object when the parameter changes (see Trace in Menu button of a geometric level and write only one instruction on each line). - See also: 1/ det 2/ lieu + See also: 1/ det 2/ lieu Ex1:trace([[1,2,3],[1,3,6],[2,5,7]]) Ex2:trace([[1+i,2,3],[1,3,6],[2,5,9-i]]) Ex3: assume(a=[0.7,-5,5,0.1]);trace(point(a-i*a)) Ex4: assume(a=[0.7,-5,5,0.1]);trace(inter_unique(droite(y=a*x+a),droite(y=2*a*x+1))) - + ''' return GiacMethods['trace'](self,*args) @@ -17327,9 +17327,9 @@ cdef class GiacMethods_base: Help for trail: trail(Seq(V)) Returns a trail of vertices from V (inert command). - See also: 1/ graph 2/ digraph + See also: 1/ graph 2/ digraph Ex1:trail(1,2,3,4,1) - + ''' return GiacMethods['trail'](self,*args) @@ -17338,10 +17338,10 @@ cdef class GiacMethods_base: Help for trail2edges: trail2edges(Trail(T)) Converts a trail T to the list of its edges. - See also: 1/ subgraph 2/ trail + See also: 1/ subgraph 2/ trail Ex1:trail2edges(trail(1,2,3,4,1,3)) Ex2:trail2edges([1,2,3,4,1,3]) - + ''' return GiacMethods['trail2edges'](self,*args) @@ -17350,10 +17350,10 @@ cdef class GiacMethods_base: Help for trames: trames(Opt) Option of animate and animate3d commands to give the number of pictures. - See also: 1/ animate 2/ animate3d + See also: 1/ animate 2/ animate3d Ex1: animate(sin(x*t),x=-pi..pi,t=-3..3,frames=30) Ex2: animate3d(x^2+t*y^2,[x=-2..2,y=-2..2],t=-3..3,frames=10) - + ''' return GiacMethods['trames'](self,*args) @@ -17362,11 +17362,11 @@ cdef class GiacMethods_base: Help for tran: tran(Mtrx) Transposes a matrix (without conjugation). - See also: 1/ conj 2/ trn + See also: 1/ conj 2/ trn Ex1:tran([[1,2,3],[1,3,6],[2,5,7]]) Ex2:tran([[1+i,2,3],[1,3,6],[2,5,9-i]]) Ex3:tran(conj([[1+i,2,3],[1,3,6],[2,5,9-i]])) - + ''' return GiacMethods['tran'](self,*args) @@ -17375,9 +17375,9 @@ cdef class GiacMethods_base: Help for transitive_closure: transitive_closure(Graph(G),[weighted[=true||false]]) Returns the [weighted, by default false] transitive closure of G. - See also: 1/ allpairs_distance 2/ is_connected 3/ shortest_path 4/ vertex_distance + See also: 1/ allpairs_distance 2/ is_connected 3/ shortest_path 4/ vertex_distance Ex1:transitive_closure(digraph([1,2,3,4,5,6],%{[1,2],[2,3],[2,4],[4,5],[3,5]%}),weighted) - + ''' return GiacMethods['transitive_closure'](self,*args) @@ -17386,12 +17386,12 @@ cdef class GiacMethods_base: Help for translation: translation(Vect, Pnt(C)) translation(B-A,C) (resp translation([a,b,c],C)) is the translation of C in the translation of vector AB (resp [a,b,c]). - See also: 1/ rotation 2/ reflection + See also: 1/ rotation 2/ reflection Ex1:translation(1+i,i) Ex2:translation([1,1,1],point([1,2,3])) Ex3: t:=translation(1+i);t(i) Ex4: t:=translation([1,1,1]);t(point([1,2,3])) - + ''' return GiacMethods['translation'](self,*args) @@ -17400,11 +17400,11 @@ cdef class GiacMethods_base: Help for transpose: transpose(Mtrx) Transposes a matrix (without conjugation). - See also: 1/ conj 2/ trn + See also: 1/ conj 2/ trn Ex1:transpose([[1,2,3],[1,3,6],[2,5,7]]) Ex2:transpose([[1+i,2,3],[1,3,6],[2,5,9-i]]) Ex3:transpose(conj([[1+i,2,3],[1,3,6],[2,5,9-i]])) - + ''' return GiacMethods['transpose'](self,*args) @@ -17413,14 +17413,14 @@ cdef class GiacMethods_base: Help for trapeze: trapeze(Opt) Option of the plotarea command and of the area command. - See also: 1/ plotarea 2/ area + See also: 1/ plotarea 2/ area Ex1: plotarea(x^2,x=0..1,5,trapezoid) Ex2: plotarea(x^2,x=0..1,5,middle_point) Ex3: plotarea(x^2,x=0..1,5,right_rectangle) Ex4: plotarea(x^2,x=0..1,5,left_rectangle) Ex5: area(x^2,x=0..1,5,middle_point) Ex6: area(x^2,x=0..1,5,trapezoid) - + ''' return GiacMethods['trapeze'](self,*args) @@ -17429,14 +17429,14 @@ cdef class GiacMethods_base: Help for trapezoid: trapezoid(Opt) Option of the plotarea command and of the area command. - See also: 1/ plotarea 2/ area + See also: 1/ plotarea 2/ area Ex1: plotarea(x^2,x=0..1,5,trapezoid) Ex2: plotarea(x^2,x=0..1,5,middle_point) Ex3: plotarea(x^2,x=0..1,5,right_rectangle) Ex4: plotarea(x^2,x=0..1,5,left_rectangle) Ex5: area(x^2,x=0..1,5,middle_point) Ex6: area(x^2,x=0..1,5,trapezoid) - + ''' return GiacMethods['trapezoid'](self,*args) @@ -17445,13 +17445,13 @@ cdef class GiacMethods_base: Help for traveling_salesman: traveling_salesman(Graph(G),[Mtrx(M)],[opts]) Returns a Hamiltonian cycle in an unweighted graph G or solves traveling salesman problem if G is weighted (matrix M can be used for edge weights), returning a sequence containing the minimal cost and the corresponding Hamiltonian cycle. - See also: 1/ is_hamiltonian + See also: 1/ is_hamiltonian Ex1:traveling_salesman(hypercube_graph(5)) Ex2:traveling_salesman(digraph(%{[[1,2],1],[[1,3],2],[[2,3],2],[[2,4],3],[[3,2],3],[[3,4],2],[[4,1],1]%})) Ex3: M:=randmatrix(4,4,99); traveling_salesman(graph("tetrahedron"),M) Ex4: G:=set_vertex_positions(complete_graph(42),[randvector(2,1000)$(k=1..42)]); traveling_salesman(G,vertex_distance) Ex5: G:=set_vertex_positions(complete_graph(120),[randvector(2,1000)$(k=1..120)]); c,T:=traveling_salesman(G,vertex_distance,approx) - + ''' return GiacMethods['traveling_salesman'](self,*args) @@ -17460,8 +17460,8 @@ cdef class GiacMethods_base: Help for tree: tree(Opt) Option for the draw_graph command. - See also: 1/ planar 2/ spring 3/ draw_graph - + See also: 1/ planar 2/ spring 3/ draw_graph + ''' return GiacMethods['tree'](self,*args) @@ -17470,9 +17470,9 @@ cdef class GiacMethods_base: Help for tree_height: tree_height(Graph(T),Vrtx(r)) Returns the height of the tree graph T with r as the root node. - See also: 1/ is_tree 2/ random_tree + See also: 1/ is_tree 2/ random_tree Ex1:tree_height(graph(%{[1,2],[2,3],[2,4],[4,5]%}),1) - + ''' return GiacMethods['tree_height'](self,*args) @@ -17481,9 +17481,9 @@ cdef class GiacMethods_base: Help for tri: tri(Expr(x)) Returns the value of the triangle function at x. - See also: 1/ rect 2/ Heaviside + See also: 1/ rect 2/ Heaviside Ex1:tri(x-1) - + ''' return GiacMethods['tri'](self,*args) @@ -17492,11 +17492,11 @@ cdef class GiacMethods_base: Help for triangle: triangle((Pnt or Cplx),(Pnt or Cplx),(Pnt or Cplx)) triangle(A,B,C) draws the triangle ABC. - See also: 1/ equilateral_triangle 2/ isosceles_triangle 3/ right_triangle + See also: 1/ equilateral_triangle 2/ isosceles_triangle 3/ right_triangle Ex1:triangle(point(1+i),1,0) Ex2:triangle(0,1,1+i) Ex3:triangle(point(0,0,0),point(3,3,3),point(0,3,3)) - + ''' return GiacMethods['triangle'](self,*args) @@ -17509,7 +17509,7 @@ cdef class GiacMethods_base: Ex2:triangle_paper(1,pi/3,sqrt(3)/2,x=-1..4,y=-2..2) Ex3:triangle_paper(papier_triangule(1,pi/3,sqrt(3)/2,x=-2..6,y=-4*sqrt(3)..4*sqrt(3))) Ex4:triangle_paper(0.5,3*pi/4,0.5) - + ''' return GiacMethods['triangle_paper'](self,*args) @@ -17518,12 +17518,12 @@ cdef class GiacMethods_base: Help for triangle_plein: triangle_plein(Real(a),[Real(b)],[Real(t)]) Draws a full direct triangle with sides a,b and with angle t, from the turtle position (by default t=90 or (b=a and t=60)). - See also: 1/ rectangle_plein + See also: 1/ rectangle_plein Ex1: triangle_plein 30 Ex2:triangle_plein(30) Ex3:triangle_plein(30,40) Ex4:triangle_plein(30,40,60) - + ''' return GiacMethods['triangle_plein'](self,*args) @@ -17532,10 +17532,10 @@ cdef class GiacMethods_base: Help for triangle_point: triangle_point(Opt) Option of the display command for a point. - See also: 1/ display + See also: 1/ display Ex1: F:=display(point(2+1.5*i),point_point) Ex2: F:=display(point(2+1.5*i),rhombus_point) - + ''' return GiacMethods['triangle_point'](self,*args) @@ -17544,9 +17544,9 @@ cdef class GiacMethods_base: Help for triangle_window: triangle_window(Lst,[Intg(d)],[Interval(n1..n2)]) Applies the triangular windowing function with parameter d in {-1,0,1} (by default L=0) to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ bartlett_hann_window 13/ tukey_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ bartlett_hann_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(triangle_window(randvector(1000,0..1),1)) - + ''' return GiacMethods['triangle_window'](self,*args) @@ -17555,9 +17555,9 @@ cdef class GiacMethods_base: Help for trig2exp: trig2exp(Expr) Replaces in the argument the trigonometric functions by complex exponentials without linearisation. - See also: 1/ exp2trig 2/ atrig2ln + See also: 1/ exp2trig 2/ atrig2ln Ex1:trig2exp(sin(x)) - + ''' return GiacMethods['trig2exp'](self,*args) @@ -17566,9 +17566,9 @@ cdef class GiacMethods_base: Help for trigcos: trigcos(Expr) Simplifies the argument with the formulas sin(x)^2+cos(x)^2=1 and tan(x)=sin(x)/cos(x) privileging cosine. - See also: 1/ trigsin 2/ trigtan + See also: 1/ trigsin 2/ trigtan Ex1:trigcos(sin(x)^4+sin(x)^2) - + ''' return GiacMethods['trigcos'](self,*args) @@ -17577,9 +17577,9 @@ cdef class GiacMethods_base: Help for trigexpand: trigexpand(Expr) Expands trigonometric functions. - See also: 1/ texpand 2/ lnexpand 3/ expexpand + See also: 1/ texpand 2/ lnexpand 3/ expexpand Ex1:trigexpand(sin(3*x)) - + ''' return GiacMethods['trigexpand'](self,*args) @@ -17588,10 +17588,10 @@ cdef class GiacMethods_base: Help for triginterp: triginterp(List,Var=xmin..xmax) Returns a trigonometric polynomial interpolation (with respect to variable x) of the points with ordinate given in list y and the abscissa equally spaced between a and b. - See also: 1/ lagrange 2/ thiele + See also: 1/ lagrange 2/ thiele Ex1:triginterp([11,10,17,24,32,26,23,19],x=0..21) Ex2:triginterp([11,10,17,24,32,26,23,19],0,21,x) - + ''' return GiacMethods['triginterp'](self,*args) @@ -17600,9 +17600,9 @@ cdef class GiacMethods_base: Help for trigsimplify: trigsimplify(Expr) Simplifies a trigonometric expression. - See also: 1/ simplify + See also: 1/ simplify Ex1:trigsimplify(3*sin(x)-4*sin(x)^3) - + ''' return GiacMethods['trigsimplify'](self,*args) @@ -17611,9 +17611,9 @@ cdef class GiacMethods_base: Help for trigsin: trigsin(Expr) Simplifies the argument with the formulas sin(x)^2+cos(x)^2=1 and tan(x)=sin(x)/cos(x) privileging sine. - See also: 1/ trigcos 2/ trigtan + See also: 1/ trigcos 2/ trigtan Ex1:trigsin(cos(x)^4+sin(x)^2) - + ''' return GiacMethods['trigsin'](self,*args) @@ -17622,9 +17622,9 @@ cdef class GiacMethods_base: Help for trigtan: trigtan(Expr) Simplifies the argument with the formulas sin(x)^2+cos(x)^2=1 and tan(x)=sin(x)/cos(x) privileging tangent. - See also: 1/ trigsin 2/ trigcos + See also: 1/ trigsin 2/ trigcos Ex1:trigtan(cos(x)^4+sin(x)^2) - + ''' return GiacMethods['trigtan'](self,*args) @@ -17633,9 +17633,9 @@ cdef class GiacMethods_base: Help for trn: trn(Mtrx) Returns the adjoint matrix of A =tran(conj(A)). - See also: 1/ tran 2/ conj + See also: 1/ tran 2/ conj Ex1:trn([[1,2+i],[3,4]]) - + ''' return GiacMethods['trn'](self,*args) @@ -17644,9 +17644,9 @@ cdef class GiacMethods_base: Help for true: true() Boolean equal to true or 1. - See also: 1/ false + See also: 1/ false Ex1: a:=true - + ''' return GiacMethods['true'](self,*args) @@ -17655,13 +17655,13 @@ cdef class GiacMethods_base: Help for trunc: trunc(Real||LstReal,Int(n)) Truncates value to n decimal places (by default n=0). Accepts complex numbers.(type=DOM_COMPLEX or DOM_FLOAT). - See also: 1/ fPart 2/ floor 3/ iPart + See also: 1/ fPart 2/ floor 3/ iPart Ex1:trunc(4.3) Ex2:trunc(sqrt(2),3) Ex3:trunc([4.3333,sqrt(2)]) Ex4:trunc([4.3333,sqrt(2)],2) Ex5:trunc(sqrt(2)+i*sqrt(5),4) - + ''' return GiacMethods['trunc'](self,*args) @@ -17670,9 +17670,9 @@ cdef class GiacMethods_base: Help for truncate: truncate(Poly(P),Intg(n)) Truncates the polynomial P at order n. - See also: 1/ series + See also: 1/ series Ex1:truncate((x^2+x)^2,3) - + ''' return GiacMethods['truncate'](self,*args) @@ -17681,9 +17681,9 @@ cdef class GiacMethods_base: Help for truncate_graph: truncate_graph(Graph(G)) Returns the graph obtained by truncating the biconnected planar graph G. - See also: 1/ is_biconnected 2/ is_planar 3/ plane_dual + See also: 1/ is_biconnected 2/ is_planar 3/ plane_dual Ex1:truncate_graph(graph("tetrahedron")) - + ''' return GiacMethods['truncate_graph'](self,*args) @@ -17692,9 +17692,9 @@ cdef class GiacMethods_base: Help for tsimplify: tsimplify(Expr) Lowers the number of non rational variables. - See also: 1/ simplify + See also: 1/ simplify Ex1:tsimplify(exp(2*x)+exp(x)) - + ''' return GiacMethods['tsimplify'](self,*args) @@ -17703,9 +17703,9 @@ cdef class GiacMethods_base: Help for tuer: tuer(NULL) Stop step-by-step execution of a program (with debug). - See also: 1/ + See also: 1/ Ex1:tuer() - + ''' return GiacMethods['tuer'](self,*args) @@ -17714,9 +17714,9 @@ cdef class GiacMethods_base: Help for tukey_window: tukey_window(Lst,[Real(a)],[Interval(n1..n2)]) Applies the Tukey windowing function with parameter a in [0,1] (by default a=0.5) to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ bartlett_hann_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ bartlett_hann_window 14/ welch_window Ex1: scatterplot(tukey_window(randvector(1000,0..1),0.4)) - + ''' return GiacMethods['tukey_window'](self,*args) @@ -17725,10 +17725,10 @@ cdef class GiacMethods_base: Help for tutte_polynomial: tutte_polynomial(Graph(G),[Var(x),Var(y)]) Returns the Tutte polynomial [or its value at point (x,y)] of undirected graph G. If G is weighted, all weights must be positive integers and are interpreted as edge multiplicities. - See also: 1/ chromatic_polynomial 2/ flow_polynomial 3/ reliability_polynomial 4/ delete_edge 5/ contract_edge + See also: 1/ chromatic_polynomial 2/ flow_polynomial 3/ reliability_polynomial 4/ delete_edge 5/ contract_edge Ex1:tutte_polynomial(graph("tetrahedron")) Ex2:tutte_polynomial(graph("tetrahedron"),1,1) - + ''' return GiacMethods['tutte_polynomial'](self,*args) @@ -17737,9 +17737,9 @@ cdef class GiacMethods_base: Help for two_edge_connected_components: two_edge_connected_components(Graph(G)) Returns the list of two-edge-connected components of undirected graph G, each of them represented by the list of its vertices. - See also: 1/ is_two_edge_connected 2/ connected_components + See also: 1/ is_two_edge_connected 2/ connected_components Ex1:two_edge_connected_components(graph(trail(1,2,3,4,5,3,1),trail(5,6,7,8,6))) - + ''' return GiacMethods['two_edge_connected_components'](self,*args) @@ -17748,9 +17748,9 @@ cdef class GiacMethods_base: Help for ufactor: ufactor(Unit,Unit) Factors a unit in a unit object. - See also: 1/ convert 2/ mksa 3/ usimplify + See also: 1/ convert 2/ mksa 3/ usimplify Ex1:ufactor(100_C,1_A) - + ''' return GiacMethods['ufactor'](self,*args) @@ -17759,10 +17759,10 @@ cdef class GiacMethods_base: Help for ugamma: ugamma(Real(a),Real(x),[1]) Calculates ugamma function at a point (a,x):if a and x>=0 ugamma(a,x)=int(e^{-t}*t^{a-1},t=x..inf),(ugamma(a,x)+igamma(a,x)=Gamma(a)). - See also: 1/ Psi 2/ Beta 3/ Gamma 4/ igamma + See also: 1/ Psi 2/ Beta 3/ Gamma 4/ igamma Ex1:ugamma(5.0,2.0) Ex2:ugamma(-5.1,2.1) - + ''' return GiacMethods['ugamma'](self,*args) @@ -17771,10 +17771,10 @@ cdef class GiacMethods_base: Help for unapply: unapply(Expr,Var) Returns a function defined by an expression. - See also: 1/ apply + See also: 1/ apply Ex1:unapply(2*x^2,x) Ex2: f(x):=x*exp(x);g:=unapply(diff(f(x),x),x) - + ''' return GiacMethods['unapply'](self,*args) @@ -17783,10 +17783,10 @@ cdef class GiacMethods_base: Help for unarchive: unarchive(Str(namefich),Seq(Var)) Reads the value of a variable or of a list of variables which are in the file given as argument (file created with archive). - See also: 1/ archive 2/ Archive 3/ Unarchiv + See also: 1/ archive 2/ Archive 3/ Unarchiv Ex1:unarchive("toto") Ex2:unarchive("aa.txt") - + ''' return GiacMethods['unarchive'](self,*args) @@ -17795,9 +17795,9 @@ cdef class GiacMethods_base: Help for underlying_graph: underlying_graph(Graph(G)) Returns the graph obtained by stripping directions and weights from arcs (pairs of arcs connecting the same vertices are merged to a single edge). - See also: 1/ is_directed 2/ is_weighted 3/ make_directed 4/ make_weighted + See also: 1/ is_directed 2/ is_weighted 3/ make_directed 4/ make_weighted Ex1:underlying_graph(digraph(trail(1,2,3,4,1))) - + ''' return GiacMethods['underlying_graph'](self,*args) @@ -17806,13 +17806,13 @@ cdef class GiacMethods_base: Help for unfactored: unfactored(Opt.) Option of the plotimplicit command. - See also: 1/ plotimplicit + See also: 1/ plotimplicit Ex1: plotimplicit(x^2+y^2-1,x,y,unfactored) Ex2: plotimplicit(x^2+y^2-1,[x,y],unfactored) Ex3: plotimplicit(x^2+y^2+z^2-1,x,y,z,xstep=0.2,ystep=0.2,zstep=0.2,unfactored) Ex4: plotimplicit(x^2+y^2+z^2-1,[x,y,z],xstep=0.2,ystep=0.2,zstep=0.2,unfactored) Ex5: plotimplicit(x^2+y^2+z^2-1,x=0..1,y=0..1,z=0..1,xstep=0.2,ystep=0.2,zstep=0.2,unfactored) - + ''' return GiacMethods['unfactored'](self,*args) @@ -17821,12 +17821,12 @@ cdef class GiacMethods_base: Help for uniform: uniform(Real(a),Real(b),Real(x)) Returns the probability density at x of the uniform law on [a,b]. - See also: 1/ uniform_cdf 2/ uniform_icdf 3/ randvector 4/ ranm + See also: 1/ uniform_cdf 2/ uniform_icdf 3/ randvector 4/ ranm Ex1:uniform(2,5,4) Ex2:uniform(1.2,3.5,3) Ex3: randvector(3,uniform,1.2,3.5) Ex4: ranm(4,3,uniform,1.2,3.5) - + ''' return GiacMethods['uniform'](self,*args) @@ -17835,10 +17835,10 @@ cdef class GiacMethods_base: Help for uniform_cdf: uniform_cdf(Real(a),Real(b),Real(x0),[Real(y0)]) Returns the probability that a uniform random variable on [a,b] is less than x0 (or between x0 and y0). - See also: 1/ uniformd 2/ uniform_icdf + See also: 1/ uniformd 2/ uniform_icdf Ex1:uniform_cdf(3.2,5.7,4.4) Ex2:uniform_cdf(3.2,5.7,4.4,5.4) - + ''' return GiacMethods['uniform_cdf'](self,*args) @@ -17847,10 +17847,10 @@ cdef class GiacMethods_base: Help for uniform_icdf: uniform_icdf(Real(a),Real(b),Real(p)) Returns h such that the probability that a uniform random variable on [a,b] is less than h is p (0<=p<=1). - See also: 1/ uniform_cdf 2/ uniformd + See also: 1/ uniform_cdf 2/ uniformd Ex1:uniform_icdf(4.2,10.3,0.95) Ex2:uniform_icdf(3.2,5.7,0.48) - + ''' return GiacMethods['uniform_icdf'](self,*args) @@ -17859,12 +17859,12 @@ cdef class GiacMethods_base: Help for uniformd: uniformd(Real(a),Real(b),Real(x)) Returns the probability density at x of the uniform law on [a,b]. - See also: 1/ uniform_cdf 2/ uniform_icdf 3/ randvector 4/ ranm + See also: 1/ uniform_cdf 2/ uniform_icdf 3/ randvector 4/ ranm Ex1:uniformd(2,5,4) Ex2:uniformd(1.2,3.5,3) Ex3: randvector(3,uniform,1.2,3.5) Ex4: ranm(4,3,uniform,1.2,3.5) - + ''' return GiacMethods['uniformd'](self,*args) @@ -17873,10 +17873,10 @@ cdef class GiacMethods_base: Help for uniformd_cdf: uniformd_cdf(Real(a),Real(b),Real(x0),[Real(y0)]) Returns the probability that a uniform random variable on [a,b] is less than x0 (or between x0 and y0). - See also: 1/ uniformd 2/ uniform_icdf + See also: 1/ uniformd 2/ uniform_icdf Ex1:uniformd_cdf(3.2,5.7,4.4) Ex2:uniformd_cdf(3.2,5.7,4.4,5.4) - + ''' return GiacMethods['uniformd_cdf'](self,*args) @@ -17885,10 +17885,10 @@ cdef class GiacMethods_base: Help for uniformd_icdf: uniformd_icdf(Real(a),Real(b),Real(p)) Returns h such that the probability that a uniform random variable on [a,b] is less than h is p (0<=p<=1). - See also: 1/ uniform_cdf 2/ uniformd + See also: 1/ uniform_cdf 2/ uniformd Ex1:uniformd_icdf(4.2,10.3,0.95) Ex2:uniformd_icdf(3.2,5.7,0.48) - + ''' return GiacMethods['uniformd_icdf'](self,*args) @@ -17897,12 +17897,12 @@ cdef class GiacMethods_base: Help for unitV: unitV(Lst||Cplx) Returns the vector divided by its l2norm. It is also an option for plotfield. - See also: 1/ l2norm + See also: 1/ l2norm Ex1:unitV(3+4*i) Ex2:unitV([3,4]) Ex3: fieldplot(-t*y,[t,y],normalize) Ex4: fieldplot(-t*y,[t,y],normalize,xstep=0.5,ystep=0.5) - + ''' return GiacMethods['unitV'](self,*args) @@ -17911,9 +17911,9 @@ cdef class GiacMethods_base: Help for unquote: unquote(Expr) Evaluates a quoted expression (for example purge(c);a:=c;unquote(a):=3; put 3 in the variables a and c). - See also: 1/ quote + See also: 1/ quote Ex1:unquote(a) - + ''' return GiacMethods['unquote'](self,*args) @@ -17922,10 +17922,10 @@ cdef class GiacMethods_base: Help for upper: upper(Mtrx||Strng) Returns the upper triangular matrix (over the diagonal, included) or writes a string in uppercase. - See also: 1/ diag 2/ lower + See also: 1/ diag 2/ lower Ex1:upper([[1,2,3],[4,5,6],[7,8,9]]) Ex2:upper("hello") - + ''' return GiacMethods['upper'](self,*args) @@ -17934,10 +17934,10 @@ cdef class GiacMethods_base: Help for user_operator: user_operator(Str(R),Fnc(f),Opt(Binary||Unary||Delete)) Defines a binary operator and returns 0 (failure) or 1(success). - See also: 1/ + See also: 1/ Ex1:user_operator("R",(x,y)->x*y+x+y,Binary) Ex2:user_operator("R",(x,y)->x*y+x+y,Delete) - + ''' return GiacMethods['user_operator'](self,*args) @@ -17946,9 +17946,9 @@ cdef class GiacMethods_base: Help for usimplify: usimplify(Unit) Simplifies a unit in a unit object. - See also: 1/ convert 2/ mksa 3/ ufactor + See also: 1/ convert 2/ mksa 3/ ufactor Ex1:usimplify(100_(W*s)) - + ''' return GiacMethods['usimplify'](self,*args) @@ -17957,12 +17957,12 @@ cdef class GiacMethods_base: Help for valuation: valuation(Poly(P)) Returns the valuation (degree of the term of lowest degree) of the polynomial P. - See also: 1/ degree 2/ tcoeff + See also: 1/ degree 2/ tcoeff Ex1:valuation(x^4+x^3) Ex2:valuation([1,1,0,0,0]) Ex3:valuation(x^5+3*x^2) Ex4:valuation([5,0,0,3,0,0]) - + ''' return GiacMethods['valuation'](self,*args) @@ -17971,9 +17971,9 @@ cdef class GiacMethods_base: Help for vandermonde: vandermonde(Vect(V)) Returns the Vandermonde matrix=[V^0,V^1,..]. - See also: 1/ det + See also: 1/ det Ex1:vandermonde([1,2,a]) - + ''' return GiacMethods['vandermonde'](self,*args) @@ -17982,10 +17982,10 @@ cdef class GiacMethods_base: Help for variables_are_files: variables_are_files(:=Intg(0 or 1)) Pseudo-variable to specify if you want to save the variables as file "nameofthevariable.cas". - See also: 1/ cas_setup + See also: 1/ cas_setup Ex1: variables_are_files:=1 Ex2: variables_are_files:=0 - + ''' return GiacMethods['variables_are_files'](self,*args) @@ -17994,11 +17994,11 @@ cdef class GiacMethods_base: Help for variance: variance(Lst||Mtrx,[Lst]) Returns the variance of a list with the second argument as weights or the list of variances of the columns of a matrix. - See also: 1/ stddev 2/ mean + See also: 1/ stddev 2/ mean Ex1:variance([3,4,2]) Ex2:variance([1,2,3],[1,2,1]) Ex3:variance([[1,2,3],[5,6,7]]) - + ''' return GiacMethods['variance'](self,*args) @@ -18007,9 +18007,9 @@ cdef class GiacMethods_base: Help for version: version(NULL) Returns the giac version number; for example, you are using : giac 0.4.0 - See also: 1/ + See also: 1/ Ex1:version() - + ''' return GiacMethods['version'](self,*args) @@ -18018,11 +18018,11 @@ cdef class GiacMethods_base: Help for vertex_connectivity: vertex_connectivity(Graph(G)) Returns the largest integer k such that undirected connected graph G remains connected when fewer than k vertices are removed. - See also: 1/ edge_connectivity 2/ is_connected + See also: 1/ edge_connectivity 2/ is_connected Ex1:vertex_connectivity(graph("petersen")) Ex2:vertex_connectivity(graph("clebsch")) Ex3:vertex_connectivity(complete_graph(5)) - + ''' return GiacMethods['vertex_connectivity'](self,*args) @@ -18031,9 +18031,9 @@ cdef class GiacMethods_base: Help for vertex_degree: vertex_degree(Graph(G),Vrtx(v)) Returns the degree of the vertex v in G (i.e. the number of edges incident to v). - See also: 1/ degree_sequence 2/ is_regular 3/ maximum_degree 4/ minimum_degree 5/ vertex_in_degree 6/ vertex_out_degree + See also: 1/ degree_sequence 2/ is_regular 3/ maximum_degree 4/ minimum_degree 5/ vertex_in_degree 6/ vertex_out_degree Ex1:vertex_degree(digraph(trail(1,2,3,4,2)),2) - + ''' return GiacMethods['vertex_degree'](self,*args) @@ -18042,10 +18042,10 @@ cdef class GiacMethods_base: Help for vertex_distance: vertex_distance(Graph(G),Vrtx(s),Vrtx(t)||Lst(T)) Returns the number of edges in the shortest path from vertex s to vertex t in G. If such path does not exist, returns +infinity. For vector T of vertices from G returns the list of distances from s to each vertex t in T. - See also: 1/ allpairs_distance 2/ graph_diameter 3/ dijkstra 4/ shortest_path + See also: 1/ allpairs_distance 2/ graph_diameter 3/ dijkstra 4/ shortest_path Ex1:vertex_distance(graph("petersen"),1,4) Ex2:vertex_distance(graph("petersen"),1,[2,4]) - + ''' return GiacMethods['vertex_distance'](self,*args) @@ -18054,9 +18054,9 @@ cdef class GiacMethods_base: Help for vertex_in_degree: vertex_in_degree(Graph(G),Vrtx(v)) Returns the number of arcs in G entering the vertex v. - See also: 1/ degree_sequence 2/ is_regular 3/ maximum_degree 4/ minimum_degree 5/ vertex_degree 6/ vertex_out_degree + See also: 1/ degree_sequence 2/ is_regular 3/ maximum_degree 4/ minimum_degree 5/ vertex_degree 6/ vertex_out_degree Ex1:vertex_in_degree(digraph(trail(1,2,3,4,2)),2) - + ''' return GiacMethods['vertex_in_degree'](self,*args) @@ -18065,9 +18065,9 @@ cdef class GiacMethods_base: Help for vertex_out_degree: vertex_out_degree(Graph(G),Vrtx(v)) Returns the number of arcs in G emanating from the vertex v. - See also: 1/ degree_sequence 2/ is_regular 3/ maximum_degree 4/ minimum_degree 5/ vertex_degree 6/ vertex_in_degree + See also: 1/ degree_sequence 2/ is_regular 3/ maximum_degree 4/ minimum_degree 5/ vertex_degree 6/ vertex_in_degree Ex1:vertex_out_degree(digraph(trail(1,2,3,4,2)),2) - + ''' return GiacMethods['vertex_out_degree'](self,*args) @@ -18076,11 +18076,11 @@ cdef class GiacMethods_base: Help for vertices: vertices(Polygon or Polyedr(P)) Returns the list of the vertices of the polygon or polyhedron P. - See also: 1/ isosceles_triangle 2/ polyhedron + See also: 1/ isosceles_triangle 2/ polyhedron Ex1:vertices(isosceles_triangle(0,1,pi/4)) Ex2:vertices(polyhedron([0,0,0],[0,5,0],[0,0,5],[1,2,6])) Ex3:vertices(isosceles_triangle(0,1,pi/4))[2] - + ''' return GiacMethods['vertices'](self,*args) @@ -18089,11 +18089,11 @@ cdef class GiacMethods_base: Help for vertices_abc: vertices_abc(Polygon or Polyedr(P)) Returns the list of the vertices of the polygon or polyhedron P. - See also: 1/ isosceles_triangle 2/ polyhedron + See also: 1/ isosceles_triangle 2/ polyhedron Ex1:vertices_abc(isosceles_triangle(0,1,pi/4)) Ex2:vertices_abc(polyhedron([0,0,0],[0,5,0],[0,0,5],[1,2,6])) Ex3:vertices_abc(isosceles_triangle(0,1,pi/4))[2] - + ''' return GiacMethods['vertices_abc'](self,*args) @@ -18102,11 +18102,11 @@ cdef class GiacMethods_base: Help for vertices_abca: vertices_abca(Polygon or Polyedr(P)) Returns the closed list [A,B,...A] of the vertices of the polygon or polyhedron P. - See also: 1/ isosceles_triangle 2/ polyhedron + See also: 1/ isosceles_triangle 2/ polyhedron Ex1:vertices_abca(isosceles_triangle(0,1,pi/4)) Ex2:vertices_abca(polyhedron([0,0,0],[0,5,0],[0,0,5],[1,2,6])) Ex3:vertices_abca(isosceles_triangle(0,1,pi/4))[2] - + ''' return GiacMethods['vertices_abca'](self,*args) @@ -18115,9 +18115,9 @@ cdef class GiacMethods_base: Help for vpotential: vpotential(Vect(V),LstVar) Returns U such that curl(U)=V. - See also: 1/ curl 2/ potential + See also: 1/ curl 2/ potential Ex1:vpotential([2*x*y+3,x^2-4*z,-2*y*z],[x,y,z]) - + ''' return GiacMethods['vpotential'](self,*args) @@ -18126,9 +18126,9 @@ cdef class GiacMethods_base: Help for web_graph: web_graph(Intg(a),Intg(b)) Returns a web graph on a*b vertices, where a>=3 and b>=2. - See also: 1/ prism_graph 2/ wheel_graph + See also: 1/ prism_graph 2/ wheel_graph Ex1:web_graph(5,3) - + ''' return GiacMethods['web_graph'](self,*args) @@ -18137,11 +18137,11 @@ cdef class GiacMethods_base: Help for weibull: weibull(Real(k),Real(lambda),Real(theta),Real(x)) Returns the density of probability at x of the Weibull law with parameters k, lambda, theta (by default theta=0). - See also: 1/ weibull_cdf 2/ weibull_icdf + See also: 1/ weibull_cdf 2/ weibull_icdf Ex1:weibull(2.1,1.2,1.3) Ex2:weibull(2.1,1.2,0.0,1.3) Ex3:weibull(2.1,1.2,0.5,1.8) - + ''' return GiacMethods['weibull'](self,*args) @@ -18150,13 +18150,13 @@ cdef class GiacMethods_base: Help for weibull_cdf: weibull_cdf(Real(k),Real(lambda),Real(theta),Real(x0)) Returns the probability that a Weibull random variable of parameters k, lambda, theta is less than x0. - See also: 1/ weibulld 2/ weibull_icdf + See also: 1/ weibulld 2/ weibull_icdf Ex1:weibull_cdf(2.1,1.2,1.9) Ex2:weibull_cdf(2.1,1.2,0.0,1.9) Ex3:weibull_cdf(2.2,1.5,0.4,1.9) Ex4:weibull_cdf(2.2,1.5,0.4,1.2) Ex5:weibull_cdf(2.2,1.5,0.4,1.2,1.9) - + ''' return GiacMethods['weibull_cdf'](self,*args) @@ -18165,10 +18165,10 @@ cdef class GiacMethods_base: Help for weibull_icdf: weibull_icdf(Real(k),Real(lambda),Real(theta),Real(p)) Returns h such that the probability that a Weibull random variable of parameters k, lambda, theta is less than h is p (0<=p<=1). - See also: 1/ weibull_cdf 2/ weibull + See also: 1/ weibull_cdf 2/ weibull Ex1:weibull_icdf(4.2,1.3,0.0,0.95) Ex2:weibull_icdf(2.2,1.5,0.4,0.632) - + ''' return GiacMethods['weibull_icdf'](self,*args) @@ -18177,11 +18177,11 @@ cdef class GiacMethods_base: Help for weibulld: weibulld(Real(k),Real(lambda),Real(theta),Real(x)) Returns the density of probability at x of the Weibull law with parameters k, lambda, theta (by default theta=0). - See also: 1/ weibull_cdf 2/ weibull_icdf + See also: 1/ weibull_cdf 2/ weibull_icdf Ex1:weibulld(2.1,1.2,1.3) Ex2:weibulld(2.1,1.2,0.0,1.3) Ex3:weibulld(2.1,1.2,0.5,1.8) - + ''' return GiacMethods['weibulld'](self,*args) @@ -18190,13 +18190,13 @@ cdef class GiacMethods_base: Help for weibulld_cdf: weibulld_cdf(Real(k),Real(lambda),Real(theta),Real(x0)) Returns the probability that a Weibull random variable of parameters k, lambda, theta is less than x0. - See also: 1/ weibulld 2/ weibull_icdf + See also: 1/ weibulld 2/ weibull_icdf Ex1:weibulld_cdf(2.1,1.2,1.9) Ex2:weibulld_cdf(2.1,1.2,0.0,1.9) Ex3:weibulld_cdf(2.2,1.5,0.4,1.9) Ex4:weibulld_cdf(2.2,1.5,0.4,1.2) Ex5:weibulld_cdf(2.2,1.5,0.4,1.2,1.9) - + ''' return GiacMethods['weibulld_cdf'](self,*args) @@ -18205,10 +18205,10 @@ cdef class GiacMethods_base: Help for weibulld_icdf: weibulld_icdf(Real(k),Real(lambda),Real(theta),Real(p)) Returns h such that the probability that a Weibull random variable of parameters k, lambda, theta is less than h is p (0<=p<=1). - See also: 1/ weibull_cdf 2/ weibull + See also: 1/ weibull_cdf 2/ weibull Ex1:weibulld_icdf(4.2,1.3,0.0,0.95) Ex2:weibulld_icdf(2.2,1.5,0.4,0.632) - + ''' return GiacMethods['weibulld_icdf'](self,*args) @@ -18217,10 +18217,10 @@ cdef class GiacMethods_base: Help for weibullvariate: weibullvariate(Real(a),Real(b)) Returns a random real according to the Weibull distribution with parameters a>0 and b>0. - See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector + See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector Ex1:weibullvariate(1,2) Ex2:weibullvariate(1.5,4) - + ''' return GiacMethods['weibullvariate'](self,*args) @@ -18229,9 +18229,9 @@ cdef class GiacMethods_base: Help for weight_matrix: weight_matrix(Graph(G)) Returns the weight matrix of G. - See also: 1/ set_edge_weight 2/ get_edge_weights 3/ is_weighted 4/ make_weighted 5/ assign_edge_weights + See also: 1/ set_edge_weight 2/ get_edge_weights 3/ is_weighted 4/ make_weighted 5/ assign_edge_weights Ex1:weight_matrix(graph(%{[[1,2],2],[[2,3],1]%}) - + ''' return GiacMethods['weight_matrix'](self,*args) @@ -18240,8 +18240,8 @@ cdef class GiacMethods_base: Help for weighted: weighted(Opt) Option for graph and digraph commands. - See also: 1/ directed 2/ graph 3/ digraph - + See also: 1/ directed 2/ graph 3/ digraph + ''' return GiacMethods['weighted'](self,*args) @@ -18250,8 +18250,8 @@ cdef class GiacMethods_base: Help for weights: weights(Opt) Option for the edges command. - See also: 1/ edges - + See also: 1/ edges + ''' return GiacMethods['weights'](self,*args) @@ -18260,9 +18260,9 @@ cdef class GiacMethods_base: Help for welch_window: welch_window(Lst,[Interval(n1..n2)]) Applies the Welch windowing function to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ bartlett_hann_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ bartlett_hann_window Ex1: scatterplot(welch_window(randvector(1000,0..1))) - + ''' return GiacMethods['welch_window'](self,*args) @@ -18271,9 +18271,9 @@ cdef class GiacMethods_base: Help for wheel_graph: wheel_graph(Intg(n)) Returns a wheel graph with n+1 vertices. - See also: 1/ star_graph 2/ web_graph + See also: 1/ star_graph 2/ web_graph Ex1:wheel_graph(5) - + ''' return GiacMethods['wheel_graph'](self,*args) @@ -18282,11 +18282,11 @@ cdef class GiacMethods_base: Help for widget_size: widget_size(Intg(n)) Changes the character sizes of the display on the xcas screen (size=n) and with more parameters define the general configuration. - See also: 1/ cas_setup + See also: 1/ cas_setup Ex1:widget_size(20) Ex2:widget_size(8) Ex3:widget_size(20,58,49,697,563,1,1,0) - + ''' return GiacMethods['widget_size'](self,*args) @@ -18295,10 +18295,10 @@ cdef class GiacMethods_base: Help for wilcoxonp: wilcoxonp(Intg,[Intg]) Distribution of the Wilcoxon or Mann-Whitney test for one or two samples. - See also: 1/ wilcoxont 2/ wilcoxons + See also: 1/ wilcoxont 2/ wilcoxons Ex1:wilcoxonp(4) Ex2:wilcoxonp(7,5) - + ''' return GiacMethods['wilcoxonp'](self,*args) @@ -18307,10 +18307,10 @@ cdef class GiacMethods_base: Help for wilcoxons: wilcoxons(List,List || Real) Rank statistic of Wilcoxon or Mann-Whitney for 1 sample and one median or 2 samples. - See also: 1/ wilcoxont 2/ wilcoxonp + See also: 1/ wilcoxont 2/ wilcoxonp Ex1:wilcoxons([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , [2, 6, 10, 11, 13, 14, 15, 18, 19, 20]) Ex2:wilcoxons([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , 10) - + ''' return GiacMethods['wilcoxons'](self,*args) @@ -18319,12 +18319,12 @@ cdef class GiacMethods_base: Help for wilcoxont: wilcoxont(List,List || Real,[Func],[Real]) Wilcoxon or Mann-Whitney test for one sample and a median or 2 samples. - See also: 1/ wilcoxonp 2/ wilcoxons 3/ studentt 4/ normalt + See also: 1/ wilcoxonp 2/ wilcoxons 3/ studentt 4/ normalt Ex1:wilcoxont([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , [2, 6, 10, 11, 13, 14, 15, 18, 19, 20]) Ex2:wilcoxont([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , [2, 6, 10, 11, 13, 14, 15, 18, 19, 20],0.01) Ex3:wilcoxont([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , 10,'>') Ex4:wilcoxont([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , 10,'>',0.05) - + ''' return GiacMethods['wilcoxont'](self,*args) @@ -18333,11 +18333,11 @@ cdef class GiacMethods_base: Help for writergb: writergb(Str(s),Lst) Write a PNG picture file named s either from a list [[number_channels,width,height],red,green,alpha,blue] where red,green,alpha,blue are matrices of pixels color or from a matrix of grey pixels or from 3 matrices of RGB colored pixels. - See also: 1/ readrgb + See also: 1/ readrgb Ex1:writergb("image.png",[[255,0],[0,255]]) Ex2:writergb("image.png",[[255,0],[0,0]],[[0,255],[0,0]],[[0,0],[255,0]]) Ex3: a:=readrgb("rgb_image.png");writergb("brg_image.png",[a[0],a[4],a[1],a[3],a[2]]) - + ''' return GiacMethods['writergb'](self,*args) @@ -18346,10 +18346,10 @@ cdef class GiacMethods_base: Help for writewav: writewav(Str(s),Lst(l)) Writes a WAV sound file. - See also: 1/ readwav + See also: 1/ readwav Ex1:writewav("la.wav",2^14*(sin(2*pi*440*soundsec(1)))) Ex2:writewav("beep.wav",[[1,16,44100,80000],[65000$10000,0$10000,65000$10000,0$10000]]) - + ''' return GiacMethods['writewav'](self,*args) @@ -18358,10 +18358,10 @@ cdef class GiacMethods_base: Help for xcas_mode: xcas_mode(Intg(0) or 1 or 2 or 3) Switches to mode Xcas (0), Maple (1), Mupad (2), TI89 (3). - See also: 1/ python_compat + See also: 1/ python_compat Ex1:xcas_mode(1) Ex2:xcas_mode(0) - + ''' return GiacMethods['xcas_mode'](self,*args) @@ -18370,9 +18370,9 @@ cdef class GiacMethods_base: Help for xml_print: xml_print(Str) Indents a XML code given in a string (pretty print). - See also: 1/ export_mathml + See also: 1/ export_mathml Ex1:xml_print(export_mathml(a+2*b)) - + ''' return GiacMethods['xml_print'](self,*args) @@ -18382,7 +18382,7 @@ cdef class GiacMethods_base: xyztrange(SeqReal) xyztrange puts or erases the axes on the graphic-screen (cf button Cfg). Ex1:xyztrange(-5.0,5.0,-5.0,2.0,-10.0,10.0,-1.0,6.0,-5.0,5.0,-1.2384,2.0,1,0.0,1.0) - + ''' return GiacMethods['xyztrange'](self,*args) @@ -18391,12 +18391,12 @@ cdef class GiacMethods_base: Help for zeros: zeros(Expr,[Var]) Returns the zeros (real or complex according to the mode) of the expression (or the matrix where the lines are the solutions of the system : expression1=0,expression2=0...). - See also: 1/ + See also: 1/ Ex1:zeros(x^2+4) Ex2:zeros(ln(x)^2-4) Ex3:zeros(ln(y)^2-2,y) Ex4:zeros([x^2-1,x^2-y^2],[x,y]) - + ''' return GiacMethods['zeros'](self,*args) @@ -18405,10 +18405,10 @@ cdef class GiacMethods_base: Help for ztrans: ztrans(Expr,[Var],[ZtransVar]) z transform of a sequence. - See also: 1/ invztrans 2/ laplace 3/ invlaplace + See also: 1/ invztrans 2/ laplace 3/ invlaplace Ex1:ztrans(a^x) Ex2:ztrans(a^n,n,z) - + ''' return GiacMethods['ztrans'](self,*args) @@ -18417,10 +18417,10 @@ cdef class GiacMethods_base: Help for type: type(Expr) Returns n in [1..12] that defines the type of the argument. - See also: 1/ DOM_FLOAT 2/ DOM_INT 3/ DOM_COMPLEX 4/ DOM_IDENT 5/ DOM_LIST 6/ DOM_SYMBOLIC 7/ DOM_RAT 8/ DOM_STRING 9/ DOM_FUNC 10/ subtype + See also: 1/ DOM_FLOAT 2/ DOM_INT 3/ DOM_COMPLEX 4/ DOM_IDENT 5/ DOM_LIST 6/ DOM_SYMBOLIC 7/ DOM_RAT 8/ DOM_STRING 9/ DOM_FUNC 10/ subtype Ex1:type("abc") Ex2:type([1,2,3]) - + ''' return GiacMethods['type'](self,*args) @@ -18429,12 +18429,12 @@ cdef class GiacMethods_base: Help for zip: zip(Fnc2d(f),Lst(l1),Lst(l2),[Val(default)]) Returns a list whose j-th entry is f(l1[j],l2[j]): without default value its length is the minimum of the lengths of the two input lists and otherwise the shorter list is padded with the default value. - See also: 1/ + See also: 1/ Ex1:zip('+',[a,b,c,d], [1,2,3,4]) Ex2:zip('+',[a,b,c,d], [1,2,3]) Ex3:zip('+',[a,b,c,d], [1,2,3],5) Ex4:zip(sum,[a,b,c,d], [1,2,3,4]) - + ''' return GiacMethods['zip'](self,*args) diff --git a/src/sage/libs/giac/giac.pyx b/src/sage/libs/giac/giac.pyx index 4e451dba5e7..76053fbe760 100644 --- a/src/sage/libs/giac/giac.pyx +++ b/src/sage/libs/giac/giac.pyx @@ -154,7 +154,9 @@ from sage.ext.stdsage cimport PY_NEW from sage.libs.gmp.mpz cimport mpz_t, mpz_init_set -from sage.rings.all import ZZ, QQ, IntegerModRing +from sage.rings.integer_ring import Z as ZZ +from sage.rings.rational_field import Q as QQ +from sage.rings.finite_rings.integer_mod_ring import IntegerModRing from sage.rings.integer cimport Integer from sage.rings.rational cimport Rational from sage.structure.element cimport Matrix diff --git a/src/sage/libs/lcalc/lcalc_Lfunction.pyx b/src/sage/libs/lcalc/lcalc_Lfunction.pyx index efb738714cc..a59a2207867 100644 --- a/src/sage/libs/lcalc/lcalc_Lfunction.pyx +++ b/src/sage/libs/lcalc/lcalc_Lfunction.pyx @@ -272,7 +272,7 @@ cdef class Lfunction: def find_zeros(self, T1, T2, stepsize): """ - Finds zeros on critical line between ``T1`` and ``T2`` using step size + Finds zeros on critical line between ``T1`` and ``T2`` using step size of stepsize. This function might miss zeros if step size is too large. This function computes the zeros of the L-function by using change in signs of areal valued function whose zeros coincide with diff --git a/src/sage/libs/linkages/padics/API.pxi b/src/sage/libs/linkages/padics/API.pxi index 41db95ef8ae..529fc49a95b 100644 --- a/src/sage/libs/linkages/padics/API.pxi +++ b/src/sage/libs/linkages/padics/API.pxi @@ -201,8 +201,8 @@ cdef inline long cremove(celement out, celement a, long prec, PowComputer_class - ``a`` -- the element whose valuation and unit are desired. - ``prec`` -- a long, used if `a = 0`. - ``prime_pow`` -- the PowComputer for the ring. - - ``reduce_relative`` -- a bint: whether the final result - should be reduced at precision ``prec`` (case ``False``) + - ``reduce_relative`` -- a bint: whether the final result + should be reduced at precision ``prec`` (case ``False``) or ``prec - valuation`` (case ``True``) OUTPUT: diff --git a/src/sage/libs/linkages/padics/Polynomial_shared.pxi b/src/sage/libs/linkages/padics/Polynomial_shared.pxi index 738ab9bf457..495dc6b0848 100644 --- a/src/sage/libs/linkages/padics/Polynomial_shared.pxi +++ b/src/sage/libs/linkages/padics/Polynomial_shared.pxi @@ -128,14 +128,14 @@ cdef inline long cremove(celement out, celement a, long prec, PowComputer_ prime INPUT: - ``out`` -- a ``celement`` to store the unit part - + - ``a`` -- the ``celement`` whose valuation and unit are desired - + - ``prec`` -- a ``long``, the return value if ``a`` is zero - + - ``prime_pow`` -- the ``PowComputer`` for the ring - - ``reduce_relative`` -- a bint: whether the final result + - ``reduce_relative`` -- a bint: whether the final result should be reduced at precision ``prec`` (case ``False``) or ``prec - valuation`` (case ``True``) diff --git a/src/sage/libs/linkages/padics/fmpz_poly_unram.pxi b/src/sage/libs/linkages/padics/fmpz_poly_unram.pxi index 60fb9439388..8b1b80cf0a9 100644 --- a/src/sage/libs/linkages/padics/fmpz_poly_unram.pxi +++ b/src/sage/libs/linkages/padics/fmpz_poly_unram.pxi @@ -194,7 +194,7 @@ cdef inline long cremove(celement out, celement a, long prec, PowComputer_ prime - ``a`` -- the element whose valuation and unit are desired. - ``prec`` -- a long, used if `a = 0`. - ``prime_pow`` -- the PowComputer for the ring. - - ``reduce_relative`` -- a bint: whether the final result + - ``reduce_relative`` -- a bint: whether the final result should be reduced at precision ``prec`` (case ``False``) or ``prec - valuation`` (case ``True``) diff --git a/src/sage/libs/linkages/padics/mpz.pxi b/src/sage/libs/linkages/padics/mpz.pxi index a7200b0c4fa..2844a3934f5 100644 --- a/src/sage/libs/linkages/padics/mpz.pxi +++ b/src/sage/libs/linkages/padics/mpz.pxi @@ -367,7 +367,7 @@ cdef inline int csetone(mpz_t out, PowComputer_ prime_pow) except -1: - ``prime_pow`` -- the PowComputer for the ring. """ mpz_set_ui(out, 1) - + cdef inline int csetzero(mpz_t out, PowComputer_ prime_pow) except -1: """ Sets to 0. @@ -378,7 +378,7 @@ cdef inline int csetzero(mpz_t out, PowComputer_ prime_pow) except -1: - ``prime_pow`` -- the PowComputer for the ring. """ mpz_set_ui(out, 0) - + cdef inline bint cisone(mpz_t out, PowComputer_ prime_pow) except -1: """ Returns whether this element is equal to 1. diff --git a/src/sage/libs/linkages/padics/relaxed/API.pxi b/src/sage/libs/linkages/padics/relaxed/API.pxi index 29a051b808c..4e9ea075bb2 100644 --- a/src/sage/libs/linkages/padics/relaxed/API.pxi +++ b/src/sage/libs/linkages/padics/relaxed/API.pxi @@ -362,7 +362,7 @@ cdef inline void element_get_slice(celement res, celement x, long start, long le .. NOTE:: This function only sets up a pointer to the requested slice - (the slice is not copied). Hence any future modification + (the slice is not copied). Hence any future modification of the slice ``res`` will affect the container ``x``. """ pass diff --git a/src/sage/libs/pari/convert_sage.pyx b/src/sage/libs/pari/convert_sage.pyx index 62fe5185cfb..83b949d004f 100644 --- a/src/sage/libs/pari/convert_sage.pyx +++ b/src/sage/libs/pari/convert_sage.pyx @@ -30,7 +30,9 @@ from sage.ext.stdsage cimport PY_NEW from sage.libs.gmp.mpz cimport mpz_fits_slong_p, mpz_sgn, mpz_get_ui, mpz_set, mpz_set_si, mpz_set_ui from sage.libs.gmp.mpq cimport mpq_denref, mpq_numref from sage.rings.integer cimport smallInteger -from sage.rings.all import RealField, ComplexField, QuadraticField +from sage.rings.real_mpfr import RealField +from sage.rings.complex_mpfr import ComplexField +from sage.rings.number_field.number_field import QuadraticField from sage.matrix.args cimport (MatrixArgs, MA_ENTRIES_SEQ_SEQ, MA_ENTRIES_SEQ_FLAT, MA_ENTRIES_CALLABLE, MA_ENTRIES_UNKNOWN, MA_ENTRIES_SCALAR) diff --git a/src/sage/numerical/backends/cvxopt_backend.pyx b/src/sage/numerical/backends/cvxopt_backend.pyx index 10358c3a8f9..22bdfd20ea6 100644 --- a/src/sage/numerical/backends/cvxopt_backend.pyx +++ b/src/sage/numerical/backends/cvxopt_backend.pyx @@ -137,7 +137,7 @@ cdef class CVXOPTBackend(GenericBackend): This amounts to adding a new column to the matrix. By default, the variable is both positive and real. Variable types are always continuous, and thus the parameters - ``binary``, ``integer``, and ``continuous`` have no effect. + ``binary``, ``integer``, and ``continuous`` have no effect. INPUT: diff --git a/src/sage/numerical/backends/cvxopt_sdp_backend.pyx b/src/sage/numerical/backends/cvxopt_sdp_backend.pyx index c654f7f21a2..bb999559ee2 100644 --- a/src/sage/numerical/backends/cvxopt_sdp_backend.pyx +++ b/src/sage/numerical/backends/cvxopt_sdp_backend.pyx @@ -20,7 +20,7 @@ AUTHORS: #***************************************************************************** from sage.numerical.sdp import SDPSolverException -from sage.matrix.all import Matrix +from sage.matrix.constructor import Matrix from .matrix_sdp_backend cimport MatrixSDPBackend diff --git a/src/sage/numerical/backends/generic_backend.pyx b/src/sage/numerical/backends/generic_backend.pyx index 64d47f7bc2b..1057fb3b519 100644 --- a/src/sage/numerical/backends/generic_backend.pyx +++ b/src/sage/numerical/backends/generic_backend.pyx @@ -1555,7 +1555,7 @@ def default_mip_solver(solver=None): - a string indicating one of the available solvers (see :class:`MixedIntegerLinearProgram`); - - a callable (typically a subclass of + - a callable (typically a subclass of :class:`sage.numerical.backends.generic_backend.GenericBackend`); - ``None`` (default), in which case the current default solver @@ -1759,7 +1759,8 @@ cpdef GenericBackend get_solver(constraint_generation = False, solver = None, ba if base_ring is not None: base_ring = base_ring.fraction_field() - from sage.rings.all import QQ, RDF + from sage.rings.rational_field import Q as QQ + from sage.rings.real_double import RDF if base_ring is QQ: solver = "Ppl" elif solver in ["Interactivelp", "Ppl"] and not base_ring.is_exact(): diff --git a/src/sage/numerical/backends/matrix_sdp_backend.pyx b/src/sage/numerical/backends/matrix_sdp_backend.pyx index 52f5ae602e0..7668c64ecc1 100644 --- a/src/sage/numerical/backends/matrix_sdp_backend.pyx +++ b/src/sage/numerical/backends/matrix_sdp_backend.pyx @@ -20,7 +20,7 @@ other classes implementing solvers. # http://www.gnu.org/licenses/ #***************************************************************************** -from sage.matrix.all import Matrix +from sage.matrix.constructor import Matrix from .generic_sdp_backend cimport GenericSDPBackend cdef class MatrixSDPBackend(GenericSDPBackend): diff --git a/src/sage/numerical/gauss_legendre.pyx b/src/sage/numerical/gauss_legendre.pyx index 0b8dd4361e3..034131d9c22 100644 --- a/src/sage/numerical/gauss_legendre.pyx +++ b/src/sage/numerical/gauss_legendre.pyx @@ -63,7 +63,7 @@ def nodes_uncached(degree, prec): - ``degree`` -- integer. The number of nodes. Must be 3 or even. - - ``prec`` -- integer (minimal value 53). Binary precision with which the + - ``prec`` -- integer (minimal value 53). Binary precision with which the nodes and weights are computed. OUTPUT: @@ -166,13 +166,13 @@ def nodes(degree, prec): Compute the integration nodes and weights for the Gauss-Legendre quadrature scheme, caching the output - Works by calling ``nodes_uncached``. + Works by calling ``nodes_uncached``. INPUT: - ``degree`` -- integer. The number of nodes. Must be 3 or even. - - ``prec`` -- integer (minimal value 53). Binary precision with which the + - ``prec`` -- integer (minimal value 53). Binary precision with which the nodes and weights are computed. OUTPUT: @@ -271,10 +271,10 @@ def integrate_vector_N(f, prec, N=3): Integrate a one-argument vector-valued function numerically using Gauss-Legendre, setting the number of nodes. - This function uses the Gauss-Legendre quadrature scheme to approximate the + This function uses the Gauss-Legendre quadrature scheme to approximate the integral `\int_0^1 f(t) \, dt`. It is different from ``integrate_vector`` by using a specific number of nodes rather than targeting a specified error - bound on the result. + bound on the result. INPUT: @@ -284,9 +284,9 @@ def integrate_vector_N(f, prec, N=3): - ``N`` -- integer (default: 3). Number of nodes to use. - OUTPUT: + OUTPUT: - Vector approximating value of the integral. + Vector approximating value of the integral. EXAMPLES:: @@ -300,14 +300,14 @@ def integrate_vector_N(f, prec, N=3): .. NOTE:: - The nodes and weights are calculated in the real field with ``prec`` + The nodes and weights are calculated in the real field with ``prec`` bits of precision. If the vector space in which ``f`` takes values is over a field which is incompatible with this field (e.g. a finite - field) then a TypeError occurs. + field) then a TypeError occurs. """ - # We use nodes_uncached, because caching takes up memory, and numerics in - # Bruin-DisneyHogg-Gao suggest that caching provides little benefit in the - # use in the Riemann surfaces module. + # We use nodes_uncached, because caching takes up memory, and numerics in + # Bruin-DisneyHogg-Gao suggest that caching provides little benefit in the + # use in the Riemann surfaces module. nodelist = nodes_uncached(N, prec) I = nodelist[0][1]*f(nodelist[0][0]) for i in range(1,len(nodelist)): diff --git a/src/sage/numerical/interactive_simplex_method.py b/src/sage/numerical/interactive_simplex_method.py index 0210d9aea87..209fd1fc724 100644 --- a/src/sage/numerical/interactive_simplex_method.py +++ b/src/sage/numerical/interactive_simplex_method.py @@ -183,10 +183,10 @@ from sage.misc.abstract_method import abstract_method from sage.geometry.all import Polyhedron -from sage.matrix.all import (column_matrix, - identity_matrix, - matrix, - random_matrix) +from sage.matrix.special import column_matrix +from sage.matrix.special import identity_matrix +from sage.matrix.constructor import Matrix as matrix +from sage.matrix.special import random_matrix from sage.misc.latex import LatexExpr, latex from sage.misc.cachefunc import cached_function, cached_method from sage.misc.prandom import randint, random @@ -195,7 +195,11 @@ from sage.modules.all import random_vector, vector from sage.misc.lazy_import import lazy_import lazy_import("sage.plot.all", ["Graphics", "arrow", "line", "point", "rainbow", "text"]) -from sage.rings.all import Infinity, PolynomialRing, QQ, RDF, ZZ +from sage.rings.infinity import Infinity +from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing +from sage.rings.rational_field import Q as QQ +from sage.rings.real_double import RDF +from sage.rings.integer_ring import Z as ZZ from sage.structure.all import SageObject from sage.symbolic.ring import SR diff --git a/src/sage/numerical/linear_tensor_element.pyx b/src/sage/numerical/linear_tensor_element.pyx index f04949d6c02..c77aa290e21 100644 --- a/src/sage/numerical/linear_tensor_element.pyx +++ b/src/sage/numerical/linear_tensor_element.pyx @@ -54,10 +54,10 @@ cdef class LinearTensor(ModuleElement): Constructor taking a dictionary as its argument. INPUT: - + - ``parent`` -- the parent :class:`~sage.numerical.linear_tensor.LinearTensorParent_class`. - + - ``f`` -- A linear function tensored by a free module is represented as a dictionary. The values are the coefficient (free module elements) of the variable represented by the @@ -70,7 +70,7 @@ cdef class LinearTensor(ModuleElement): sage: LT = MixedIntegerLinearProgram().linear_functions_parent().tensor(RDF^2) sage: LT({0: [1,2], 3: [-7,-8]}) (1.0, 2.0)*x_0 + (-7.0, -8.0)*x_3 - + sage: TestSuite(LT).run(skip=['_test_an_element', '_test_elements_eq_reflexive', ....: '_test_elements_eq_symmetric', '_test_elements_eq_transitive', ....: '_test_elements_neq', '_test_additive_associativity', @@ -191,7 +191,7 @@ cdef class LinearTensor(ModuleElement): OUTPUT: String. - + EXAMPLES:: sage: from sage.numerical.linear_functions import LinearFunctionsParent @@ -221,7 +221,7 @@ cdef class LinearTensor(ModuleElement): term = '{1}*x_{0}'.format(key, coeff) terms.append(term) return ' + '.join(terms) - + def _repr_matrix(self): """ Return a matrix-like string representation. @@ -266,7 +266,7 @@ cdef class LinearTensor(ModuleElement): Return sum. INPUT: - + - ``b`` -- a :class:`LinearTensor`. OUTPUT: @@ -310,7 +310,7 @@ cdef class LinearTensor(ModuleElement): Return difference. INPUT: - + - ``b`` -- a :class:`LinearTensor`. OUTPUT: @@ -402,7 +402,7 @@ cdef class LinearTensor(ModuleElement): Arithmetic performed after coercions. Result lives in Tensor product of Vector space of dimension 2 over Real Double Field and Linear functions over Real Double Field Tensor product of Vector space of dimension 2 over Real Double Field and Linear functions over Real Double Field - + sage: operator.le(10, lt) (10.0, 10.0) <= (1.0, 2.0)*x_0 sage: lt <= 1 diff --git a/src/sage/numerical/sdp.pyx b/src/sage/numerical/sdp.pyx index 207298d7ece..6350afb4eb6 100644 --- a/src/sage/numerical/sdp.pyx +++ b/src/sage/numerical/sdp.pyx @@ -231,7 +231,7 @@ from sage.structure.parent cimport Parent from sage.structure.element cimport Element from sage.misc.cachefunc import cached_method from sage.numerical.linear_functions import is_LinearFunction, is_LinearConstraint -from sage.matrix.all import Matrix +from sage.matrix.constructor import Matrix from sage.structure.element import is_Matrix From 572896dfe19ab88967deefbebcc9be55d669a8d2 Mon Sep 17 00:00:00 2001 From: Alex Chandler Date: Sun, 29 Jan 2023 16:04:15 -0800 Subject: [PATCH 14/49] src/sage/{numerical,tests}: Manual fixes to imports --- src/sage/numerical/linear_functions.pyx | 2 +- .../premierspas_doctest.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/src/sage/numerical/linear_functions.pyx b/src/sage/numerical/linear_functions.pyx index a5c0c0336d0..5549ff436f5 100644 --- a/src/sage/numerical/linear_functions.pyx +++ b/src/sage/numerical/linear_functions.pyx @@ -1064,7 +1064,7 @@ cdef class LinearFunction(LinearFunctionOrConstraint): sage: f._coeff_formatter(sqrt5) 'sqrt5*' - sage: from sage.rings.all import AA + sage: from sage.rings.qqbar import AA sage: sqrt5 = AA(5).sqrt() sage: p = MixedIntegerLinearProgram(solver='interactivelp', base_ring=AA) sage: LF = p.linear_functions_parent() diff --git a/src/sage/tests/books/computational-mathematics-with-sagemath/premierspas_doctest.py b/src/sage/tests/books/computational-mathematics-with-sagemath/premierspas_doctest.py index fae01daa748..42121f2f815 100644 --- a/src/sage/tests/books/computational-mathematics-with-sagemath/premierspas_doctest.py +++ b/src/sage/tests/books/computational-mathematics-with-sagemath/premierspas_doctest.py @@ -117,7 +117,7 @@ Sage example in ./premierspas.tex, line 1217:: - sage: from sage.all import pi + sage: from sage.symbolic.constants import pi Sage example in ./premierspas.tex, line 1224:: From 965dfc61eddd9cbe290d8449543ec77afc867c73 Mon Sep 17 00:00:00 2001 From: Alex Chandler Date: Sun, 29 Jan 2023 17:09:33 -0800 Subject: [PATCH 15/49] sage -fiximports src/sage/stats --- src/sage/stats/distributions/discrete_gaussian_lattice.py | 5 ++++- src/sage/stats/distributions/discrete_gaussian_polynomial.py | 3 ++- 2 files changed, 6 insertions(+), 2 deletions(-) diff --git a/src/sage/stats/distributions/discrete_gaussian_lattice.py b/src/sage/stats/distributions/discrete_gaussian_lattice.py index 695c8fc3615..5a05a0cb2c8 100644 --- a/src/sage/stats/distributions/discrete_gaussian_lattice.py +++ b/src/sage/stats/distributions/discrete_gaussian_lattice.py @@ -58,7 +58,10 @@ from sage.functions.log import exp from sage.functions.other import ceil -from sage.rings.all import RealField, RR, ZZ, QQ +from sage.rings.real_mpfr import RealField +from sage.rings.real_mpfr import RR +from sage.rings.integer_ring import Z as ZZ +from sage.rings.rational_field import Q as QQ from .discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler from sage.structure.sage_object import SageObject from sage.matrix.constructor import matrix, identity_matrix diff --git a/src/sage/stats/distributions/discrete_gaussian_polynomial.py b/src/sage/stats/distributions/discrete_gaussian_polynomial.py index 698727f48d0..fb4c4453ca3 100644 --- a/src/sage/stats/distributions/discrete_gaussian_polynomial.py +++ b/src/sage/stats/distributions/discrete_gaussian_polynomial.py @@ -54,7 +54,8 @@ # policies, either expressed or implied, of the FreeBSD Project. #*****************************************************************************/ -from sage.rings.all import RR, ZZ +from sage.rings.real_mpfr import RR +from sage.rings.integer_ring import Z as ZZ from .discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler from sage.structure.sage_object import SageObject From 21b94bab1a499941c94a2dc00300a2c7bac79bde Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Sun, 29 Jan 2023 17:12:46 -0800 Subject: [PATCH 16/49] src/sage/libs/giac/auto-methods.pxi: Back out whitespace changes in this autogenerated file --- src/sage/libs/giac/auto-methods.pxi | 5810 +++++++++++++-------------- 1 file changed, 2905 insertions(+), 2905 deletions(-) diff --git a/src/sage/libs/giac/auto-methods.pxi b/src/sage/libs/giac/auto-methods.pxi index 776900bcf4f..9af4c0023bf 100644 --- a/src/sage/libs/giac/auto-methods.pxi +++ b/src/sage/libs/giac/auto-methods.pxi @@ -14,10 +14,10 @@ cdef class GiacMethods_base: Help for Airy_Ai: Airy_Ai(Real) Returns the value of Ai the Airy function solution of w''-xw=0. Ai(x)=Ai(0)f(z)+Ai'(0)g(z)(f and g are taylor's series sol of w''-xw=0). - See also: 1/ Airy_Bi + See also: 1/ Airy_Bi Ex1:Airy_Ai(0) Ex2:Airy_Ai(1.5) - + ''' return GiacMethods['Airy_Ai'](self,*args) @@ -26,10 +26,10 @@ cdef class GiacMethods_base: Help for Airy_Bi: Airy_Bi(Real) Returns the value of Ai the Airy function solution of w''-xw=0. Bi(x)=sqrt(3)(Bi(0)f(z)-Bi'(0)g(z))(f and g are taylor's series sol of w''-xw=0). - See also: 1/ Airy_Ai + See also: 1/ Airy_Ai Ex1:Airy_Bi(1.5) Ex2:Airy_Bi(0) - + ''' return GiacMethods['Airy_Bi'](self,*args) @@ -38,9 +38,9 @@ cdef class GiacMethods_base: Help for Archive: Archive(SeqVar) Protects the variables given as argument in an archive file. - See also: 1/ Unarchiv 2/ archive 3/ unarchive + See also: 1/ Unarchiv 2/ archive 3/ unarchive Ex1:Archive(a,b) - + ''' return GiacMethods['Archive'](self,*args) @@ -49,10 +49,10 @@ cdef class GiacMethods_base: Help for BesselJ: BesselJ(Int(p),Real(x)) BesselJ(p,x) returns the Bessel function of the first kind Jp(x). - See also: 1/ besselJ 2/ BesselY 3/ besselY + See also: 1/ besselJ 2/ BesselY 3/ besselY Ex1:BesselJ(2,sqrt(2)) Ex2:BesselJ(-2,sqrt(2)) - + ''' return GiacMethods['BesselJ'](self,*args) @@ -61,10 +61,10 @@ cdef class GiacMethods_base: Help for BesselY: BesselY(Int(p),Real(x)) BesselY(p,x) returns the Bessel function of the second kind Yp(x). - See also: 1/ besselY 2/ BesselJ 3/ besselJ + See also: 1/ besselY 2/ BesselJ 3/ besselJ Ex1:BesselY(BesselJ(2,sqrt(2))) Ex2:BesselY(BesselJ(-2,sqrt(2))) - + ''' return GiacMethods['BesselY'](self,*args) @@ -73,12 +73,12 @@ cdef class GiacMethods_base: Help for Beta: Beta(Expr,Expr,[Expr],[1]) Beta(a,b)=int(t^(a-1)*(1-t)^(b-1),t=0..1), Beta(a,b,p)=int(t^(a-1)*(1-t)^(b-1),t=0..p), Beta(a,b,p,1)=Beta(a,b,p)/Beta(a,b).(Beta(x,y) returns Gamma(x)*Gamma(y)/Gamma(x+y)). - See also: 1/ Gamma 2/ igamma + See also: 1/ Gamma 2/ igamma Ex1:Beta(x,y) Ex2:Beta(3,2) Ex3:Beta(3,2,0.5) Ex4:Beta(3,2,0.5,1) - + ''' return GiacMethods['Beta'](self,*args) @@ -87,10 +87,10 @@ cdef class GiacMethods_base: Help for BlockDiagonal: BlockDiagonal(Lst(l)||Mtrx(A)) Returns either the diagonal matrix with diagonal l or the diagonal of A. - See also: 1/ identity 2/ diag + See also: 1/ identity 2/ diag Ex1:BlockDiagonal([[1,2],[3,4]]) Ex2:BlockDiagonal([1,2,3]) - + ''' return GiacMethods['BlockDiagonal'](self,*args) @@ -99,9 +99,9 @@ cdef class GiacMethods_base: Help for Ci: Ci(Expr) Cosine integral int(cos(t)/t,t=-inf..x). - See also: 1/ Ei 2/ Si 3/ Li + See also: 1/ Ei 2/ Si 3/ Li Ex1:Ci(1.0) - + ''' return GiacMethods['Ci'](self,*args) @@ -110,11 +110,11 @@ cdef class GiacMethods_base: Help for Circle: Circle(Real(xc),Real(yc),Real(r),[Intg(option)]) Draws the circle with center (xc,yc) and radius r (by default option=1 and option=0 is to remove this circle). - See also: 1/ circle + See also: 1/ circle Ex1:Circle(0,1,1) Ex2:Circle(0,1,1,0) Ex3:Circle(0,1,1,1) - + ''' return GiacMethods['Circle'](self,*args) @@ -123,9 +123,9 @@ cdef class GiacMethods_base: Help for Col: Col(NULL) Returns the index of the column of the lightened cell in the matrixwriter. - See also: 1/ Row + See also: 1/ Row Ex1:Col() - + ''' return GiacMethods['Col'](self,*args) @@ -134,9 +134,9 @@ cdef class GiacMethods_base: Help for CopyVar: CopyVar(Var(var1),Var(var2)) Copies the storage without evaluation of var1 into var2. - See also: 1/ + See also: 1/ Ex1:CopyVar(A,B) - + ''' return GiacMethods['CopyVar'](self,*args) @@ -145,11 +145,11 @@ cdef class GiacMethods_base: Help for Dirac: Dirac(Real) Function derivative of Heaviside. - See also: 1/ Heaviside + See also: 1/ Heaviside Ex1:Dirac(1) Ex2:Dirac(-1) Ex3: int(Dirac(x)*(x-1)^2,x,-1,2) - + ''' return GiacMethods['Dirac'](self,*args) @@ -158,9 +158,9 @@ cdef class GiacMethods_base: Help for Ei: Ei(Expr) Exponential integral int(exp(t)/t,t=-inf..x). - See also: 1/ Si 2/ Ci 3/ Li + See also: 1/ Si 2/ Ci 3/ Li Ex1:Ei(1.0) - + ''' return GiacMethods['Ei'](self,*args) @@ -169,10 +169,10 @@ cdef class GiacMethods_base: Help for Factor: Factor(Expr) Factors a polynomial without evaluation. - See also: 1/ factor 2/ ifactor 3/ normal + See also: 1/ factor 2/ ifactor 3/ normal Ex1:Factor(x^4-1) Ex2:Factor(x^4+12*x^3+54*x^2+108*x+81) - + ''' return GiacMethods['Factor'](self,*args) @@ -187,7 +187,7 @@ cdef class GiacMethods_base: Ex4:GF(2,w^8+w^7+w^5+w+1) Ex5:GF(2,8,['a','G']) Ex6: G:=GF(2,a^8+a^6+a^3+a^2+1,['a','G'],undef) - + ''' return GiacMethods['GF'](self,*args) @@ -196,12 +196,12 @@ cdef class GiacMethods_base: Help for Gamma: Gamma(Real(a),[Real(b)]) Calculates Gamma at a point a (Gamma(n+1)=n! for n integer) if a>0, Gamma(a)=int(e^{-t}*t^{a-1},t=0..inf)) and Gamma(a)=Gamma(a+1)/a and Gamma(a,b)=ugamma(a,b). - See also: 1/ Psi 2/ Beta 3/ ugamma 4/ igamma + See also: 1/ Psi 2/ Beta 3/ ugamma 4/ igamma Ex1:Gamma(5) Ex2:Gamma(1/2) Ex3:Gamma(gamma(-5.1)) Ex4:Gamma(-5.1,2.1) - + ''' return GiacMethods['Gamma'](self,*args) @@ -210,11 +210,11 @@ cdef class GiacMethods_base: Help for Heaviside: Heaviside(Real) Function equal to 0 if x<0 and 1 if x>=0. - See also: 1/ Dirac 2/ laplace + See also: 1/ Dirac 2/ laplace Ex1:Heaviside(1) Ex2:Heaviside(-1) Ex3:Heaviside(0) - + ''' return GiacMethods['Heaviside'](self,*args) @@ -223,9 +223,9 @@ cdef class GiacMethods_base: Help for JordanBlock: JordanBlock(Expr(a),Intg(n)) Returns an n*n matrix with a on the diagonal, 1 above and 0 everywhere else. - See also: 1/ jordan + See also: 1/ jordan Ex1:JordanBlock(7,3) - + ''' return GiacMethods['JordanBlock'](self,*args) @@ -234,10 +234,10 @@ cdef class GiacMethods_base: Help for LU: LU(Mtrx(A),Var(L),Var(U),Var(P)) For a numerical matrix A, stores in L a lower triangular matrix, in U an upper triangular matrix and in P a permutation matrix such that P*A=L*U. - See also: 1/ lu 2/ QR + See also: 1/ lu 2/ QR Ex1:LU([[1,2],[3,4]],L,U,P) Ex2:LU([[6,12,18],[5,14,31],[3,8,18]],L,U,P) - + ''' return GiacMethods['LU'](self,*args) @@ -249,7 +249,7 @@ cdef class GiacMethods_base: Ex1:LambertW(1.0) Ex2:LambertW(ln(4)) Ex3:LambertW(-0.1,-1) - + ''' return GiacMethods['LambertW'](self,*args) @@ -258,9 +258,9 @@ cdef class GiacMethods_base: Help for Li: Li(Expr) Logarithm integral Li(x)=Ei(ln(x)) primitive of 1/ln(x). - See also: 1/ Si 2/ Ci 3/ Ei + See also: 1/ Si 2/ Ci 3/ Ei Ex1:Li(2.0) - + ''' return GiacMethods['Li'](self,*args) @@ -269,9 +269,9 @@ cdef class GiacMethods_base: Help for Line: Line(Expr(a),Expr(b),Expr(c),Expr(d)) Draws the segment [a+i*b,c+i*d]. - See also: 1/ segment + See also: 1/ segment Ex1:Line(-1,-2,1,2) - + ''' return GiacMethods['Line'](self,*args) @@ -280,9 +280,9 @@ cdef class GiacMethods_base: Help for LineHorz: LineHorz(Expr(a)) Draws the horizontal line y=a. - See also: 1/ Line 2/ LineVert + See also: 1/ Line 2/ LineVert Ex1:LineHorz(-1) - + ''' return GiacMethods['LineHorz'](self,*args) @@ -291,13 +291,13 @@ cdef class GiacMethods_base: Help for LineTan: LineTan(Expr(f(x)),[Var],Expr(a)) Draws the tangent to y=f(x) at x=a. Do not use parentheses or put the parenthesis around the entire expression. - See also: 1/ tangent 2/ droite_tangente + See also: 1/ tangent 2/ droite_tangente Ex1: LineTan sin(x),pi/4 Ex2: LineTan sin(t),t=pi/4) Ex3: LineTan sin(t),t,pi/4 Ex4: LineTan x^2-x,1 Ex5: (LineTan sin(t),t,pi/4) - + ''' return GiacMethods['LineTan'](self,*args) @@ -306,9 +306,9 @@ cdef class GiacMethods_base: Help for LineVert: LineVert(Expr(a)) Draws the vertical line x=a. - See also: 1/ Line 2/ LineHorz + See also: 1/ Line 2/ LineHorz Ex1:LineVert(2) - + ''' return GiacMethods['LineVert'](self,*args) @@ -317,10 +317,10 @@ cdef class GiacMethods_base: Help for Phi: Phi(Intg(n)) Euler's function (euler(n)=card({p1 sum(1/n^a,n,1,+infinity). - See also: 1/ sum + See also: 1/ sum Ex1:Zeta(2) - + ''' return GiacMethods['Zeta'](self,*args) @@ -507,10 +507,10 @@ cdef class GiacMethods_base: Help for a2q: a2q(Mtrx,VectVar) a2q(A,X)=the quadratic form q associated to A, X=vector of variables. - See also: 1/ q2a + See also: 1/ q2a Ex1:a2q([[1,2],[4,4]],[x,y]) Ex2:a2q([[1,3],[3,4]],[x,y]) - + ''' return GiacMethods['a2q'](self,*args) @@ -519,13 +519,13 @@ cdef class GiacMethods_base: Help for abcuv: abcuv(Poly(a),Poly(b),Poly(c),[Var]) Returns [u,v] such that au+bv=c for 3 polynomials a,b,c. - See also: 1/ egcd 2/ iabcuv + See also: 1/ egcd 2/ iabcuv Ex1:abcuv(x^2+2*x+1,x^2-1,x+1) Ex2:abcuv(X^2+2*X+1,X^2-1,X+1,X) Ex3:abcuv(x^2+2*x+1,x^2-1,x^3+1) Ex4:abcuv(X^2+2*X+1,X^2-1,X^3+1,X) Ex5:abcuv([1,2,1],[1,0,-1],[1,0,0,1]) - + ''' return GiacMethods['abcuv'](self,*args) @@ -534,10 +534,10 @@ cdef class GiacMethods_base: Help for about: about(Var(a)) Returns the hypothesis made with assume on the variable a. - See also: 1/ assume 2/ purge + See also: 1/ assume 2/ purge Ex1:about(a) Ex2:about(n) - + ''' return GiacMethods['about'](self,*args) @@ -546,12 +546,12 @@ cdef class GiacMethods_base: Help for abs: abs(Cplx||LstCplx) Returns the absolute value or the norm of its argument. - See also: 1/ arg + See also: 1/ arg Ex1:abs(-4) Ex2:abs(1+2*i) Ex3:abs((1+2*i)^2) Ex4:abs([-2,1+i,-4]) - + ''' return GiacMethods['abs'](self,*args) @@ -560,12 +560,12 @@ cdef class GiacMethods_base: Help for abscissa: abscissa(Pnt or Vect) Returns the abscissa of a point or a vector. - See also: 1/ ordinate 2/ affix 3/ cote 4/ coordinates + See also: 1/ ordinate 2/ affix 3/ cote 4/ coordinates Ex1:abscissa(point(1+2*i)) Ex2:abscissa(point(i)-point(1+2*i)) Ex3:abscissa(-1-i) Ex4:abscissa(point(1,2,3)) - + ''' return GiacMethods['abscissa'](self,*args) @@ -574,9 +574,9 @@ cdef class GiacMethods_base: Help for accumulate_head_tail: accumulate_head_tail(Lst(l),Intg(p),Intg(q)) Returns the list where the first p and the last q elements of l are replaced by their sum. - See also: 1/ + See also: 1/ Ex1:accumulate_head_tail([0,1,2,3,4,5,6,7,8,9],3,2) - + ''' return GiacMethods['accumulate_head_tail'](self,*args) @@ -585,9 +585,9 @@ cdef class GiacMethods_base: Help for acos: acos(Expr) Arccosine. - See also: 1/ cos 2/ acosh + See also: 1/ cos 2/ acosh Ex1:acos(0) - + ''' return GiacMethods['acos'](self,*args) @@ -596,10 +596,10 @@ cdef class GiacMethods_base: Help for acos2asin: acos2asin(Expr) Replaces arccos(x) by pi/2-arcsin(x) in the argument. - See also: 1/ acos2atan + See also: 1/ acos2atan Ex1:acos2asin(acos(x)+asin(x)) Ex2:acos2asin(2*acos(x)) - + ''' return GiacMethods['acos2asin'](self,*args) @@ -608,10 +608,10 @@ cdef class GiacMethods_base: Help for acos2atan: acos2atan(Expr) Replaces arccos(x) by pi/2-arctan(x/sqrt(1-x^2)) in the argument. - See also: 1/ acos2asin + See also: 1/ acos2asin Ex1:acos2atan(2*acos(x)) Ex2:acos2atan(acos(sqrt(1-x^2))+acos(x)) - + ''' return GiacMethods['acos2atan'](self,*args) @@ -620,9 +620,9 @@ cdef class GiacMethods_base: Help for acosh: acosh(Expr) Hyperbolic arccosine. - See also: 1/ cosh 2/ acos + See also: 1/ cosh 2/ acos Ex1:acosh(1) - + ''' return GiacMethods['acosh'](self,*args) @@ -631,9 +631,9 @@ cdef class GiacMethods_base: Help for acot: acot(Expr) Arccotangent. - See also: 1/ atan 2/ arccos + See also: 1/ atan 2/ arccos Ex1:acot(0) - + ''' return GiacMethods['acot'](self,*args) @@ -642,10 +642,10 @@ cdef class GiacMethods_base: Help for acsc: acsc(Expr) Arccosecant: acsc(x)=asin(1/x). - See also: 1/ asin 2/ csc + See also: 1/ asin 2/ csc Ex1:acsc(1) Ex2:acsc(2) - + ''' return GiacMethods['acsc'](self,*args) @@ -654,8 +654,8 @@ cdef class GiacMethods_base: Help for acyclic: acyclic(Opt) Option for the random_network command. - See also: 1/ random_network - + See also: 1/ random_network + ''' return GiacMethods['acyclic'](self,*args) @@ -664,7 +664,7 @@ cdef class GiacMethods_base: Help for add: add(Expr,Var,VarMin(a),VarMax(b),[VarStep(p)]) Discrete sum (with 2 or 4 arguments return then sum from a to b if a<=b or of the opposite of the sum from b+1 to a-1 if a>b+1 or 0 if a=b+1) or the discrete primitive or sum of the elements of a list or a sequence. - See also: 1/ + + See also: 1/ + Ex1:add(1/n^2,n,1,17) Ex2:add(1/n^2,n=1..17) Ex3:add(1/n^2,n,17,1) @@ -675,7 +675,7 @@ cdef class GiacMethods_base: Ex8:add([[1,2,3,4,5,6,7,8,9],[1,2,3,4,5,6,7,8,9]]) Ex9:add(1/(x*(x+1)),x) Ex10:add(cos(n*x),n) - + ''' return GiacMethods['add'](self,*args) @@ -684,9 +684,9 @@ cdef class GiacMethods_base: Help for add_arc: add_arc(Graph(G),Edge(e)||Trail(T)||Lst(E)) Returns a modified copy of digraph G with added arc e (or trail T or list of arcs E). - See also: 1/ add_edge 2/ delete_arc 3/ digraph 4/ edges 5/ has_arc 6/ trail + See also: 1/ add_edge 2/ delete_arc 3/ digraph 4/ edges 5/ has_arc 6/ trail Ex1:add_arc(digraph(trail(1,2,3,4,5,1)),[[1,3],[2,4]]) - + ''' return GiacMethods['add_arc'](self,*args) @@ -695,9 +695,9 @@ cdef class GiacMethods_base: Help for add_edge: add_edge(Graph(G),Edge(e)||Trail(T)||Lst(E)) Returns a modified copy of undirected graph G with added edge e (or trail T or list of edges E). - See also: 1/ add_arc 2/ delete_edge 3/ edges 4/ graph 5/ has_edge 6/ trail + See also: 1/ add_arc 2/ delete_edge 3/ edges 4/ graph 5/ has_edge 6/ trail Ex1:add_edge(graph(trail(1,2,3,4)),[4,1]) - + ''' return GiacMethods['add_edge'](self,*args) @@ -706,9 +706,9 @@ cdef class GiacMethods_base: Help for add_vertex: add_vertex(Graph(G),Vrtx(v)||Lst(V)) Returns a modified copy of G with added vertex v [or vertices from list V]. - See also: 1/ add_arc 2/ add_edge 3/ delete_vertex + See also: 1/ add_arc 2/ add_edge 3/ delete_vertex Ex1:add_vertex(cycle_graph(5),["a","b"]) - + ''' return GiacMethods['add_vertex'](self,*args) @@ -717,10 +717,10 @@ cdef class GiacMethods_base: Help for additionally: additionally(Expr) Makes an additionally assumption on a variable. - See also: 1/ purge 2/ about 3/ assume + See also: 1/ purge 2/ about 3/ assume Ex1: assume(n,integer);additionally(n>5) Ex2: assume(n,integer);assume(n>=2,additionally) - + ''' return GiacMethods['additionally'](self,*args) @@ -729,9 +729,9 @@ cdef class GiacMethods_base: Help for addtable: addtable(fourier||laplace,f(x),F(s),Var(x),Var(s)) Stores an unknown Fourier/Laplace transform pair (f,F). - See also: 1/ fourier 2/ laplace + See also: 1/ fourier 2/ laplace Ex1:addtable(fourier,y(x),Y(s),x,s) - + ''' return GiacMethods['addtable'](self,*args) @@ -740,9 +740,9 @@ cdef class GiacMethods_base: Help for adjacency_matrix: adjacency_matrix(Graph(G)) Returns the adjacency matrix of G (rows and columns are indexed by the vertices). - See also: 1/ neighbors + See also: 1/ neighbors Ex1:adjacency_matrix(graph(trail(1,2,3,4,2,5,1,3))) - + ''' return GiacMethods['adjacency_matrix'](self,*args) @@ -751,9 +751,9 @@ cdef class GiacMethods_base: Help for adjoint_matrix: adjoint_matrix(Mtrx) Returns the characteristic polynomial of A and the comatrix of A-xI. - See also: 1/ pcar + See also: 1/ pcar Ex1:adjoint_matrix([[1,i],[2,3]]) - + ''' return GiacMethods['adjoint_matrix'](self,*args) @@ -762,11 +762,11 @@ cdef class GiacMethods_base: Help for affix: affix(Pnt||Vect) Complex number equal to the affix of a point or of a vector. - See also: 1/ point 2/ vector + See also: 1/ point 2/ vector Ex1:affix(point(i)) Ex2:affix(point(i)-point(1+2*i)) Ex3:affix([1,2]) - + ''' return GiacMethods['affix'](self,*args) @@ -775,11 +775,11 @@ cdef class GiacMethods_base: Help for algsubs: algsubs(Equal(Xpr1=Xpr2),Expr(Xpr)) Substitutes in the expression Xpr, the algebraic expression Xpr1 by the algebraic expression Xpr2. - See also: 1/ subst 2/ subs + See also: 1/ subst 2/ subs Ex1:algsubs(x^2=u,1+x^2+x^4) Ex2:algsubs(a*b/c=d, 2*a*b^2/c) Ex3:algsubs(2a=p^2-q^2,algsubs(2c=p^2+q^2,c^2-a^2)) - + ''' return GiacMethods['algsubs'](self,*args) @@ -788,9 +788,9 @@ cdef class GiacMethods_base: Help for algvar: algvar(Expr) List of the variables by ascending algebraic extension order. - See also: 1/ lvar 2/ lname + See also: 1/ lvar 2/ lname Ex1:algvar(sqrt(x)+y) - + ''' return GiacMethods['algvar'](self,*args) @@ -799,10 +799,10 @@ cdef class GiacMethods_base: Help for all_trig_solutions: all_trig_solutions(:=Intg(0 or 1)) Pseudo-variable to return the general solution (all_trig_solutions:=1) or principal solution (all_trig_solutions:=0). - See also: 1/ cas_setup + See also: 1/ cas_setup Ex1: all_trig_solutions:=1 Ex2: all_trig_solutions:=0 - + ''' return GiacMethods['all_trig_solutions'](self,*args) @@ -811,9 +811,9 @@ cdef class GiacMethods_base: Help for allpairs_distance: allpairs_distance(Graph(G)) Returns a square matrix D of order equal to the number of vertices in G such that D(i,j) is the distance between i-th and j-th vertex of the (weighted) graph G. - See also: 1/ dijkstra 2/ graph_diameter 3/ vertex_distance + See also: 1/ dijkstra 2/ graph_diameter 3/ vertex_distance Ex1:allpairs_distance(graph(%{[1,2],[1,3],[1,4],[1,5],[2,3],[3,4],[4,5],[5,2]%})) - + ''' return GiacMethods['allpairs_distance'](self,*args) @@ -822,9 +822,9 @@ cdef class GiacMethods_base: Help for alog10: alog10(Expr) Function x->10^x. - See also: 1/ log10 + See also: 1/ log10 Ex1:alog10(3) - + ''' return GiacMethods['alog10'](self,*args) @@ -833,9 +833,9 @@ cdef class GiacMethods_base: Help for altitude: altitude((Pnt or Cplx),(Pnt or Cplx),(Pnt or Cplx)) altitude(A,B,C) draws the altitude through A of the triangle ABC. - See also: 1/ perpendicular 2/ orthogonal 3/ orthocenter 4/ common_perpendicular + See also: 1/ perpendicular 2/ orthogonal 3/ orthocenter 4/ common_perpendicular Ex1:altitude(-1,1-i,i) - + ''' return GiacMethods['altitude'](self,*args) @@ -844,13 +844,13 @@ cdef class GiacMethods_base: Help for angle: angle((Pnt or Cplx),(Pnt or Cplx),(Pnt or Cplx)) angle(A,B,C) is the value of the measure of the angle (AB,AC). - See also: 1/ triangle 2/ bissector 3/ legend 4/ labels 5/ angleat 6/ angleatraw + See also: 1/ triangle 2/ bissector 3/ legend 4/ labels 5/ angleat 6/ angleatraw Ex1:angle(point(0),point(i),point(1)) Ex2:angle(0,1,i) Ex3:angle(0,1,i,"") Ex4:angle(0,1,i,"a") Ex5:angle(i,1,1+i,"b") - + ''' return GiacMethods['angle'](self,*args) @@ -859,10 +859,10 @@ cdef class GiacMethods_base: Help for angle_radian: angle_radian(:=Intg(0 or 1)) Pseudo-variable to work with radians (angle_radian:=1) or degrees (angle_radian:=0). - See also: 1/ cas_setup + See also: 1/ cas_setup Ex1: angle_radian:=1 Ex2: angle_radian:=0 - + ''' return GiacMethods['angle_radian'](self,*args) @@ -871,9 +871,9 @@ cdef class GiacMethods_base: Help for angleat: angleat(Pnt(A),Pnt(B),Pnt(C),(Pnt or Cplx(z0))) angleat(A,B,C,z0) displays at point(z0) with a legend, the value of the measure of the angle (AB,AC). - See also: 1/ angle 2/ angleatraw 3/ legend + See also: 1/ angle 2/ angleatraw 3/ legend Ex1: A:=point(0);B:=point(1);C:=point(i);angleat(A,B,C,-2-i) - + ''' return GiacMethods['angleat'](self,*args) @@ -882,9 +882,9 @@ cdef class GiacMethods_base: Help for angleatraw: angleatraw(Pnt(A)),Pnt(B),Pnt(C),(Pnt or Cplx(z0))) angleatraw(A,B,C,z0) displays at point(z0), the value of the measure of the angle (AB,AC). - See also: 1/ angle 2/ angleat + See also: 1/ angle 2/ angleat Ex1: A:=point(0);B:=point(1);C:=point(i);angleatraw(A,B,C,-2-i) - + ''' return GiacMethods['angleatraw'](self,*args) @@ -893,11 +893,11 @@ cdef class GiacMethods_base: Help for ans: ans(Intg(n)) Returns the (n+1)th answer of the command history if n>=0 or, the (-n)th previous answer if n<0 (by default n=-1 for the previous answer). - See also: 1/ quest + See also: 1/ quest Ex1:ans() Ex2:ans(2) Ex3:ans(-2) - + ''' return GiacMethods['ans'](self,*args) @@ -906,9 +906,9 @@ cdef class GiacMethods_base: Help for antiprism_graph: antiprism_graph(Intg(n)) Returns the antiprism graph of order n. - See also: 1/ prism_graph + See also: 1/ prism_graph Ex1:antiprism_graph(5) - + ''' return GiacMethods['antiprism_graph'](self,*args) @@ -917,14 +917,14 @@ cdef class GiacMethods_base: Help for append: append((Lst||Set||Str(L),Elem)) Append an element to a set or at the end of a list or of a string (L:=append(L,a) or L.append(a)). - See also: 1/ concat 2/ prepend + See also: 1/ concat 2/ prepend Ex1:append([1,2,4],6) Ex2:append(%{1,2,4%},6) Ex3: L:=[1,2,4];L:=append(L,6) Ex4: L:=[1,2,4];L.append(6) Ex5: S:=set[1,2,4];S:=append(S,6) Ex6: S:=set[1,2,4];S.append(6) - + ''' return GiacMethods['append'](self,*args) @@ -933,10 +933,10 @@ cdef class GiacMethods_base: Help for apply: apply(Fnc(f),Lst(l)) Applies the function f at the elements of the list l (option matrix for a matrix). - See also: 1/ map 2/ unapply 3/ matrix + See also: 1/ map 2/ unapply 3/ matrix Ex1:apply(x->x^3,[1,2,3]) Ex2:apply(x->x+1,[[1,2,3],[1,2,3]],matrix) - + ''' return GiacMethods['apply'](self,*args) @@ -945,14 +945,14 @@ cdef class GiacMethods_base: Help for approx: approx(Expr,[Int]) Numerical evaluation of the first argument (we can give the number of digits as second argument). - See also: 1/ evalb 2/ eval + See also: 1/ evalb 2/ eval Ex1:approx(2/3) Ex2:approx(2/3,2) Ex3:approx(2*sin(1)) Ex4:approx(2*sin(1),40) Ex5:approx(sqrt(2)+pi) Ex6:approx(sqrt(2)+pi,30) - + ''' return GiacMethods['approx'](self,*args) @@ -961,12 +961,12 @@ cdef class GiacMethods_base: Help for arc: arc(Pnt, Pnt, Real,[Var(C)],[Var(r)],[Opt(segment)]) Draws a circular arc given by 2 vertices and the central angle [Xcas will put the center in C and the radius in r]. - See also: 1/ circle 2/ segment 3/ plotparam + See also: 1/ circle 2/ segment 3/ plotparam Ex1:arc(0,1,pi/4) Ex2:arc(i,1,pi/4,C,r) Ex3:arc(i,1,pi/4,segment) Ex4:arc(i,1,pi/4,segment,affichage=1+rempli) - + ''' return GiacMethods['arc'](self,*args) @@ -975,11 +975,11 @@ cdef class GiacMethods_base: Help for arcLen: arcLen(Expr(Xpr) or Lst([Xpr1,Xpr2]),Var,Real(a),Real(b)) Returns the length of the arc of the curve defined by y=Xpr(or by x=Xpr1,y=Xpr2) when the parameter values are between a and b. - See also: 1/ int + See also: 1/ int Ex1:arcLen(t^2,t,1,2) Ex2:arcLen([t,t^2],t,1,2) Ex3:arcLen([cos(t),sin(t)],t,1,2) - + ''' return GiacMethods['arcLen'](self,*args) @@ -988,9 +988,9 @@ cdef class GiacMethods_base: Help for arccos: arccos(Expr) Arccosine. - See also: 1/ cos 2/ acosh + See also: 1/ cos 2/ acosh Ex1:arccos(0) - + ''' return GiacMethods['arccos'](self,*args) @@ -999,9 +999,9 @@ cdef class GiacMethods_base: Help for arccosh: arccosh(Expr) Hyperbolic arccosine. - See also: 1/ cosh 2/ acos + See also: 1/ cosh 2/ acos Ex1:arccosh(1) - + ''' return GiacMethods['arccosh'](self,*args) @@ -1010,11 +1010,11 @@ cdef class GiacMethods_base: Help for arclen: arclen(Expr(Xpr) or Lst([Xpr1,Xpr2]),Var,Real(a),Real(b)) Returns the length of the arc of the curve defined by y=Xpr(or by x=Xpr1,y=Xpr2) when the parameter values are between a and b. - See also: 1/ int + See also: 1/ int Ex1:arclen(t^2,t,1,2) Ex2:arclen([t,t^2],t,1,2) Ex3:arclen([cos(t),sin(t)],t,1,2) - + ''' return GiacMethods['arclen'](self,*args) @@ -1023,9 +1023,9 @@ cdef class GiacMethods_base: Help for arcsin: arcsin(Expr) Arcsine. - See also: 1/ sin + See also: 1/ sin Ex1:arcsin(0) - + ''' return GiacMethods['arcsin'](self,*args) @@ -1034,9 +1034,9 @@ cdef class GiacMethods_base: Help for arcsinh: arcsinh(Expr) Hyperbolic arcsine. - See also: 1/ sinh 2/ asin + See also: 1/ sinh 2/ asin Ex1:arcsinh(0) - + ''' return GiacMethods['arcsinh'](self,*args) @@ -1045,9 +1045,9 @@ cdef class GiacMethods_base: Help for arctan: arctan(Expr) Arctangent. - See also: 1/ tan 2/ atanh + See also: 1/ tan 2/ atanh Ex1:arctan(0) - + ''' return GiacMethods['arctan'](self,*args) @@ -1056,9 +1056,9 @@ cdef class GiacMethods_base: Help for arctanh: arctanh(Expr) Hyperbolic arctangent. - See also: 1/ atan 2/ tanh + See also: 1/ atan 2/ tanh Ex1:arctanh(0) - + ''' return GiacMethods['arctanh'](self,*args) @@ -1067,7 +1067,7 @@ cdef class GiacMethods_base: Help for area: area(Polygone || Expr,x=a..b,[n],[Method]) Algebraic area of a circle, a circular arc or of a (star) polygon (e.g. triangle, square, ...) or of the area below a curve, optionally with a quadrature method (trapezoid,left_rectangle,right_rectangle,middle_point,simpson,rombergt,rombergm). - See also: 1/ trapezoid 2/ perimeter 3/ areaatraw 4/ areaat 5/ areaplot + See also: 1/ trapezoid 2/ perimeter 3/ areaatraw 4/ areaat 5/ areaplot Ex1:area(triangle(0,1,i)) Ex2:area(square(0,2)) Ex3:area(circle(0,2)) @@ -1075,7 +1075,7 @@ cdef class GiacMethods_base: Ex5:area(x^2,x=0..1,5,trapezoid) Ex6:area(x^2,x=0..1,5,simpson) Ex7:area(x^2,x=0..1,5,rombergm) - + ''' return GiacMethods['area'](self,*args) @@ -1084,13 +1084,13 @@ cdef class GiacMethods_base: Help for areaat: areaat(Polygone, Pnt||Cplx(z0)) Displays at point(z0), with a legend, the algebraic area of a circle or of a (star) polygon (e.g. triangle, square, ...) - See also: 1/ area 2/ areaatraw 3/ polygon 4/ perimeteratraw 5/ areaplot + See also: 1/ area 2/ areaatraw 3/ polygon 4/ perimeteratraw 5/ areaplot Ex1: t:=triangle(0,1,i);areaat(t,(1+i)/2) Ex2: c:=square(0,2);areaat(c,1+i) Ex3: c2:=circle(0,2);areaat(c2,1+i) Ex4: p:=polygon(0,1,i);areaat(p,1+i) Ex5: A:=point(0);B:=point(1+i);c:=carre(A,B);areaat(c,i) - + ''' return GiacMethods['areaat'](self,*args) @@ -1099,13 +1099,13 @@ cdef class GiacMethods_base: Help for areaatraw: areaatraw(Polygone, Pnt||Cplx(z0)) Displays at point(z0), the algebraic area of a circle or of a (star-)polygon (e.g. triangle, square, ...) - See also: 1/ area 2/ areaat 3/ polygon 4/ perimeteratraw 5/ areaplot + See also: 1/ area 2/ areaat 3/ polygon 4/ perimeteratraw 5/ areaplot Ex1:areaatraw(triangle(0,1,i),(1+i)/2) Ex2:areaatraw(square(0,2),1+i) Ex3:areaatraw(circle(0,2),1+i) Ex4:areaatraw(polygon(0,1,i),1+i) Ex5: A:=point(0);B:=point(1+i);c:=carre(A,B);areaatraw(c,i) - + ''' return GiacMethods['areaatraw'](self,*args) @@ -1114,11 +1114,11 @@ cdef class GiacMethods_base: Help for areaplot: areaplot(Expr,x=a..b,[n],[Method]) Displays the area below a curve, optionally with a quadrature method (trapezoid,left_rectangle,right_rectangle,middle_point). - See also: 1/ integrate 2/ plot 3/ area 4/ areaat 5/ areaatraw + See also: 1/ integrate 2/ plot 3/ area 4/ areaat 5/ areaatraw Ex1:areaplot(sin(x),x=0..pi) Ex2:areaplot(x^2,x=0..1,5,trapezoid) Ex3:areaplot(x^2,x=0..1,5,middle_point) - + ''' return GiacMethods['areaplot'](self,*args) @@ -1127,11 +1127,11 @@ cdef class GiacMethods_base: Help for arg: arg(Expr) Returns the argument of a complex number. - See also: 1/ abs + See also: 1/ abs Ex1:arg(1+i) Ex2:arg(1+2*i) Ex3:arg((1+2*i)^2) - + ''' return GiacMethods['arg'](self,*args) @@ -1140,10 +1140,10 @@ cdef class GiacMethods_base: Help for array: array(Opt) Option for convert for definitions of sparse matrices. - See also: 1/ convert 2/ table + See also: 1/ convert 2/ table Ex1: A[0..2,0..2]:=1;A[0..1,1..2]:=2;convert(A,array) Ex2: B[0..1,1..2]:=1;B[2,2]:=2;convert(B,array) - + ''' return GiacMethods['array'](self,*args) @@ -1152,9 +1152,9 @@ cdef class GiacMethods_base: Help for arrivals: arrivals(Graph(G),[Vrtx(v)]) Returns the list of vertices in digraph G which are connected by v with arcs such that heads are in v. If v is omitted, a list of arrivals is computed for every vertex in G. - See also: 1/ in_degree + See also: 1/ in_degree Ex1:arrivals(digraph(%{[1,2],[1,3],[2,3]%}),1) - + ''' return GiacMethods['arrivals'](self,*args) @@ -1163,10 +1163,10 @@ cdef class GiacMethods_base: Help for articulation_points: articulation_points(Graph(G)) Returns the list of articulation points (cut vertices) of G. - See also: 1/ biconnected_components 2/ is_biconnected 3/ is_connected 4/ is_triconnected + See also: 1/ biconnected_components 2/ is_biconnected 3/ is_connected 4/ is_triconnected Ex1:articulation_points(path_graph(5)) Ex2:articulation_points(cycle_graph(5)) - + ''' return GiacMethods['articulation_points'](self,*args) @@ -1175,9 +1175,9 @@ cdef class GiacMethods_base: Help for asin: asin(Expr) Arcsine. - See also: 1/ sin + See also: 1/ sin Ex1:asin(0) - + ''' return GiacMethods['asin'](self,*args) @@ -1186,10 +1186,10 @@ cdef class GiacMethods_base: Help for asin2acos: asin2acos(Expr) Replaces arcsin(x) by pi/2-arccos(x) in the argument. - See also: 1/ asin2atan + See also: 1/ asin2atan Ex1:asin2acos(acos(x)+asin(x)) Ex2:asin2acos(2*asin(x)) - + ''' return GiacMethods['asin2acos'](self,*args) @@ -1198,10 +1198,10 @@ cdef class GiacMethods_base: Help for asin2atan: asin2atan(Expr) Replaces arcsin(x) by arctan(x/sqrt(1-x^2)) in the argument. - See also: 1/ asin2acos + See also: 1/ asin2acos Ex1:asin2atan(2*asin(x)) Ex2:asin2atan(asin(sqrt(1-x^2))+asin(x)) - + ''' return GiacMethods['asin2atan'](self,*args) @@ -1210,9 +1210,9 @@ cdef class GiacMethods_base: Help for asinh: asinh(Expr) Hyperbolic arcsine. - See also: 1/ sinh 2/ asin + See also: 1/ sinh 2/ asin Ex1:asinh(0) - + ''' return GiacMethods['asinh'](self,*args) @@ -1221,10 +1221,10 @@ cdef class GiacMethods_base: Help for assign_edge_weights: assign_edge_weights(Graph(G),Seq(m,n)||Intrv(a..b)) Assigns random edge weights to the edges of G and returns a modified copy of G. If integers n and m such that n>=m are specified, weights are integers randomly chosen in [m,n]. If an interval a..b is specified, weights are uniformly distributed in the interval [a,b). - See also: 1/ set_edge_weight 2/ get_edge_weight 3/ weight_matrix 4/ random_digraph 5/ random_tournament + See also: 1/ set_edge_weight 2/ get_edge_weight 3/ weight_matrix 4/ random_digraph 5/ random_tournament Ex1:assign_edge_weights(digraph(trail(1,2,3,4,1)),1,9) Ex2:assign_edge_weights(digraph(trail(1,2,3,4,1)),0..1) - + ''' return GiacMethods['assign_edge_weights'](self,*args) @@ -1233,7 +1233,7 @@ cdef class GiacMethods_base: Help for assume: assume(Expr) Makes an assumption on a variable. - See also: 1/ purge 2/ about 3/ additionally + See also: 1/ purge 2/ about 3/ additionally Ex1:assume(a>0) Ex2:assume(a=0.3) Ex3:assume(a:=[pi/4,0,pi/2]) @@ -1244,7 +1244,7 @@ cdef class GiacMethods_base: Ex8:assume((a>=2 and a<4) or a>6) Ex9:assume(a>=2);additionally(a<6) Ex10:assume(a) - + ''' return GiacMethods['assume'](self,*args) @@ -1253,10 +1253,10 @@ cdef class GiacMethods_base: Help for at: at(Lst(l)||Mtrx(m),Index(j)||Lst([j,k])) at(l,j) (or at(m,[j,k])) is the element of the list l (or matrix m) for index=j (or for index j,k). - See also: 1/ of + See also: 1/ of Ex1:at([10,11,12],1) Ex2:at([[1,2],[3,4]],[1,0]) - + ''' return GiacMethods['at'](self,*args) @@ -1265,9 +1265,9 @@ cdef class GiacMethods_base: Help for atan: atan(Expr) Arctangent. - See also: 1/ tan 2/ atanh + See also: 1/ tan 2/ atanh Ex1:atan(0) - + ''' return GiacMethods['atan'](self,*args) @@ -1276,8 +1276,8 @@ cdef class GiacMethods_base: Help for atan2acos: atan2acos(Expr) Replaces arctan(x) by pi/2-arccos(x/sqrt(1+x^2)) in the argument. - See also: 1/ atan2acos(atan(x)) - + See also: 1/ atan2acos(atan(x)) + ''' return GiacMethods['atan2acos'](self,*args) @@ -1286,8 +1286,8 @@ cdef class GiacMethods_base: Help for atan2asin: atan2asin(Expr) Replaces arctan(x) by arcsin(x/sqrt(1+x^2)) in the argument. - See also: 1/ atan2asin(atan(x)) - + See also: 1/ atan2asin(atan(x)) + ''' return GiacMethods['atan2asin'](self,*args) @@ -1296,9 +1296,9 @@ cdef class GiacMethods_base: Help for atanh: atanh(Expr) Hyperbolic arctangent. - See also: 1/ atan 2/ tanh + See also: 1/ atan 2/ tanh Ex1:atanh(0) - + ''' return GiacMethods['atanh'](self,*args) @@ -1307,11 +1307,11 @@ cdef class GiacMethods_base: Help for atrig2ln: atrig2ln(Expr) Rewrites the expression containing inverse trigonometric functions into logarithmic functions. - See also: 1/ trig2exp 2/ exp2trig + See also: 1/ trig2exp 2/ exp2trig Ex1:atrig2ln(atan(x)) Ex2:atrig2ln(asin(x)) Ex3:atrig2ln(acos(x)) - + ''' return GiacMethods['atrig2ln'](self,*args) @@ -1320,13 +1320,13 @@ cdef class GiacMethods_base: Help for augment: augment(Lst,Lst||Seq,Seq||Str,Str||Mtrx,Mtrx) Concatenates two lists or two strings or two sequences or 2 matrices; L:=concat(L,L1) or L.concat(L1). - See also: 1/ append 2/ cat 3/ semi_augment 4/ border 5/ + + See also: 1/ append 2/ cat 3/ semi_augment 4/ border 5/ + Ex1:augment([1,2],[3,4,5]) Ex2:augment("bon","jour") Ex3:augment([[1,2],[3,4]],[[4,5,6],[6,7,8]]) Ex4: L:=[1,2];L.concat([3,4,5]) Ex5: S:="abcd";S.concat("efghi") - + ''' return GiacMethods['augment'](self,*args) @@ -1335,9 +1335,9 @@ cdef class GiacMethods_base: Help for auto_correlation: auto_correlation(Lst) Returns the cross-correlation of the given signal with itself. - See also: 1/ cross_correlation 2/ correlation + See also: 1/ cross_correlation 2/ correlation Ex1:auto_correlation([1,-1,0,2,1]) - + ''' return GiacMethods['auto_correlation'](self,*args) @@ -1346,14 +1346,14 @@ cdef class GiacMethods_base: Help for autosimplify: autosimplify(Cmds) The argument is a command that Xcas will use to rewrite answers (initial value is regroup and for no simplification it is nop or 0). - See also: 1/ simplify 2/ factor 3/ regroup + See also: 1/ simplify 2/ factor 3/ regroup Ex1:autosimplify(nop) Ex2:autosimplify(0) Ex3:autosimplify(regroup) Ex4:autosimplify(1) Ex5:autosimplify(factor) Ex6:autosimplify(simplify) - + ''' return GiacMethods['autosimplify'](self,*args) @@ -1362,10 +1362,10 @@ cdef class GiacMethods_base: Help for avance: avance(NULL or Real(n)) The turtle takes n steps forward (by default n=10). - See also: 1/ recule 2/ saute + See also: 1/ recule 2/ saute Ex1: avance 30 Ex2:avance(30) - + ''' return GiacMethods['avance'](self,*args) @@ -1374,11 +1374,11 @@ cdef class GiacMethods_base: Help for avgRC: avgRC(Expr(Xpr),Var(Var),[Real(h)]) Returns (Xpr(var+h)-Xpr(Var))/h (by default h=0.001). - See also: 1/ nDeriv + See also: 1/ nDeriv Ex1:avgRC(f(x),x,h) Ex2:avgRC(x^2,x,0.1) Ex3:avgRC(x^2,x) - + ''' return GiacMethods['avgRC'](self,*args) @@ -1387,10 +1387,10 @@ cdef class GiacMethods_base: Help for axes: axes(Opt) Global option (Maple compatibility) of a graphic command to put or not the axes. - See also: 1/ line_width 2/ gl_showaxes 3/ switch_axes + See also: 1/ line_width 2/ gl_showaxes 3/ switch_axes Ex1: axes=0;segment(0,point(1,1)) Ex2: axes=1;segment(0,point(1,1),epaisseur=5) - + ''' return GiacMethods['axes'](self,*args) @@ -1400,7 +1400,7 @@ cdef class GiacMethods_base: axis(xmin,xmax,ymin,ymax,[zmin,zmaz]) Defines the graphic display Ex1:axis(-2,4,-1,6) - + ''' return GiacMethods['axis'](self,*args) @@ -1409,11 +1409,11 @@ cdef class GiacMethods_base: Help for back: back(Vect or Seq or Str) Returns the last element of a vector or a sequence or a string. - See also: 1/ inter 2/ head 3/ mid 4/ left 5/ right + See also: 1/ inter 2/ head 3/ mid 4/ left 5/ right Ex1:back(1,2,3) Ex2:back([1,2,3]) Ex3:back("bonjour") - + ''' return GiacMethods['back'](self,*args) @@ -1422,10 +1422,10 @@ cdef class GiacMethods_base: Help for backward: backward(NULL or Real(n)) The turtle takes n steps back (by default n=10). - See also: 1/ avance 2/ saute + See also: 1/ avance 2/ saute Ex1: recule 30 Ex2:backward(30) - + ''' return GiacMethods['backward'](self,*args) @@ -1434,9 +1434,9 @@ cdef class GiacMethods_base: Help for baisse_crayon: baisse_crayon(NULL) Presses the pencil down so that the turtle move with traces. - See also: 1/ leve_crayon 2/ crayon + See also: 1/ leve_crayon 2/ crayon Ex1:baisse_crayon() - + ''' return GiacMethods['baisse_crayon'](self,*args) @@ -1445,8 +1445,8 @@ cdef class GiacMethods_base: Help for bandwidth: bandwidth(Opt) Option for the kernel_density command. - See also: 1/ kernel_density 2/ bins - + See also: 1/ kernel_density 2/ bins + ''' return GiacMethods['bandwidth'](self,*args) @@ -1455,11 +1455,11 @@ cdef class GiacMethods_base: Help for bar_plot: bar_plot(Mtrx) Draws a barplot of a one variable statistical series. - See also: 1/ camembert 2/ histogram 3/ frequencies + See also: 1/ camembert 2/ histogram 3/ frequencies Ex1:bar_plot([["France",6],["Allemagne",12],["Suisse",5]]) Ex2:bar_plot([3/2,2/3,5/4,4/5,7/6,6/7,9/8,8/9,11/10]) Ex3:bar_plot([[2,"xyz","abc"],["A",2,5],["B",5,6],["C",7,7]]) - + ''' return GiacMethods['bar_plot'](self,*args) @@ -1468,11 +1468,11 @@ cdef class GiacMethods_base: Help for barplot: barplot(Mtrx) Draws a barplot of a one variable statistical series. - See also: 1/ camembert 2/ histogram 3/ frequencies + See also: 1/ camembert 2/ histogram 3/ frequencies Ex1:barplot([["France",6],["Allemagne",12],["Suisse",5]]) Ex2:barplot([3/2,2/3,5/4,4/5,7/6,6/7,9/8,8/9,11/10]) Ex3:barplot([[2,"xyz","abc"],["A",2,5],["B",5,6],["C",7,7]]) - + ''' return GiacMethods['barplot'](self,*args) @@ -1481,9 +1481,9 @@ cdef class GiacMethods_base: Help for bartlett_hann_window: bartlett_hann_window(Lst,[Interval(n1..n2)]) Applies the Bartlett-Hann windowing function to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(bartlett_hann_window(randvector(1000,0..1))) - + ''' return GiacMethods['bartlett_hann_window'](self,*args) @@ -1492,11 +1492,11 @@ cdef class GiacMethods_base: Help for barycenter: barycenter([Pnt,Real],[Pnt,Real],[Pnt,Real]) barycenter([point1,coeff1],...) draws the barycenter of point1 with weight coeff1... - See also: 1/ isobarycenter 2/ midpoint + See also: 1/ isobarycenter 2/ midpoint Ex1:barycenter([point(-1),1],[point(1+i),2],[point(1-i),1]) Ex2:barycenter([[point(-1),1],[point(1+i),2],[point(1-i),1]]) Ex3:barycenter([point(-1),point(1+i),point(1-i)],[1,2,1]) - + ''' return GiacMethods['barycenter'](self,*args) @@ -1505,11 +1505,11 @@ cdef class GiacMethods_base: Help for base: base(Opt) Option for convert : convert(p,base,b)= [a0,a1,..an] or convert([a0,a1,..an],base,b)=p with p=a0+a1*b+....an*b^(n-1). - See also: 1/ convert 2/ horner 3/ revlist + See also: 1/ convert 2/ horner 3/ revlist Ex1: convert(123,base,8) Ex2: convert([3,7,1],base,8) Ex3: horner(revlist([3,7,1]),8) - + ''' return GiacMethods['base'](self,*args) @@ -1518,9 +1518,9 @@ cdef class GiacMethods_base: Help for basis: basis(Lst(vector1,..,vectorn)) Extracts a basis from a spanning set of vectors. - See also: 1/ ker 2/ ibasis + See also: 1/ ker 2/ ibasis Ex1:basis([[1,2,3],[4,5,6],[7,8,9],[10,11,12]]) - + ''' return GiacMethods['basis'](self,*args) @@ -1529,11 +1529,11 @@ cdef class GiacMethods_base: Help for batons: batons(Mtrx) Draws for k=0..nrows, the segments (xk,0)-(xk,yk) where xk=element row k column 0 and yk=element row k column j (j=1..ncols). - See also: 1/ polygonplot 2/ scatterplot 3/ listplot + See also: 1/ polygonplot 2/ scatterplot 3/ listplot Ex1:batons([1,3],[2,5],[3,2]) Ex2:batons([[1,3],[2,5],[3,2]]) Ex3:batons([1,2,3],[3,5,2]) - + ''' return GiacMethods['batons'](self,*args) @@ -1542,9 +1542,9 @@ cdef class GiacMethods_base: Help for bellman_ford: bellman_ford(Graph(G),Vrtx(s),Vrtx(t)||Lst(T)) Returns the length of the shortest path resp. paths from s to vertex t resp. vertices in T in weighted graph G. - See also: 1/ dijkstra 2/ shortest_path + See also: 1/ dijkstra 2/ shortest_path Ex1:bellman_ford(graph(%{[[1,2],-1],[[2,3],-3],[[3,4],-7],[[4,5],-3],[[5,6],-3],[[1,6],-3]%}),1,4) - + ''' return GiacMethods['bellman_ford'](self,*args) @@ -1553,10 +1553,10 @@ cdef class GiacMethods_base: Help for bernoulli: bernoulli(Intg||(Intg,Var)) bernoulli(n) is the n-th number of Bernoulli and bernoulli(n,x) is the n-th polynomial of Bernoulli and the second argument is the variable. - See also: 1/ + See also: 1/ Ex1:bernoulli(6) Ex2:bernoulli(6,x) - + ''' return GiacMethods['bernoulli'](self,*args) @@ -1565,10 +1565,10 @@ cdef class GiacMethods_base: Help for besselJ: besselJ(Real(x),Int(p)) besselJ(x,p) returns the Bessel function of the first kind Jp(x). - See also: 1/ BesselJ 2/ BesselY 3/ besselY + See also: 1/ BesselJ 2/ BesselY 3/ besselY Ex1:besselJ(sqrt(2),2) Ex2:besselJ(sqrt(2),-2) - + ''' return GiacMethods['besselJ'](self,*args) @@ -1577,10 +1577,10 @@ cdef class GiacMethods_base: Help for besselY: besselY(Real(x),Int(p)) besselY(x,p) returns the Bessel function of the second kind Yp(x). - See also: 1/ BesselY 2/ BesselJ 3/ besselJ + See also: 1/ BesselY 2/ BesselJ 3/ besselJ Ex1:besselY(sqrt(2),2) Ex2:besselY(sqrt(2),-2) - + ''' return GiacMethods['besselY'](self,*args) @@ -1589,9 +1589,9 @@ cdef class GiacMethods_base: Help for betad: betad(Real(a>0),Real(b>0),Real(0<=x<=1)) Returns the probability density of the Beta law (=Gamma(a+b)*x^(a-1)*(1-x)^(b-1)/(Gamma(a)*Gamma(b))). - See also: 1/ betad_cdf 2/ betad_icdf + See also: 1/ betad_cdf 2/ betad_icdf Ex1:betad(2.2,1.5,0.8) - + ''' return GiacMethods['betad'](self,*args) @@ -1600,10 +1600,10 @@ cdef class GiacMethods_base: Help for betad_cdf: betad_cdf(Real(a>0),Real(b>0),Real(0<=x0<=1),[Real(0<=y0<=1)]) Returns the probability that a Beta random variable (with a and b as parameters) is less than x0 or between x0 and y0. - See also: 1/ betad 2/ betad_icdf + See also: 1/ betad 2/ betad_icdf Ex1:betad_cdf(2,1,0.2) Ex2:betad_cdf(2,1,0.1,0.3) - + ''' return GiacMethods['betad_cdf'](self,*args) @@ -1612,10 +1612,10 @@ cdef class GiacMethods_base: Help for betad_icdf: betad_icdf(Real(a>0),Real(b>0),Real(0<=p<=1)) Returns h such that the probability that a Beta random variable is less than h is p (0<=p<=1). - See also: 1/ betad_cdf 2/ betad + See also: 1/ betad_cdf 2/ betad Ex1:betad_icdf(2,1,0.95) Ex2:betad_icdf(2,1,0.5) - + ''' return GiacMethods['betad_icdf'](self,*args) @@ -1624,10 +1624,10 @@ cdef class GiacMethods_base: Help for betavariate: betavariate(Real(a),Real(b)) Returns a random real according to the Beta distribution with parameters a>0 and b>0. - See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector + See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector Ex1:betavariate(1,2) Ex2:betavariate(1.5,4) - + ''' return GiacMethods['betavariate'](self,*args) @@ -1636,12 +1636,12 @@ cdef class GiacMethods_base: Help for bezier: bezier(Lst,[plot]) Bezier curve defined by control points. - See also: 1/ parameq + See also: 1/ parameq Ex1:bezier(1,1+i,2+i,3-i,plot) Ex2:bezier(point([0,0,0]),point([1,1,0]),point([0,1,1]),plot) Ex3: parameq(bezier(1,1+i,2+i,3-i)) Ex4: parameq(bezier(point([0,0,0]),point([1,1,0]),point([0,1,1]))) - + ''' return GiacMethods['bezier'](self,*args) @@ -1650,11 +1650,11 @@ cdef class GiacMethods_base: Help for bezout_entiers: bezout_entiers(Intg,Intg) Extended greatest common divisor of 2 integers. - See also: 1/ gcd 2/ iabcuv 3/ egcd + See also: 1/ gcd 2/ iabcuv 3/ egcd Ex1:bezout_entiers(45,75) Ex2:bezout_entiers(21,28) Ex3:bezout_entiers(30,49) - + ''' return GiacMethods['bezout_entiers'](self,*args) @@ -1663,9 +1663,9 @@ cdef class GiacMethods_base: Help for biconnected_components: biconnected_components(Graph(G)) Returns the biconnected components of G as a list of lists of vertices. - See also: 1/ articulation_points 2/ is_biconnected 3/ is_connected 4/ trail + See also: 1/ articulation_points 2/ is_biconnected 3/ is_connected 4/ trail Ex1:biconnected_components(graph(trail(1,2,3,4,2),trail(4,5,6,7,5))) - + ''' return GiacMethods['biconnected_components'](self,*args) @@ -1674,7 +1674,7 @@ cdef class GiacMethods_base: Help for binomial: binomial(Intg(n),Intg(k),[Real(p in 0..1)]) Returns comb(n,k)*p^k*(1-p)^(n-k) or comb(n,k) if no 3rd argument. - See also: 1/ binomial_cdf 2/ binomial_icdf 3/ multinomial 4/ randvector 5/ ranm + See also: 1/ binomial_cdf 2/ binomial_icdf 3/ multinomial 4/ randvector 5/ ranm Ex1:binomial(4,2) Ex2:binomial(4,0,0.5) Ex3:binomial(4,2,0.5) @@ -1682,7 +1682,7 @@ cdef class GiacMethods_base: Ex5: assume(p>=0 and p<=1);binomial(4,p,2) Ex6: randvector(6,binomial,4,0.2) Ex7: ranm(4,6,binomial,4,0.7) - + ''' return GiacMethods['binomial'](self,*args) @@ -1691,11 +1691,11 @@ cdef class GiacMethods_base: Help for binomial_cdf: binomial_cdf(Intg(n),Real(p),Real(x),[Real(y)]) Returns Proba(X<=x) or Proba(x<=X<=y) when X follows the B(n,p) law. - See also: 1/ binomial 2/ binomial_icdf + See also: 1/ binomial 2/ binomial_icdf Ex1:binomial_cdf(4,0.5,2) Ex2:binomial_cdf(4,0.1,2) Ex3:binomial_cdf(4,0.5,2,3) - + ''' return GiacMethods['binomial_cdf'](self,*args) @@ -1704,10 +1704,10 @@ cdef class GiacMethods_base: Help for binomial_icdf: binomial_icdf(Intg(n),Real(p),Real(t)) Returns h such as Proba(X<=h)=t when X follows the B(n,p) law. - See also: 1/ binomial 2/ binomial_cdf + See also: 1/ binomial 2/ binomial_cdf Ex1:binomial_icdf(4,0.5,0.68) Ex2:binomial_icdf(4,0.1,0.95) - + ''' return GiacMethods['binomial_icdf'](self,*args) @@ -1716,8 +1716,8 @@ cdef class GiacMethods_base: Help for bins: bins(Opt) Option for the kernel_density command. - See also: 1/ kernel_density 2/ bandwidth - + See also: 1/ kernel_density 2/ bandwidth + ''' return GiacMethods['bins'](self,*args) @@ -1726,8 +1726,8 @@ cdef class GiacMethods_base: Help for bipartite: bipartite(Opt) Option for the draw_graph command - See also: 1/ draw_graph - + See also: 1/ draw_graph + ''' return GiacMethods['bipartite'](self,*args) @@ -1736,9 +1736,9 @@ cdef class GiacMethods_base: Help for bipartite_matching: bipartite_matching(Graph(G)) Returns the list of edges in a maximum matching of the undirected unweighted bipartite graph G. - See also: 1/ is_bipartite 2/ maximum_matching + See also: 1/ is_bipartite 2/ maximum_matching Ex1:bipartite_matching(graph("desargues")) - + ''' return GiacMethods['bipartite_matching'](self,*args) @@ -1747,14 +1747,14 @@ cdef class GiacMethods_base: Help for bisection_solver: bisection_solver(Opt) Argument for fsolve giving the method for solving a numerical equation. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve(cos(x)=x,x,0..1,bisection_solver) Ex2: fsolve(cos(x)=x,x,0..1,brent_solver) Ex3: fsolve(cos(x)=x,x,0..1,falsepos_solver) Ex4: fsolve(cos(x)=x,x,0,newton_solver) Ex5: fsolve(cos(x)=x,x,0,secant_solver) Ex6: fsolve(cos(x)=x,x,0,steffenson_solver) - + ''' return GiacMethods['bisection_solver'](self,*args) @@ -1763,9 +1763,9 @@ cdef class GiacMethods_base: Help for bisector: bisector((Pnt(A) or Cplx),(Pnt(B) or Cplx),(Pnt(C) or Cplx)) Draws the bisector of the angle (AB,AC) given by 3 points A,B,C. - See also: 1/ angle 2/ exbisector + See also: 1/ angle 2/ exbisector Ex1:bisector(0,1,i) - + ''' return GiacMethods['bisector'](self,*args) @@ -1774,9 +1774,9 @@ cdef class GiacMethods_base: Help for bit_depth: bit_depth(Lst(clip)) Returns the bit depth of an audio clip. - See also: 1/ channels 2/ channel_data 3/ duration 4/ samplerate + See also: 1/ channels 2/ channel_data 3/ duration 4/ samplerate Ex1:bit_depth(readwav("/some/file")) - + ''' return GiacMethods['bit_depth'](self,*args) @@ -1785,9 +1785,9 @@ cdef class GiacMethods_base: Help for bitand: bitand(Intg,Intg) Logical bit and. - See also: 1/ bitxor 2/ bitor + See also: 1/ bitxor 2/ bitor Ex1:bitand(0x12,0x38) - + ''' return GiacMethods['bitand'](self,*args) @@ -1796,9 +1796,9 @@ cdef class GiacMethods_base: Help for bitor: bitor(Intg,Intg) Inclusive logical bit or. - See also: 1/ bitxor 2/ bitand + See also: 1/ bitxor 2/ bitand Ex1:bitor(0x12,0x38) - + ''' return GiacMethods['bitor'](self,*args) @@ -1807,9 +1807,9 @@ cdef class GiacMethods_base: Help for bitxor: bitxor(Intg,Intg) Exclusive logical bit or. - See also: 1/ bitor 2/ bitand + See also: 1/ bitor 2/ bitand Ex1:bitxor(0x12,0x38) - + ''' return GiacMethods['bitxor'](self,*args) @@ -1818,9 +1818,9 @@ cdef class GiacMethods_base: Help for blackman_harris_window: blackman_harris_window(Lst,[Interval(n1..n2)]) Applies the Blackman-Harris windowing function to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ bartlett_hann_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window + See also: 1/ bartlett_hann_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(blackman_harris_window(randvector(1000,0..1))) - + ''' return GiacMethods['blackman_harris_window'](self,*args) @@ -1829,9 +1829,9 @@ cdef class GiacMethods_base: Help for blackman_window: blackman_window(Lst,[Real(a)],[Interval(n1..n2)]) Applies the Blackman windowing function with parameter a (by default a=0.16) to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ bartlett_harris_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ bartlett_harris_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(blackman_window(randvector(1000,0..1))) - + ''' return GiacMethods['blackman_window'](self,*args) @@ -1840,10 +1840,10 @@ cdef class GiacMethods_base: Help for blockmatrix: blockmatrix(Intg(n),Intg(m),Lst) Returns the matrix obtained from the list divided into n lists of dimension m. - See also: 1/ list2mat + See also: 1/ list2mat Ex1:blockmatrix(2,3,[idn(2),idn(2),idn(2),idn(2),idn(2),idn(2)]) Ex2:blockmatrix(2,2,[idn(2),newMat(2,3),newMat(3,2),idn(3)]) - + ''' return GiacMethods['blockmatrix'](self,*args) @@ -1852,9 +1852,9 @@ cdef class GiacMethods_base: Help for bohman_window: bohman_window(Lst,[Interval(n1..n2)]) Applies the Bohman windowing function to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bartlett_hann_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bartlett_hann_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(bohman_window(randvector(1000,0..1))) - + ''' return GiacMethods['bohman_window'](self,*args) @@ -1863,10 +1863,10 @@ cdef class GiacMethods_base: Help for border: border(Mtrx(A),Lst(b)) Returns the matrix obtained by augmenting A with b as the last column, if nrows(A)=size(b), border(A,b)=tran(append(tran(A),b)). - See also: 1/ tran 2/ append 3/ augment + See also: 1/ tran 2/ append 3/ augment Ex1:border([[1,2,3,4],[4,5,6,8],[7,8,9,10]],[1,3,5]) Ex2:border([[1,2,3],[4,5,6],[7,8,9]],[1,0,1]) - + ''' return GiacMethods['border'](self,*args) @@ -1875,9 +1875,9 @@ cdef class GiacMethods_base: Help for boxcar: boxcar(Real(a),Real(b),Expr(x)) Returns the value at x of the boxcar function corresponding to a and b. - See also: 1/ rect 2/ Heaviside + See also: 1/ rect 2/ Heaviside Ex1:boxcar(1,2,x) - + ''' return GiacMethods['boxcar'](self,*args) @@ -1886,12 +1886,12 @@ cdef class GiacMethods_base: Help for boxwhisker: boxwhisker(Lst,[Lst],[x=a..b||y=a..b]) Box and Whisker plot for a statistical series. - See also: 1/ quartiles + See also: 1/ quartiles Ex1:boxwhisker([-1,1,2,2.2,3,4,-2,5]) Ex2:boxwhisker([1,2,3,5,10,4],x=1..2) Ex3:boxwhisker([1,2,3,5,10,4],[1,2,3,1,2,3]) Ex4:boxwhisker([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],[1,3,4,2,5,6,0],[3,4,2,5,6,0,1],[4,2,5,6,0,1,3],[2,5,6,0,1,3,4]]) - + ''' return GiacMethods['boxwhisker'](self,*args) @@ -1900,14 +1900,14 @@ cdef class GiacMethods_base: Help for brent_solver: brent_solver(Opt) Argument for fsolve giving the method for solving a numerical equation. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve(cos(x)=x,x,0..1,bisection_solver) Ex2: fsolve(cos(x)=x,x,0..1,brent_solver) Ex3: fsolve(cos(x)=x,x,0..1,falsepos_solver) Ex4: fsolve(cos(x)=x,x,0,newton_solver) Ex5: fsolve(cos(x)=x,x,0,secant_solver) Ex6: fsolve(cos(x)=x,x,0,steffenson_solver) - + ''' return GiacMethods['brent_solver'](self,*args) @@ -1916,10 +1916,10 @@ cdef class GiacMethods_base: Help for bvpsolve: bvpsolve(Expr(f(x,y,y')),Lst(x=a..b,y),Lst(y(a),y(b),[y'(1)]),[options]) Returns an approximation of the function y (and optionally of y') on the interval a..b. - See also: 1/ odesolve + See also: 1/ odesolve Ex1:bvpsolve((32+2x^3-y*diff(y(x),x))/8,[x=1..3,y],[17,43/3],20) Ex2:bvpsolve((x^2*diff(y(x),x)^2-9y^2+4x^6)/x^5,[x=1..2,y],[0,ln(256),1],10,output=spline) - + ''' return GiacMethods['bvpsolve'](self,*args) @@ -1928,11 +1928,11 @@ cdef class GiacMethods_base: Help for cFactor: cFactor(Expr) Factorization of the expression in ℂ (on the Gaussian integers if there are more than 2 variables). - See also: 1/ factor + See also: 1/ factor Ex1:cFactor(x^2*y+y) Ex2:cFactor(x^2*y^2+y^2+4*x^2+4) Ex3:cFactor(x^2*y^2+y^2+2*x^2+2) - + ''' return GiacMethods['cFactor'](self,*args) @@ -1941,12 +1941,12 @@ cdef class GiacMethods_base: Help for cSolve: cSolve(LstEq,LstVar) Returns the list of complex solutions of an equation or a matrix where the rows are ℂ-solutions of a system of polynomial equations. - See also: 1/ cZeros 2/ solve 3/ fslove + See also: 1/ cZeros 2/ solve 3/ fslove Ex1:cSolve(x^4-1,x) Ex2:cSolve(x^4-y^4 and x+y=2,[x,y]) Ex3:cSolve(x^4-y^4 and x+y=0 and x^2=2*x,[x,y]) Ex4:cSolve(u*v-u=v and v^2=u,[u,v]) - + ''' return GiacMethods['cSolve'](self,*args) @@ -1955,10 +1955,10 @@ cdef class GiacMethods_base: Help for cZeros: cZeros(Expr(Xpr)||LstExpr, [Var||LstVar]) Returns the list of complex solutions of Xpr=0 or the matrix where the rows are the solutions of the system : Xpr1=0,Xpr2=0... - See also: 1/ solve + See also: 1/ solve Ex1:cZeros(x^2-1) Ex2:cZeros([x^2-1,x^2-y^2],[x,y]) - + ''' return GiacMethods['cZeros'](self,*args) @@ -1967,11 +1967,11 @@ cdef class GiacMethods_base: Help for camembert: camembert(Mtrx) Draws pie chart of a one variable statistical series. - See also: 1/ bar_plot + See also: 1/ bar_plot Ex1:camembert([["France",6],["Allemagne",12],["Suisse",5]]) Ex2:camembert([3/2,2/3,5/4,4/5,7/6,6/7,9/8,8/9,11/10]) Ex3:camembert([[2,"xyz","abc"],["A",2,5],["B",5,6],["C",7,7]]) - + ''' return GiacMethods['camembert'](self,*args) @@ -1980,10 +1980,10 @@ cdef class GiacMethods_base: Help for canonical_form: canonical_form(Trinom(a*x^2+b*x+c),[Var]) Canonical_form of a 2nd degree polynomial. - See also: 1/ + See also: 1/ Ex1:canonical_form(2*x^2-12*x+1) Ex2:canonical_form(2*a^2-12*a+1,a) - + ''' return GiacMethods['canonical_form'](self,*args) @@ -1992,9 +1992,9 @@ cdef class GiacMethods_base: Help for canonical_labeling: canonical_labeling(Graph(G)) Returns the permutation representing the canonical labeling of G. - See also: 1/ isomorphic_copy 2/ relabel_vertices + See also: 1/ isomorphic_copy 2/ relabel_vertices Ex1:canonical_labeling(graph("petersen")) - + ''' return GiacMethods['canonical_labeling'](self,*args) @@ -2003,9 +2003,9 @@ cdef class GiacMethods_base: Help for cartesian_product: cartesian_product(Seq(G1,G2,..)) Returns the Cartesian product of graphs G1, G2, ... with vertices labelled as "u:v:..." where u, v, ... are vertices from G1, G2, ..., respectively. - See also: 1/ tensor_product + See also: 1/ tensor_product Ex1:cartesian_product(graph(trail(1,2,3,4,5,2)),star_graph(3)) - + ''' return GiacMethods['cartesian_product'](self,*args) @@ -2014,9 +2014,9 @@ cdef class GiacMethods_base: Help for cauchy: cauchy(Real(x0),Real(a),Real(x)) Returns the density of probability at x of the Cauchy law with parameters x0 and a (by default x0=0 and a=1). - See also: 1/ cauchy_cdf 2/ cauchy_icdf + See also: 1/ cauchy_cdf 2/ cauchy_icdf Ex1:cauchy(0.0,2.0,1.0) - + ''' return GiacMethods['cauchy'](self,*args) @@ -2025,10 +2025,10 @@ cdef class GiacMethods_base: Help for cauchy_cdf: cauchy_cdf(Real(x0),Real(a),Real(x),[Real(y)]) Returns the probability that a Cauchy random variable is less than x. - See also: 1/ cauchyd 2/ cauchy_icdf + See also: 1/ cauchyd 2/ cauchy_icdf Ex1:cauchy_cdf(0.0,2.0,2.1) Ex2:cauchy_cdf(2,3,-1.9,1.4) - + ''' return GiacMethods['cauchy_cdf'](self,*args) @@ -2037,9 +2037,9 @@ cdef class GiacMethods_base: Help for cauchy_icdf: cauchy_icdf(Real(x0),Real(a),Real(p)) Returns h such that the probability that a Cauchy random variable is less than h is p (0<=p<=1). - See also: 1/ cauchy_cdf 2/ cauchy + See also: 1/ cauchy_cdf 2/ cauchy Ex1:cauchy_icdf(0.0,2.0,0.95) - + ''' return GiacMethods['cauchy_icdf'](self,*args) @@ -2048,9 +2048,9 @@ cdef class GiacMethods_base: Help for cauchyd: cauchyd(Real(x0),Real(a),Real(x)) Returns the density of probability at x of the Cauchy law with parameters x0 and a (by default x0=0 and a=1). - See also: 1/ cauchy_cdf 2/ cauchy_icdf + See also: 1/ cauchy_cdf 2/ cauchy_icdf Ex1:cauchyd(0.0,2.0,1.0) - + ''' return GiacMethods['cauchyd'](self,*args) @@ -2059,10 +2059,10 @@ cdef class GiacMethods_base: Help for cauchyd_cdf: cauchyd_cdf(Real(x0),Real(a),Real(x),[Real(y)]) Returns the probability that a Cauchy random variable is less than x. - See also: 1/ cauchyd 2/ cauchy_icdf + See also: 1/ cauchyd 2/ cauchy_icdf Ex1:cauchyd_cdf(0.0,2.0,2.1) Ex2:cauchyd_cdf(2,3,-1.9,1.4) - + ''' return GiacMethods['cauchyd_cdf'](self,*args) @@ -2071,9 +2071,9 @@ cdef class GiacMethods_base: Help for cauchyd_icdf: cauchyd_icdf(Real(x0),Real(a),Real(p)) Returns h such that the probability that a Cauchy random variable is less than h is p (0<=p<=1). - See also: 1/ cauchy_cdf 2/ cauchy + See also: 1/ cauchy_cdf 2/ cauchy Ex1:cauchyd_icdf(0.0,2.0,0.95) - + ''' return GiacMethods['cauchyd_icdf'](self,*args) @@ -2082,12 +2082,12 @@ cdef class GiacMethods_base: Help for cdf: cdf(Func,FuncParams) Cumulative distribution function. - See also: 1/ icdf 2/ binomial_cdf 3/ normald_cdf 4/ plotcdf + See also: 1/ icdf 2/ binomial_cdf 3/ normald_cdf 4/ plotcdf Ex1:cdf(binomial,10,0.5,4) Ex2:cdf(normald,0.0,1.0,2.0) Ex3:cdf([1,3,4,3,5,6],4) Ex4:cdf([1,3,4,3,5,6],plot) - + ''' return GiacMethods['cdf'](self,*args) @@ -2096,10 +2096,10 @@ cdef class GiacMethods_base: Help for ceil: ceil(Real or Cplx) Returns the smallest integer >= to the argument. - See also: 1/ floor 2/ round + See also: 1/ floor 2/ round Ex1:ceil(-4.2) Ex2:ceil(4.3+2.4*i) - + ''' return GiacMethods['ceil'](self,*args) @@ -2108,10 +2108,10 @@ cdef class GiacMethods_base: Help for ceiling: ceiling(Real or Cplx) Returns the smallest integer >= to the argument. - See also: 1/ floor 2/ round + See also: 1/ floor 2/ round Ex1:ceiling(-4.2) Ex2:ceiling(4.3+2.4*i) - + ''' return GiacMethods['ceiling'](self,*args) @@ -2120,10 +2120,10 @@ cdef class GiacMethods_base: Help for center: center(Crcle) Shows the center of a circle. - See also: 1/ circle 2/ radius + See also: 1/ circle 2/ radius Ex1:center(circle(1+i,2)) Ex2:center(circumcircle(0,1,1+i)) - + ''' return GiacMethods['center'](self,*args) @@ -2132,10 +2132,10 @@ cdef class GiacMethods_base: Help for center2interval: center2interval(LstVal(l),[Real(a0)]) Returns the list of intervals beginning with a0 and with l as centers. - See also: 1/ interval2center + See also: 1/ interval2center Ex1:center2interval([2,5,9],1) Ex2:center2interval([2,5,8]) - + ''' return GiacMethods['center2interval'](self,*args) @@ -2144,10 +2144,10 @@ cdef class GiacMethods_base: Help for centered_cube: centered_cube(Pnt(A),Pnt(B),Pnt(C)) Draws the direct cube with center A, vertex B and such that the plane ABC contains an axis of symmetry of the cube. - See also: 1/ parallelepiped 2/ cube 3/ icosahedron 4/ dodecahedron 5/ octahedron 6/ centered_tetrahedron + See also: 1/ parallelepiped 2/ cube 3/ icosahedron 4/ dodecahedron 5/ octahedron 6/ centered_tetrahedron Ex1:centered_cube([0,0,0],[3,0,0],[0,0,1]) Ex2:centered_cube(evalf([0,0,0],[3,2,4],[1,1,0])) - + ''' return GiacMethods['centered_cube'](self,*args) @@ -2156,10 +2156,10 @@ cdef class GiacMethods_base: Help for centered_tetrahedron: centered_tetrahedron(Pnt(A),Pnt(B),Pnt(C)) Draws the regular direct pyramid with center A, vertex B and a vertex in the plane (A,B,C). - See also: 1/ cube 2/ tetrahedron 3/ icosahedron 4/ dodecahedron 5/ octahedron + See also: 1/ cube 2/ tetrahedron 3/ icosahedron 4/ dodecahedron 5/ octahedron Ex1:centered_tetrahedron([0,0,0],[3,0,0],[0,1,0]) Ex2:centered_tetrahedron(evalf([0,0,0],[3,2,4],[1,1,0])) - + ''' return GiacMethods['centered_tetrahedron'](self,*args) @@ -2168,11 +2168,11 @@ cdef class GiacMethods_base: Help for cfactor: cfactor(Expr) Factorization of the expression in ℂ (on the Gaussian integers if there are more than 2 variables). - See also: 1/ factor + See also: 1/ factor Ex1:cfactor(x^2*y+y) Ex2:cfactor(x^2*y^2+y^2+4*x^2+4) Ex3:cfactor(x^2*y^2+y^2+2*x^2+2) - + ''' return GiacMethods['cfactor'](self,*args) @@ -2181,10 +2181,10 @@ cdef class GiacMethods_base: Help for cfsolve: cfsolve(Expr,Var,[Guess or Interval],[Method]) Numerical solution of an equation or a system of equations on ℂ. - See also: 1/ fsolve 2/ nSolve 3/ csolve 4/ solve + See also: 1/ fsolve 2/ nSolve 3/ csolve 4/ solve Ex1:cfsolve(cos(x)=2) Ex2:cfsolve([x^2+y+2,x+y^2+2],[x,y]) - + ''' return GiacMethods['cfsolve'](self,*args) @@ -2193,10 +2193,10 @@ cdef class GiacMethods_base: Help for changebase: changebase(Mtrx(A),Mtrx(P)) Returns the matrix B=inv(P)*A*P. - See also: 1/ + See also: 1/ Ex1:changebase([[1,2],[1,3]],[[1,1],[0,1]]) Ex2:changebase([[1,2],[1,3]],[[1,0],[1,1]]) - + ''' return GiacMethods['changebase'](self,*args) @@ -2205,12 +2205,12 @@ cdef class GiacMethods_base: Help for channel_data: channel_data(Lst(clip),[Intg(chn) or matrix],[range=a..b]) Extracts the data from an audio clip (optionally specifying the channel and range). - See also: 1/ bit_depth 2/ channels 3/ duration 4/ samplerate + See also: 1/ bit_depth 2/ channels 3/ duration 4/ samplerate Ex1:channel_data(readwav("/some/file")) Ex2:channel_data(readwav("/some/file"),matrix) Ex3:channel_data(readwav("/some/file"),2) Ex4:channel_data(readwav("/some/file"),matrix,range=1.0..2.5) - + ''' return GiacMethods['channel_data'](self,*args) @@ -2219,9 +2219,9 @@ cdef class GiacMethods_base: Help for channels: channels(Lst(clip)) Returns the number of channels in audio clip. - See also: 1/ bit_depth 2/ channel_data 3/ duration 4/ samplerate + See also: 1/ bit_depth 2/ channel_data 3/ duration 4/ samplerate Ex1:channels(readwav("/some/file")) - + ''' return GiacMethods['channels'](self,*args) @@ -2230,10 +2230,10 @@ cdef class GiacMethods_base: Help for char: char(Intg or Lst(Intg)) Returns the string corresponding to the character code of the argument. - See also: 1/ asc 2/ ord + See also: 1/ asc 2/ ord Ex1:char(65) Ex2:char([65,66,67]) - + ''' return GiacMethods['char'](self,*args) @@ -2242,12 +2242,12 @@ cdef class GiacMethods_base: Help for charpoly: charpoly(Mtrx,[Var]) List of the coefficients of the characteristic polynomial of a matrix or characteristic polynomial of a matrix with the second argument as variable. - See also: 1/ jordan 2/ egv 3/ egvl 4/ companion 5/ rat_jordan 6/ pmin 7/ adjoint_matrix + See also: 1/ jordan 2/ egv 3/ egvl 4/ companion 5/ rat_jordan 6/ pmin 7/ adjoint_matrix Ex1:charpoly([[1,2],[3,4]]) Ex2:charpoly([[1,2],[3,4]],x) Ex3:charpoly([[1,2,3],[1,3,6],[2,5,7]]) Ex4:charpoly([[1,2,3],[1,3,6],[2,5,7]],z) - + ''' return GiacMethods['charpoly'](self,*args) @@ -2256,10 +2256,10 @@ cdef class GiacMethods_base: Help for chinrem: chinrem([Lst||Expr,Lst||Expr],[Lst||Expr,Lst||Expr]) Chinese remainder for polynomials written as lists or no. - See also: 1/ ichinrem + See also: 1/ ichinrem Ex1:chinrem([x+2,x^2+1],[x+1,x^2+x+1]) Ex2:chinrem([[1,2],[1,0,1]],[[1,1],[1,1,1]]) - + ''' return GiacMethods['chinrem'](self,*args) @@ -2268,12 +2268,12 @@ cdef class GiacMethods_base: Help for chisquare: chisquare(Intg(n),Real(x0)) Returns the probability density of the Chi^2 law at x0 (n is the number of degrees of freedom). - See also: 1/ chisquare_cdf 2/ chisquare_icdf 3/ randvector 4/ ranm + See also: 1/ chisquare_cdf 2/ chisquare_icdf 3/ randvector 4/ ranm Ex1:chisquare(2,3.2) Ex2:chisquare(4,10.5) Ex3: randvector(3,chisquare,2) Ex4: ranm(4,3,chisquare,2) - + ''' return GiacMethods['chisquare'](self,*args) @@ -2282,10 +2282,10 @@ cdef class GiacMethods_base: Help for chisquare_cdf: chisquare_cdf(Intg(n),Real(x0)) Returns the probability that a Chi^2 random variable is less than x0 (n is the number of degrees of freedom). - See also: 1/ UTPC 2/ chisquare_icdf 3/ chisquared + See also: 1/ UTPC 2/ chisquare_icdf 3/ chisquared Ex1:chisquare_cdf(2,6.1) Ex2:chisquare_cdf(4,6.1) - + ''' return GiacMethods['chisquare_cdf'](self,*args) @@ -2294,10 +2294,10 @@ cdef class GiacMethods_base: Help for chisquare_icdf: chisquare_icdf(Intg(n),Real(p)) Returns h such as the probability that a Chi^2 random variable is less than h is p (n is the number of degrees of freedom and 0<=p<=1). - See also: 1/ chisquare_cdf 2/ chisquared + See also: 1/ chisquare_cdf 2/ chisquared Ex1:chisquare_icdf(2,0.95) Ex2:chisquare_icdf(4,0.05) - + ''' return GiacMethods['chisquare_icdf'](self,*args) @@ -2306,12 +2306,12 @@ cdef class GiacMethods_base: Help for chisquared: chisquared(Intg(n),Real(x0)) Returns the probability density of the Chi^2 law at x0 (n is the number of degrees of freedom). - See also: 1/ chisquare_cdf 2/ chisquare_icdf 3/ randvector 4/ ranm + See also: 1/ chisquare_cdf 2/ chisquare_icdf 3/ randvector 4/ ranm Ex1:chisquared(2,3.2) Ex2:chisquared(4,10.5) Ex3: randvector(3,chisquare,2) Ex4: ranm(4,3,chisquare,2) - + ''' return GiacMethods['chisquared'](self,*args) @@ -2320,10 +2320,10 @@ cdef class GiacMethods_base: Help for chisquared_cdf: chisquared_cdf(Intg(n),Real(x0)) Returns the probability that a Chi^2 random variable is less than x0 (n is the number of degrees of freedom). - See also: 1/ UTPC 2/ chisquare_icdf 3/ chisquared + See also: 1/ UTPC 2/ chisquare_icdf 3/ chisquared Ex1:chisquared_cdf(2,6.1) Ex2:chisquared_cdf(4,6.1) - + ''' return GiacMethods['chisquared_cdf'](self,*args) @@ -2332,10 +2332,10 @@ cdef class GiacMethods_base: Help for chisquared_icdf: chisquared_icdf(Intg(n),Real(p)) Returns h such as the probability that a Chi^2 random variable is less than h is p (n is the number of degrees of freedom and 0<=p<=1). - See also: 1/ chisquare_cdf 2/ chisquared + See also: 1/ chisquare_cdf 2/ chisquared Ex1:chisquared_icdf(2,0.95) Ex2:chisquared_icdf(4,0.05) - + ''' return GiacMethods['chisquared_icdf'](self,*args) @@ -2344,7 +2344,7 @@ cdef class GiacMethods_base: Help for chisquaret: chisquaret(Data,[Func],[FuncParams]) Chi^2 test : fitness between 2 (or n) samples or between 1 sample and a distribution law (multinomial or given by a law). - See also: 1/ normalt 2/ studentt 3/ kolmogorovt + See also: 1/ normalt 2/ studentt 3/ kolmogorovt Ex1:chisquaret([57,54]) Ex2:chisquaret([1,1,1,1,1,0,0,1,0,0,1,1,1,0,1,1,0,1,1,0,0,0,0],[.4,.6]) Ex3:chisquaret([57,30],[.6,.4]) @@ -2354,7 +2354,7 @@ cdef class GiacMethods_base: Ex7:chisquaret(ranv(1000,normald,0,.2),normald) Ex8:chisquaret([11,16,17,22,14,10],[1/6,1/6,1/6,1/6,1/6,1/6]) Ex9:chisquaret([11,16,17,22,14,10],[(1/6)$6]) - + ''' return GiacMethods['chisquaret'](self,*args) @@ -2363,12 +2363,12 @@ cdef class GiacMethods_base: Help for choice: choice(Lst(L)) choice(L)=rand(L)=one extracted element of L. - See also: 1/ rand 2/ sample + See also: 1/ rand 2/ sample Ex1:choice([1,2,3,4,5,6]) Ex2:choice(["r","r","r","b","n"]) Ex3: L:=[1,2,3,4,5,6];L:=choice(L) Ex4: L:=[1,2,3,4,5,6];L.choice() - + ''' return GiacMethods['choice'](self,*args) @@ -2377,9 +2377,9 @@ cdef class GiacMethods_base: Help for cholesky: cholesky(Mtrx) For a numerical symmetric matrix A, returns L matrix such that A=L*tran(L). - See also: 1/ lu 2/ qr 3/ gauss + See also: 1/ lu 2/ qr 3/ gauss Ex1:cholesky([[3,1],[1,4]]) - + ''' return GiacMethods['cholesky'](self,*args) @@ -2388,10 +2388,10 @@ cdef class GiacMethods_base: Help for chr: chr(Intg or Lst(Intg)) Returns the string corresponding to the character code of the argument. - See also: 1/ asc 2/ ord + See also: 1/ asc 2/ ord Ex1:chr(65) Ex2:chr([65,66,67]) - + ''' return GiacMethods['chr'](self,*args) @@ -2400,13 +2400,13 @@ cdef class GiacMethods_base: Help for chrem: chrem(LstIntg(a,b,c....),LstIntg(p,q,r,....)) Chinese remainders for integers or for polynomials. - See also: 1/ gcd 2/ fracmod 3/ chinrem 4/ ichinrem + See also: 1/ gcd 2/ fracmod 3/ chinrem 4/ ichinrem Ex1:chrem(symbolique.) Ex2:chrem([2,3],[7,5]) Ex3:chrem([2,4,6],[3,5,7]) Ex4:chrem([2,4,6,7],[3,5,7,11]) Ex5:chrem([2*x+1,4*x+2,6*x-1,x+1],[3,5,7,11]) - + ''' return GiacMethods['chrem'](self,*args) @@ -2415,10 +2415,10 @@ cdef class GiacMethods_base: Help for chromatic_index: chromatic_index(Graph(G),[Lst(cols)]) Returns the number of colors in the minimal edge coloring of G. If an unassigned identifier cols is given, the coloring is stored to it. - See also: 1/ minimal_edge_coloring 2/ chromatic_number + See also: 1/ minimal_edge_coloring 2/ chromatic_number Ex1:chromatic_index(graph("petersen")) Ex2:chromatic_index(graph("dodecahedron"),colors) - + ''' return GiacMethods['chromatic_index'](self,*args) @@ -2428,7 +2428,7 @@ cdef class GiacMethods_base: chromatic_number(Graph(G)) Returns the chromatic number of G. Ex1:chromatic_number(graph("petersen")) - + ''' return GiacMethods['chromatic_number'](self,*args) @@ -2437,10 +2437,10 @@ cdef class GiacMethods_base: Help for chromatic_polynomial: chromatic_polynomial(Graph(G),[Var(t)]) Returns the chromatic polynomial [or its value at point t] of undirected unweighted graph G. - See also: 1/ flow_polynomial 2/ reliability_polynomial 3/ tutte_polynomial + See also: 1/ flow_polynomial 2/ reliability_polynomial 3/ tutte_polynomial Ex1:chromatic_polynomial(graph("petersen")) Ex2:chromatic_polynomial(graph("petersen"),3) - + ''' return GiacMethods['chromatic_polynomial'](self,*args) @@ -2449,7 +2449,7 @@ cdef class GiacMethods_base: Help for circle: circle((Pnt(M) or Cplx(M),(Pnt(N) or Cplx(zN)),[Real(a)],[Real(b)],[Var(A)],[Var(B)]) Define for 2-d a circle with a diameter MN (arg1=M or zM,arg2=N) or with center and radius (arg1=M or zM,arg2=zN) and (center=M and radius=abs(zN)) [or the arc AB, A angle a, B angle b, (MN=angle 0) or M(M+zN)=angle 0] or by its equation and for 3-d with a diameter and a third point. - See also: 1/ circumcircle 2/ incircle 3/ excircle 4/ center 5/ radius 6/ sphere 7/ Circle + See also: 1/ circumcircle 2/ incircle 3/ excircle 4/ center 5/ radius 6/ sphere 7/ Circle Ex1:circle(0,point(2*i)) Ex2:circle(i,i) Ex3:circle(i,1) @@ -2458,7 +2458,7 @@ cdef class GiacMethods_base: Ex6:circle(x^2+y^2-x-y) Ex7:circle(cercle(point([-1,0,0]),point([1,0,0]),point([0,2,0]))) Ex8:circle(cercle([-1,0,0],point([1,0,0]),[0,2,0])) - + ''' return GiacMethods['circle'](self,*args) @@ -2467,9 +2467,9 @@ cdef class GiacMethods_base: Help for circumcircle: circumcircle((Pnt or Cplx),(Pnt or Cplx),((Pnt or Cplx)) circumcircle(A,B,C)=circumcircle of the triangle ABC. - See also: 1/ circle 2/ incircle 3/ excircle + See also: 1/ circle 2/ incircle 3/ excircle Ex1:circumcircle(0,1,1+i) - + ''' return GiacMethods['circumcircle'](self,*args) @@ -2478,13 +2478,13 @@ cdef class GiacMethods_base: Help for classes: classes(Lst(l),[ClassMin],[ClassSize||Lst(Center)]) Returns the matrix [[class,number],...] obtained with class_min and class_size: see init of geo or argument 2 and 3 or with the list of centers. - See also: 1/ histogram 2/ cumulated_frequencies 3/ bar_plot 4/ frequencies + See also: 1/ histogram 2/ cumulated_frequencies 3/ bar_plot 4/ frequencies Ex1:classes([1,1.2,1.4,1.6,1.8,2,2.5]) Ex2:classes([1,1.2,1.4,1.6,1.8,2,2.5],1.2,0.5) Ex3:classes([1,1.2,1.4,1.6,1.8,2,2.5],1,[1.2,1.6,2,2.4]) Ex4:classes([1,1.2,1.4,1.6,1.8,2,2.5],1,[1.2,1.6,2.2]) Ex5:classes([0,0.5,1,1.5,2,2.5,3,3.5,4],[0..2,2..4,4..6]) - + ''' return GiacMethods['classes'](self,*args) @@ -2493,9 +2493,9 @@ cdef class GiacMethods_base: Help for clear: clear(NULL) Clears the list of pixels. - See also: 1/ set_pixel 2/ show_pixels + See also: 1/ set_pixel 2/ show_pixels Ex1:clear() - + ''' return GiacMethods['clear'](self,*args) @@ -2504,11 +2504,11 @@ cdef class GiacMethods_base: Help for clique_cover: clique_cover(Graph(G),[Intg(k)]) Returns a clique vertex cover of G [containing at most k cliques]. - See also: 1/ clique_cover_number 2/ maximal_cliques + See also: 1/ clique_cover_number 2/ maximal_cliques Ex1:clique_cover(graph("petersen")) Ex2:clique_cover(cycle_graph(5)) Ex3:clique_cover(graph_complement(complete_graph(3,4))) - + ''' return GiacMethods['clique_cover'](self,*args) @@ -2517,11 +2517,11 @@ cdef class GiacMethods_base: Help for clique_cover_number: clique_cover_number(Graph(G)) Returns the clique cover number of G. - See also: 1/ clique_cover 3/ maximal_cliques + See also: 1/ clique_cover 3/ maximal_cliques Ex1:clique_cover_number(graph("petersen")) Ex2:clique_cover_number(cycle_graph(5)) Ex3:clique_cover_number(graph_complement(complete_graph(3,4))) - + ''' return GiacMethods['clique_cover_number'](self,*args) @@ -2530,9 +2530,9 @@ cdef class GiacMethods_base: Help for clique_number: clique_number(Graph(G)) Returns the clique number of G, which is equal to the size of a maximum clique in G. - See also: 1/ maximum_clique + See also: 1/ maximum_clique Ex1:clique_number(graph_complement(complete_graph(3,4))) - + ''' return GiacMethods['clique_number'](self,*args) @@ -2541,11 +2541,11 @@ cdef class GiacMethods_base: Help for clique_stats: clique_stats(Graph(G),[Intg(k)||Intrv(m..n)]) Returns the list of numbers of maximal cliques of size s in G for each s. If parameter k is given, the number of k-cliques is returned. If an interval m..n is given, only cliques with size between m and n (inclusive) are counted (m also may be +infinity). - See also: 1/ maximum_clique 2/ clique_cover + See also: 1/ maximum_clique 2/ clique_cover Ex1:clique_stats(random_graph(50,0.5)) Ex2:clique_stats(random_graph(50,0.5),5) Ex3:clique_stats(random_graph(50,0.5),3..5) - + ''' return GiacMethods['clique_stats'](self,*args) @@ -2554,10 +2554,10 @@ cdef class GiacMethods_base: Help for clustering_coefficient: clustering_coefficient(Graph(G),[Vrtx(v)]) Returns the average clustering coefficient of undirected graph G, or the local clustering coefficient of the vertex v in G. - See also: 1/ network_transitivity 2/ number_of_triangles + See also: 1/ network_transitivity 2/ number_of_triangles Ex1:clustering_coefficient(graph(%{[1,2],[2,3],[2,4],[3,4],[4,1]%})) Ex2:clustering_coefficient(graph(%{[1,2],[2,3],[2,4],[3,4],[4,1]%}),2) - + ''' return GiacMethods['clustering_coefficient'](self,*args) @@ -2566,11 +2566,11 @@ cdef class GiacMethods_base: Help for coeff: coeff(Expr(P),[Var]) Returns the list of coefficients of a polynomial with respect to the 2nd argument or the coefficient of degree the 3rd argument. - See also: 1/ pcoeff 2/ fcoeff + See also: 1/ pcoeff 2/ fcoeff Ex1:coeff(x*3+2) Ex2:coeff(5*y^2-3,y) Ex3:coeff(5*y^2-3,y,2) - + ''' return GiacMethods['coeff'](self,*args) @@ -2579,11 +2579,11 @@ cdef class GiacMethods_base: Help for coeffs: coeffs(Expr(P),[Var]) Returns the list of coefficients of a polynomial with respect to the 2nd argument or the coefficient of degree the 3rd argument. - See also: 1/ pcoeff 2/ fcoeff + See also: 1/ pcoeff 2/ fcoeff Ex1:coeffs(x*3+2) Ex2:coeffs(5*y^2-3,y) Ex3:coeffs(5*y^2-3,y,2) - + ''' return GiacMethods['coeffs'](self,*args) @@ -2592,11 +2592,11 @@ cdef class GiacMethods_base: Help for col: col(Mtrx(A),Intg(n)||Interval(n1..n2)) Returns column n or the sequence of the columns n1..n2 of the matrix A, or optional argument of count,count_eq,count_inf,count_sup. - See also: 1/ row 2/ count 3/ count_eq 4/ count_inf 5/ count_sup + See also: 1/ row 2/ count 3/ count_eq 4/ count_inf 5/ count_sup Ex1:col([[1,2,3],[4,5,6],[7,8,9]],1) Ex2:col([[1,2,3],[4,5,6],[7,8,9]],0..1) Ex3: count_eq(3,[[3,2,3],[4,3,2],[3,2,1]],col) - + ''' return GiacMethods['col'](self,*args) @@ -2605,10 +2605,10 @@ cdef class GiacMethods_base: Help for colDim: colDim(Mtrx) Number of columns of a matrix. - See also: 1/ rowdim + See also: 1/ rowdim Ex1:colDim([[1,2,3],[4,5,6]]) Ex2:colDim([[1,2],[3,4],[5,6]]) - + ''' return GiacMethods['colDim'](self,*args) @@ -2617,10 +2617,10 @@ cdef class GiacMethods_base: Help for colNorm: colNorm(Vect or Mtrx) Returns the max of the l1_norm of the columns of a matrix: colNorm(a_{j,k})=max_k(sum_j(|a_{j,k}|)). - See also: 1/ norm + See also: 1/ norm Ex1:colNorm([[1,2],[3,-4]]) Ex2:colNorm([[1,2,3,-4],[-5,3,2,1]]) - + ''' return GiacMethods['colNorm'](self,*args) @@ -2629,9 +2629,9 @@ cdef class GiacMethods_base: Help for colSwap: colSwap(Mtrx(A),Intg(n1),Intg(n2)) Returns the matrix obtained from A by swapping the n1-th column and the n2-th column. - See also: 1/ rowSwap + See also: 1/ rowSwap Ex1:colSwap([[1,2],[3,4],[5,6]],0,1) - + ''' return GiacMethods['colSwap'](self,*args) @@ -2640,10 +2640,10 @@ cdef class GiacMethods_base: Help for coldim: coldim(Mtrx) Number of columns of a matrix. - See also: 1/ rowdim + See also: 1/ rowdim Ex1:coldim([[1,2,3],[4,5,6]]) Ex2:coldim([[1,2],[3,4],[5,6]]) - + ''' return GiacMethods['coldim'](self,*args) @@ -2652,11 +2652,11 @@ cdef class GiacMethods_base: Help for collect: collect(Poly or LstPoly) Integer factorization of a polynomial (or of a list of poly). - See also: 1/ factor 2/ factors + See also: 1/ factor 2/ factors Ex1:collect(x^2-4) Ex2:collect(x^2-2) Ex3:collect([x^2-2,x^2-4]) - + ''' return GiacMethods['collect'](self,*args) @@ -2665,10 +2665,10 @@ cdef class GiacMethods_base: Help for colnorm: colnorm(Vect or Mtrx) Returns the max of the l1_norm of the columns of a matrix: colNorm(a_{j,k})=max_k(sum_j(|a_{j,k}|)). - See also: 1/ norm + See also: 1/ norm Ex1:colnorm([[1,2],[3,-4]]) Ex2:colnorm([[1,2,3,-4],[-5,3,2,1]]) - + ''' return GiacMethods['colnorm'](self,*args) @@ -2677,7 +2677,7 @@ cdef class GiacMethods_base: Help for color: color([GeoObj or legende],Intg) Draws a geometrical object with colors black=0 red=1 green=2 yellow=3 blue=4, filled with the color in the interior of a closed curve,line_width_n (00 (by default a=1 for sine window) to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ bartlett_hann_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ bartlett_hann_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(cosine_window(randvector(1000,0..1),1.5)) - + ''' return GiacMethods['cosine_window'](self,*args) @@ -3260,9 +3260,9 @@ cdef class GiacMethods_base: Help for cot: cot(Expr) Cotangent. - See also: 1/ acot 2/ tan + See also: 1/ acot 2/ tan Ex1:cot(pi/2) - + ''' return GiacMethods['cot'](self,*args) @@ -3271,10 +3271,10 @@ cdef class GiacMethods_base: Help for cote: cote(Vect) Third coordinate (z) of a 3-d point. - See also: 1/ abscissa 2/ ordinate 3/ coordinates + See also: 1/ abscissa 2/ ordinate 3/ coordinates Ex1:cote(point[1,2,3]) Ex2:cote(point(1,2,3)) - + ''' return GiacMethods['cote'](self,*args) @@ -3283,7 +3283,7 @@ cdef class GiacMethods_base: Help for count: count(Fnc(f)||LstIntg,(Lst||Mtrx)(l),[Opt(row||col)]) Returns f(l[0])+f(l[1])+...+f(l[size(l)-1]) or counts the number of occurrences if the argument is a vector of integers. - See also: 1/ count_eq 2/ count_inf 3/ count_sup + See also: 1/ count_eq 2/ count_inf 3/ count_sup Ex1:count(id,[-2/5,-1,0,1,2,3/5]) Ex2:count(1,[-2,-1,0,1,2,3]) Ex3:count([1,3,1,1,2,10,3]) @@ -3294,7 +3294,7 @@ cdef class GiacMethods_base: Ex8:count((x)->x>2,[[3,5/2],[4,1]],col) Ex9:count((x)->x>2 && x<4,[[3,9/2],[4,1]]) Ex10:count((x)->x<2 || x>4,[[3,9/2],[4,1]]) - + ''' return GiacMethods['count'](self,*args) @@ -3303,12 +3303,12 @@ cdef class GiacMethods_base: Help for count_eq: count_eq(Real(a),(Lst||Mtrx)(L),[Opt(row||col)]) Returns the number of elements of L equal to a. - See also: 1/ count 2/ count_inf 3/ count_sup + See also: 1/ count 2/ count_inf 3/ count_sup Ex1:count_eq(1,[-2,1,0,1,2,-3]) Ex2:count_eq(4,[[3,4],[4,1]]) Ex3:count_eq(4,[[3,4],[4,1]],row) Ex4:count_eq(4,[[3,4],[4,1]],col) - + ''' return GiacMethods['count_eq'](self,*args) @@ -3317,12 +3317,12 @@ cdef class GiacMethods_base: Help for count_inf: count_inf(Real(a),(Lst||Mtrx)(L),[Opt(row||col)]) Returns the number of elements of L strictly less than a. - See also: 1/ count 2/ count_eq 3/ count_sup + See also: 1/ count 2/ count_eq 3/ count_sup Ex1:count_inf(1,[-2,-1,0,1,2,3]) Ex2:count_inf(4,[[3,5],[4,1]]) Ex3:count_inf(4,[[3,5],[4,1]],row) Ex4:count_inf(4,[[3,5],[4,1]],col) - + ''' return GiacMethods['count_inf'](self,*args) @@ -3331,12 +3331,12 @@ cdef class GiacMethods_base: Help for count_sup: count_sup(Real(a),(Lst||Mtrx)(L),[Opt(row||col)]) Returns the number of elements of L strictly greater than a. - See also: 1/ count 2/ count_inf 3/ count_eq + See also: 1/ count 2/ count_inf 3/ count_eq Ex1:count_sup(1,[-2,-1,0,1,2,3]) Ex2:count_sup(3,[[3,5],[4,1]]) Ex3:count_sup(3,[[3,5],[4,1]],row) Ex4:count_sup(3,[[3,5],[4,1]],col) - + ''' return GiacMethods['count_sup'](self,*args) @@ -3345,7 +3345,7 @@ cdef class GiacMethods_base: Help for courbe_parametrique: courbe_parametrique(Cplx||Lst,Var||Lst(Var)) plotparam(a(x)+i*b(x),x=x0..x1) draws the curve X=a(x),Y=b(x) x=x0..x1 or plotparam([a(u,v),b(u,v),c(u,v)],[u=u0..u1,v=v0..v1]) draws the surface X=a(u,v),Y=b(u,v),Z=c(u,v) u=u0..u1 and v=v0..v1. - See also: 1/ plotfunc 2/ plotpolar 3/ arc + See also: 1/ plotfunc 2/ plotpolar 3/ arc Ex1:courbe_parametrique(sin(t)+i*cos(t),t) Ex2:courbe_parametrique(exp(i*t),t=0..pi/2,affichage=1) Ex3:courbe_parametrique(exp(i*t),t=0..pi/2,affichage=1+rempli) @@ -3354,7 +3354,7 @@ cdef class GiacMethods_base: Ex6:courbe_parametrique(sin(x)+i*cos(x),x=0..1,tstep=0.01) Ex7:courbe_parametrique([v*cos(u),v*sin(u),v],[u,v]) Ex8:courbe_parametrique([v*cos(u),v*sin(u),v],[u=0..pi,v=0..3],ustep=0.1,vstep=0.2) - + ''' return GiacMethods['courbe_parametrique'](self,*args) @@ -3363,10 +3363,10 @@ cdef class GiacMethods_base: Help for courbe_polaire: courbe_polaire(Expr,Var,VarMin,VarMax) plotpolar(f(x),x,a,b) draws the polar curve r=f(x) for x in [a,b]. - See also: 1/ plotparam 2/ plotfunc 3/ plotpolar + See also: 1/ plotparam 2/ plotfunc 3/ plotpolar Ex1:courbe_polaire(sin(2*x),x,0,pi) Ex2:courbe_polaire(sin(2*x),x,0,pi,tstep=0.1) - + ''' return GiacMethods['courbe_polaire'](self,*args) @@ -3375,9 +3375,9 @@ cdef class GiacMethods_base: Help for covariance: covariance(Lst||Mtrx,[Lst]) Returns the covariance of the elements of its argument. - See also: 1/ correlation 2/ covariance_correlation + See also: 1/ correlation 2/ covariance_correlation Ex1:covariance([[1,2],[1,1],[4,7]]) - + ''' return GiacMethods['covariance'](self,*args) @@ -3386,9 +3386,9 @@ cdef class GiacMethods_base: Help for covariance_correlation: covariance_correlation(Lst||Mtrx,[Lst]) Returns the list of the covariance and the correlation of the elements of its argument. - See also: 1/ covariance 2/ correlation + See also: 1/ covariance 2/ correlation Ex1:covariance_correlation([[1,2],[1,1],[4,7]]) - + ''' return GiacMethods['covariance_correlation'](self,*args) @@ -3397,11 +3397,11 @@ cdef class GiacMethods_base: Help for cpartfrac: cpartfrac(RatFrac) Performs partial fraction decomposition in ℂ of a fraction. - See also: 1/ factor 2/ normal + See also: 1/ factor 2/ normal Ex1:cpartfrac((x)/(4-x^2)) Ex2:cpartfrac((x^2-2*x+3)/(x^2-3*x+2)) Ex3:cpartfrac(a/(z*(z-b)),z) - + ''' return GiacMethods['cpartfrac'](self,*args) @@ -3410,9 +3410,9 @@ cdef class GiacMethods_base: Help for crationalroot: crationalroot(Poly(P)) Returns the list of complex rational roots of P without indicating the multiplicity. - See also: 1/ proot 2/ froot 3/ complexroot 4/ rationalroot 5/ realroot + See also: 1/ proot 2/ froot 3/ complexroot 4/ rationalroot 5/ realroot Ex1:crationalroot(2*x^3+(-5-7*i)*x^2+(-4+14*i)*x+8-4*i) - + ''' return GiacMethods['crationalroot'](self,*args) @@ -3421,12 +3421,12 @@ cdef class GiacMethods_base: Help for crayon: crayon(Color) Changes the color of the pencil (without parameter, returns the current color). - See also: 1/ leve_crayon 2/ baisse_crayon + See also: 1/ leve_crayon 2/ baisse_crayon Ex1: crayon vert Ex2:crayon(rouge) Ex3:crayon(5) Ex4:crayon(gomme) - + ''' return GiacMethods['crayon'](self,*args) @@ -3435,13 +3435,13 @@ cdef class GiacMethods_base: Help for createwav: createwav(Lst(data),[opts]) Returns an audio clip from data, optionally setting channel count, bit depth, sample rate, duration and normalization level. - See also: 1/ readwav 2/ writewav 3/ playsnd + See also: 1/ readwav 2/ writewav 3/ playsnd Ex1:createwav(duration=3.5) Ex2:createwav(sin(2*pi*440*soundsec(2)),samplerate=48000) Ex3:createwav(sin(2*pi*440*soundsec(2)),bit_depth=8) Ex4:createwav(10*sin(2*pi*440*soundsec(2)),normalize=-3) Ex5: t:=soundsec(3):;L,R:=sin(2*pi*440*t),sin(2*pi*445*t):;createwav([L,R]) - + ''' return GiacMethods['createwav'](self,*args) @@ -3450,10 +3450,10 @@ cdef class GiacMethods_base: Help for cross: cross(Vect(v1),Vect(v2)) Wedge product. - See also: 1/ dot + See also: 1/ dot Ex1:cross([1,2],[3,4]) Ex2:cross([1,2,3],[4,5,6]) - + ''' return GiacMethods['cross'](self,*args) @@ -3462,10 +3462,10 @@ cdef class GiacMethods_base: Help for crossP: crossP(Vect(v1),Vect(v2)) Wedge product. - See also: 1/ dot + See also: 1/ dot Ex1:crossP([1,2],[3,4]) Ex2:crossP([1,2,3],[4,5,6]) - + ''' return GiacMethods['crossP'](self,*args) @@ -3474,9 +3474,9 @@ cdef class GiacMethods_base: Help for cross_correlation: cross_correlation(cross_correlation(Lst(u),Lst(v))) Returns the cross_correlation of two signals u and v. - See also: 1/ auto_correlation 2/ correlation + See also: 1/ auto_correlation 2/ correlation Ex1:cross_correlation([1,2],[3,4,5]) - + ''' return GiacMethods['cross_correlation'](self,*args) @@ -3485,10 +3485,10 @@ cdef class GiacMethods_base: Help for cross_point: cross_point(Opt) Option of the display command for a point. - See also: 1/ display + See also: 1/ display Ex1: F:=display(point(2+1.5*i),point_point) Ex2: F:=display(point(2+1.5*i),rhombus_point) - + ''' return GiacMethods['cross_point'](self,*args) @@ -3497,11 +3497,11 @@ cdef class GiacMethods_base: Help for cross_ratio: cross_ratio(Pnt or Cplx(a),Pnt or Cplx(b),Pnt or Cplx(c),Pnt or Cplx(d)) Returns the complex number equal to ((c-a)/(c-b))/((d-a)/(d-b)). - See also: 1/ harmonic_conjugate 2/ is_conjugate + See also: 1/ harmonic_conjugate 2/ is_conjugate Ex1:cross_ratio(i,2+i,3/2+i,3+i) Ex2:cross_ratio(0,1+i,1,i) Ex3:cross_ratio(0,1,2,3) - + ''' return GiacMethods['cross_ratio'](self,*args) @@ -3510,10 +3510,10 @@ cdef class GiacMethods_base: Help for crossproduct: crossproduct(Vect(v1),Vect(v2)) Wedge product. - See also: 1/ dot + See also: 1/ dot Ex1:crossproduct([1,2],[3,4]) Ex2:crossproduct([1,2,3],[4,5,6]) - + ''' return GiacMethods['crossproduct'](self,*args) @@ -3522,9 +3522,9 @@ cdef class GiacMethods_base: Help for csc: csc(Expr) Cosecant: csc(x)=1/sin(x). - See also: 1/ sin 2/ acsc + See also: 1/ sin 2/ acsc Ex1:csc(pi/2) - + ''' return GiacMethods['csc'](self,*args) @@ -3533,12 +3533,12 @@ cdef class GiacMethods_base: Help for csolve: csolve(LstEq,LstVar) Returns the list of complex solutions of an equation or a matrix where the rows are ℂ-solutions of a system of polynomial equations. - See also: 1/ cZeros 2/ solve 3/ fslove + See also: 1/ cZeros 2/ solve 3/ fslove Ex1:csolve(x^4-1,x) Ex2:csolve(x^4-y^4 and x+y=2,[x,y]) Ex3:csolve(x^4-y^4 and x+y=0 and x^2=2*x,[x,y]) Ex4:csolve(u*v-u=v and v^2=u,[u,v]) - + ''' return GiacMethods['csolve'](self,*args) @@ -3547,9 +3547,9 @@ cdef class GiacMethods_base: Help for csv2gen: csv2gen(Strng(filename),Strng(sep),Strng(nl),Strng(decsep),Strng(eof),[string]) Reads a file (or string) in CSV format. - See also: 1/ read + See also: 1/ read Ex1:csv2gen("mat.txt",",",char(10),".") - + ''' return GiacMethods['csv2gen'](self,*args) @@ -3558,13 +3558,13 @@ cdef class GiacMethods_base: Help for cube: cube(Pnt(A),Pnt(B),Pnt(C)) Draws the direct cube with vertices A,B with a face in the plane (A,B,C). - See also: 1/ parallelepiped 2/ cylinder 3/ icosahedron 4/ dodecahedron 5/ octahedron 6/ tetrahedron 7/ centered_cube - Ex1:cube([0,0,0],[3,0,0],[0,0,1]) - Ex2: A,B,C:=point(1,0,0),point(1,1,0),point(0,1,0);c:=cube(A,B,C);A,B,C,D,E,F,G,H:=sommets(c); - Ex3: A,B,K:=point(1,0,0),point(1,1,0),point(0,2,0);c:=cube(A,B,C);A,B,C,D,E,F,G,H:=sommets(c); - Ex4: c:=cube([0,0,0],[1,0,0],[0,1,0]);c1,c2,c4,c3,c5,c6,c7,c8:=sommets(c); - Ex5: c:=cube([0,0,0],[0,2,0],[0,0,1]);c1,c2,c4,c3,c5,c6,c7,c8:=sommets(c); - + See also: 1/ parallelepiped 2/ cylinder 3/ icosahedron 4/ dodecahedron 5/ octahedron 6/ tetrahedron 7/ centered_cube + Ex1:cube([0,0,0],[3,0,0],[0,0,1]) + Ex2: A,B,C:=point(1,0,0),point(1,1,0),point(0,1,0);c:=cube(A,B,C);A,B,C,D,E,F,G,H:=sommets(c); + Ex3: A,B,K:=point(1,0,0),point(1,1,0),point(0,2,0);c:=cube(A,B,C);A,B,C,D,E,F,G,H:=sommets(c); + Ex4: c:=cube([0,0,0],[1,0,0],[0,1,0]);c1,c2,c4,c3,c5,c6,c7,c8:=sommets(c); + Ex5: c:=cube([0,0,0],[0,2,0],[0,0,1]);c1,c2,c4,c3,c5,c6,c7,c8:=sommets(c); + ''' return GiacMethods['cube'](self,*args) @@ -3573,11 +3573,11 @@ cdef class GiacMethods_base: Help for cumSum: cumSum(Lst(l)||Seq||Str) Returns the list (or the sequence or the string) lr where the elements are the cumulative sum of the list l: lr[k]=sum(l[j],j=0..k) (or lr=sum(l[j],j=0..k)$(k=0..size(l)-1)). - See also: 1/ sum + See also: 1/ sum Ex1:cumSum([0,1,2,3,4]) Ex2:cumSum(1.2,3,4.5,6) Ex3:cumSum("a","b","c","d") - + ''' return GiacMethods['cumSum'](self,*args) @@ -3586,11 +3586,11 @@ cdef class GiacMethods_base: Help for cumsum: cumsum(Lst(l)||Seq||Str) Returns the list (or the sequence or the string) lr where the elements are the cumulative sum of the list l: lr[k]=sum(l[j],j=0..k) (or lr=sum(l[j],j=0..k)$(k=0..size(l)-1)). - See also: 1/ sum + See also: 1/ sum Ex1:cumsum([0,1,2,3,4]) Ex2:cumsum(1.2,3,4.5,6) Ex3:cumsum("a","b","c","d") - + ''' return GiacMethods['cumsum'](self,*args) @@ -3599,13 +3599,13 @@ cdef class GiacMethods_base: Help for cumulated_frequencies: cumulated_frequencies(Lst || Mtrx) Draws the diagram of the cumulated frequencies (rows=[value,frequencies]) - See also: 1/ histogram 2/ classes 3/ bar_plot + See also: 1/ histogram 2/ classes 3/ bar_plot Ex1:cumulated_frequencies([1,2,1,1,2,1,2,4,3,3]) Ex2:cumulated_frequencies([(rand(6)+1)$(k=1..100)]) Ex3:cumulated_frequencies([[1,0.3],[2,0.5],[3,0.2]]) Ex4:cumulated_frequencies([[1..2,0.3],[2..3,0.5],[3..4,0.2]]) Ex5:cumulated_frequencies([[1..2,0.3,0.5],[2..3,0.5,0.2],[3..4,0.2,0.3]]) - + ''' return GiacMethods['cumulated_frequencies'](self,*args) @@ -3614,9 +3614,9 @@ cdef class GiacMethods_base: Help for curl: curl(Lst(A,B,C),Lst(x,y,z)) curl([A,B,C],[x,y,z])=[dC/dy-dB/dz,dA/dz-dC/dx,dB/dx-dA/dy]. - See also: 1/ derive 2/ divergence + See also: 1/ derive 2/ divergence Ex1:curl([2*x*y,x*z,y*z],[x,y,z]) - + ''' return GiacMethods['curl'](self,*args) @@ -3627,7 +3627,7 @@ cdef class GiacMethods_base: Content of the matrix editor or spreadsheet. Ex1:current_sheet(1,2) Ex2:current_sheet(A1..A5,B,G) - + ''' return GiacMethods['current_sheet'](self,*args) @@ -3636,7 +3636,7 @@ cdef class GiacMethods_base: Help for curvature: curvature(Curve,Point) Curvature of curve C at point M. - See also: 1/ osculating_circle 2/ evolute + See also: 1/ osculating_circle 2/ evolute Ex1:curvature(plot(x^2),point(1,1)) Ex2:curvature([5*cos(t),5*sin(t)],t) Ex3:curvature([t,t^2],t) @@ -3644,7 +3644,7 @@ cdef class GiacMethods_base: Ex5:curvature([3*exp(t/2)*cos(t),3*exp(t/2)*sin(t)],t) Ex6:curvature([3*exp(t/2)*cos(t),3*exp(t/2)*sin(t)],t,7) Ex7: trigcos(curvature([2*cos(t),2*sin(t),3*t],t)) - + ''' return GiacMethods['curvature'](self,*args) @@ -3653,8 +3653,8 @@ cdef class GiacMethods_base: Help for curve: curve(Expr) Reserved word. - See also: 1/ - + See also: 1/ + ''' return GiacMethods['curve'](self,*args) @@ -3663,10 +3663,10 @@ cdef class GiacMethods_base: Help for cyan: cyan(Opt) Option of the display command to display with color. - See also: 1/ display + See also: 1/ display Ex1: F:=display(point(2+1.5*i),red) Ex2: F:=display(point(2+1.5*i),point_point+green) - + ''' return GiacMethods['cyan'](self,*args) @@ -3675,9 +3675,9 @@ cdef class GiacMethods_base: Help for cycle2perm: cycle2perm(Cycle) Converts the cycle c to a permutation. - See also: 1/ cycles2permu 2/ permu2cycles + See also: 1/ cycles2permu 2/ permu2cycles Ex1:cycle2perm([1,3,5]) - + ''' return GiacMethods['cycle2perm'](self,*args) @@ -3686,10 +3686,10 @@ cdef class GiacMethods_base: Help for cycle_graph: cycle_graph(Intg(n)||Lst(V)) Returns a cyclic graph with n vertices (or with vertices from list V). - See also: 1/ graph 2/ path_graph + See also: 1/ graph 2/ path_graph Ex1:cycle_graph(4) Ex2:cycle_graph(["one","two","three","four","five"]) - + ''' return GiacMethods['cycle_graph'](self,*args) @@ -3698,9 +3698,9 @@ cdef class GiacMethods_base: Help for cycleinv: cycleinv(Cycle(c)) Returns the inverse cycle of the cycle c. - See also: 1/ perminv + See also: 1/ perminv Ex1:cycleinv([1,3,5]) - + ''' return GiacMethods['cycleinv'](self,*args) @@ -3709,9 +3709,9 @@ cdef class GiacMethods_base: Help for cycles2permu: cycles2permu(Lst(Cycle)) Converts a product of cycles into a permutation. - See also: 1/ permu2cycles 2/ cycle2perm + See also: 1/ permu2cycles 2/ cycle2perm Ex1:cycles2permu([[1,3,5],[3,4]]) - + ''' return GiacMethods['cycles2permu'](self,*args) @@ -3720,9 +3720,9 @@ cdef class GiacMethods_base: Help for cyclotomic: cyclotomic(Expr) N-th cyclotomic polynomial. - See also: 1/ none + See also: 1/ none Ex1:cyclotomic(20) - + ''' return GiacMethods['cyclotomic'](self,*args) @@ -3731,10 +3731,10 @@ cdef class GiacMethods_base: Help for cylinder: cylinder(Pnt(A),Vect(v),Real(r),[Real(h)]) Draws a cylinder with axis (A,v), with radius r [and with altitude h]. - See also: 1/ half_cone 2/ cone + See also: 1/ half_cone 2/ cone Ex1:cylinder([0,0,0],[0,1,0],2) Ex2:cylinder([0,0,0],[0,1,0],2,-3) - + ''' return GiacMethods['cylinder'](self,*args) @@ -3743,10 +3743,10 @@ cdef class GiacMethods_base: Help for dash_line: dash_line(Opt) Option of the display command for a line. - See also: 1/ display + See also: 1/ display Ex1: display(line(y=x),green+dash_line+line_width_2) Ex2: d:=display(line(2+i,1),cap_round_line) - + ''' return GiacMethods['dash_line'](self,*args) @@ -3755,10 +3755,10 @@ cdef class GiacMethods_base: Help for dashdot_line: dashdot_line(Opt) Option of the display command for a line. - See also: 1/ display + See also: 1/ display Ex1: display(line(y=x),green+dash_line+line_width_2) Ex2: d:=display(line(2+i,1),cap_round_line) - + ''' return GiacMethods['dashdot_line'](self,*args) @@ -3767,10 +3767,10 @@ cdef class GiacMethods_base: Help for dashdotdot_line: dashdotdot_line(Opt) Option of the display command for a line. - See also: 1/ display + See also: 1/ display Ex1: display(line(y=x),green+dash_line+line_width_2) Ex2: d:=display(line(2+i,1),cap_round_line) - + ''' return GiacMethods['dashdotdot_line'](self,*args) @@ -3781,7 +3781,7 @@ cdef class GiacMethods_base: dayofweek(d,m,y) returns the day of the given date (day,month,year) : 0 for sunday, 1 for monday ...6 for saturday. Ex1:dayofweek(21,4,2014) Ex2:dayofweek(15,10,1582) - + ''' return GiacMethods['dayofweek'](self,*args) @@ -3790,12 +3790,12 @@ cdef class GiacMethods_base: Help for deSolve: deSolve(Eq,[TimeVar],FncVar) Solves a differential equation or a differential linear system with constant coefficients. - See also: 1/ integrate 2/ diff 3/ odesolve 4/ plotode 5/ plotfiefd + See also: 1/ integrate 2/ diff 3/ odesolve 4/ plotode 5/ plotfiefd Ex1:deSolve(y'+x*y=0) Ex2:deSolve(y'+x*y=0,y) Ex3:deSolve(y'+x*y=0,[0,1]) Ex4:deSolve([y'+x*y=0,y(0)=1],y) - Ex5:deSolve([y'=[[1,2],[2,1]]*y+[x,x+1],y(0)=[1,2]]) + Ex5:deSolve([y'=[[1,2],[2,1]]*y+[x,x+1],y(0)=[1,2]]) Ex6:deSolve(y''+y=0,y) Ex7:deSolve([y''+y=sin(x),y(0)=1,y'(0)=2],y) Ex8:deSolve([y''+y=sin(x),y(0)=1,y'(0)=2],x,y) @@ -3807,7 +3807,7 @@ cdef class GiacMethods_base: Ex14:deSolve([z''+2*z'+z,z(0)=1,z'(0)=0],z(u)) Ex15:deSolve([z'=[[1,2],[2,1]]*z+[t,t+1],z(0)=[1,2]],t,z) Ex16:deSolve([z'=[[1,2],[2,1]]*z+[t,t+1],z(0)=[1,2]],z(t)) - + ''' return GiacMethods['deSolve'](self,*args) @@ -3816,10 +3816,10 @@ cdef class GiacMethods_base: Help for debut_enregistrement: debut_enregistrement(Var(nom_du_dessin)) Begins recording the commands making up the drawing; the name of the resulting procedure is the argument. - See also: 1/ fin_enregistrement + See also: 1/ fin_enregistrement Ex1:debut_enregistrement(maison) Ex2:debut_enregistrement(arbre) - + ''' return GiacMethods['debut_enregistrement'](self,*args) @@ -3828,11 +3828,11 @@ cdef class GiacMethods_base: Help for degree: degree(Poly(P),Var(Var)) Degree of the polynomial P with respect to the second argument. - See also: 1/ valuation 2/ size 3/ total_degree + See also: 1/ valuation 2/ size 3/ total_degree Ex1:degree(x^3+x) Ex2:degree([1,0,1,0]) Ex3:degree(x^3+x*y,y) - + ''' return GiacMethods['degree'](self,*args) @@ -3841,9 +3841,9 @@ cdef class GiacMethods_base: Help for degree_sequence: degree_sequence(Graph(G)) Returns the list of degrees of vertices of G (arc directions are ignored). - See also: 1/ is_graphic_sequence 2/ is_regular 2/ sequence_graph 3/ vertex_degree + See also: 1/ is_graphic_sequence 2/ is_regular 2/ sequence_graph 3/ vertex_degree Ex1:degree_sequence(graph(trail(1,2,3,4,2))) - + ''' return GiacMethods['degree_sequence'](self,*args) @@ -3852,11 +3852,11 @@ cdef class GiacMethods_base: Help for delcols: delcols(Mtrx(A),Interval(n1..n2)||n1) Returns the matrix where the columns n1..n2 (or n1) of the matrix A are deleted. - See also: 1/ delrows + See also: 1/ delrows Ex1:delcols([[1,2,3],[4,5,6],[7,8,9]],1..1) Ex2:delcols([[1,2,3],[4,5,6],[7,8,9]],0..1) Ex3:delcols([[1,2,3],[4,5,6],[7,8,9]],1) - + ''' return GiacMethods['delcols'](self,*args) @@ -3865,9 +3865,9 @@ cdef class GiacMethods_base: Help for delete_arc: delete_arc(Graph(G),Edge(e)||Trail(T)||Lst(E)) Returns a modified copy of digraph G with arc e (or trail T or list of arcs E) removed. - See also: 1/ add_arc 2/ delete_edge 3/ digraph 4/ edges 5/ has_arc 6/ trail + See also: 1/ add_arc 2/ delete_edge 3/ digraph 4/ edges 5/ has_arc 6/ trail Ex1:delete_arc(digraph(trail(1,2,3,4,5,1)),[5,1]) - + ''' return GiacMethods['delete_arc'](self,*args) @@ -3876,9 +3876,9 @@ cdef class GiacMethods_base: Help for delete_edge: delete_edge(Graph(G),Edge(e)||Trail(T)||Lst(E)) Returns a modified copy of undirected graph G with edge e (or trail T or list of edges E) removed. - See also: 1/ add_edge 2/ delete_arc 3/ edges 4/ graph 5/ has_edge 6/ trail + See also: 1/ add_edge 2/ delete_arc 3/ edges 4/ graph 5/ has_edge 6/ trail Ex1:delete_edge(cycle_graph(4),[1,2]) - + ''' return GiacMethods['delete_edge'](self,*args) @@ -3887,9 +3887,9 @@ cdef class GiacMethods_base: Help for delete_vertex: delete_vertex(Graph(G),Vrtx(v)||Lst(V)) Returns a modified copy of G with vertex v (or vertices from V) removed. - See also: 1/ add_vertex 2/ induced_subgraph + See also: 1/ add_vertex 2/ induced_subgraph Ex1:delete_vertex(cycle_graph(5),[1,4]) - + ''' return GiacMethods['delete_vertex'](self,*args) @@ -3898,11 +3898,11 @@ cdef class GiacMethods_base: Help for delrows: delrows(Mtrx(A),Interval(n1..n2)||n1) Returns the matrix where the rows n1..n2 (or n1) of the matrix A are deleted. - See also: 1/ delcols + See also: 1/ delcols Ex1:delrows([[1,2,3],[4,5,6],[7,8,9]],1..1) Ex2:delrows([[1,2,3],[4,5,6],[7,8,9]],0..1) Ex3:delrows([[1,2,3],[4,5,6],[7,8,9]],1) - + ''' return GiacMethods['delrows'](self,*args) @@ -3911,10 +3911,10 @@ cdef class GiacMethods_base: Help for deltalist: deltalist(Lst) Returns the list of the differences of two terms in succession. - See also: 1/ + See also: 1/ Ex1:deltalist([1,4,8,9]) Ex2:deltalist([1,8,4,9]) - + ''' return GiacMethods['deltalist'](self,*args) @@ -3923,11 +3923,11 @@ cdef class GiacMethods_base: Help for denom: denom(Frac(a/b) or RatFrac) Returns the denominator of the simplified fraction. - See also: 1/ getDenom 2/ getNum 3/ numer 4/ f2nd + See also: 1/ getDenom 2/ getNum 3/ numer 4/ f2nd Ex1:denom(25/15) Ex2:denom((x^3-1)/(x^2-1)) Ex3:denom(1+(x^3-1)/x^2) - + ''' return GiacMethods['denom'](self,*args) @@ -3936,10 +3936,10 @@ cdef class GiacMethods_base: Help for densityplot: densityplot(Expr,[x=xrange,y=yrange],[z],[xstep],[ystep]) Shows in the plane with colors the graph of an expression of 2 variables. - See also: 1/ plotfunc 2/ plotcontour + See also: 1/ plotfunc 2/ plotcontour Ex1:densityplot(x^2-y^2,[x=-2..2,y=-2..2],xstep=0.1,ystep=0.1) Ex2:densityplot(x^2-y^2,[x=-2..2,y=-2..2],z=-2..2,xstep=0.1,ystep=0.1) - + ''' return GiacMethods['densityplot'](self,*args) @@ -3948,9 +3948,9 @@ cdef class GiacMethods_base: Help for departures: departures(Graph(G),[Vrtx(v)]) Returns the list of vertices of digraph G which are connected by v with arcs such that tails are in v. If v is omitted, a list of departures is computed for every vertex in G. - See also: 1/ out_degree + See also: 1/ out_degree Ex1:departures(digraph(%{[1,2],[1,3],[2,3]%}),1) - + ''' return GiacMethods['departures'](self,*args) @@ -3959,7 +3959,7 @@ cdef class GiacMethods_base: Help for derive: derive(Expr or Fnc,[SeqVar or LstVar],[n]) Returns the derivative with respect to the 2nd argument. - See also: 1/ ' 2/ function_diff 3/ integrate 4/ taux_accroissement 5/ implicitdiff + See also: 1/ ' 2/ function_diff 3/ integrate 4/ taux_accroissement 5/ implicitdiff Ex1:derive(x^3-x) Ex2:derive(x^3-x,x,3) Ex3:derive(x^3-x,quote(x)$3) @@ -3968,7 +3968,7 @@ cdef class GiacMethods_base: Ex6:derive(x*y+z*y,y,z) Ex7:derive(x*y+z*y,[y,z]) Ex8: f(x):=sin(2x);g:=diff(f);h:=diff(diff(f)) - + ''' return GiacMethods['derive'](self,*args) @@ -3977,7 +3977,7 @@ cdef class GiacMethods_base: Help for deriver: deriver(Expr or Fnc,[SeqVar or LstVar],[n]) Returns the derivative with respect to the 2nd argument. - See also: 1/ ' 2/ function_diff 3/ integrate 4/ taux_accroissement 5/ implicitdiff + See also: 1/ ' 2/ function_diff 3/ integrate 4/ taux_accroissement 5/ implicitdiff Ex1:deriver(x^3-x) Ex2:deriver(x^3-x,x,3) Ex3:deriver(x^3-x,quote(x)$3) @@ -3986,7 +3986,7 @@ cdef class GiacMethods_base: Ex6:deriver(x*y+z*y,y,z) Ex7:deriver(x*y+z*y,[y,z]) Ex8: f(x):=sin(2x);g:=diff(f);h:=diff(diff(f)) - + ''' return GiacMethods['deriver'](self,*args) @@ -3995,12 +3995,12 @@ cdef class GiacMethods_base: Help for desolve: desolve(Eq,[TimeVar],FncVar) Solves a differential equation or a differential linear system with constant coefficients. - See also: 1/ integrate 2/ diff 3/ odesolve 4/ plotode 5/ plotfiefd + See also: 1/ integrate 2/ diff 3/ odesolve 4/ plotode 5/ plotfiefd Ex1:desolve(y'+x*y=0) Ex2:desolve(y'+x*y=0,y) Ex3:desolve(y'+x*y=0,[0,1]) Ex4:desolve([y'+x*y=0,y(0)=1],y) - Ex5:desolve([y'=[[1,2],[2,1]]*y+[x,x+1],y(0)=[1,2]]) + Ex5:desolve([y'=[[1,2],[2,1]]*y+[x,x+1],y(0)=[1,2]]) Ex6:desolve(y''+y=0,y) Ex7:desolve([y''+y=sin(x),y(0)=1,y'(0)=2],y) Ex8:desolve([y''+y=sin(x),y(0)=1,y'(0)=2],x,y) @@ -4012,7 +4012,7 @@ cdef class GiacMethods_base: Ex14:desolve([z''+2*z'+z,z(0)=1,z'(0)=0],z(u)) Ex15:desolve([z'=[[1,2],[2,1]]*z+[t,t+1],z(0)=[1,2]],t,z) Ex16:desolve([z'=[[1,2],[2,1]]*z+[t,t+1],z(0)=[1,2]],z(t)) - + ''' return GiacMethods['desolve'](self,*args) @@ -4021,11 +4021,11 @@ cdef class GiacMethods_base: Help for dessine_tortue: dessine_tortue([Intg(n)]) Draws the full (or not full if n=1) triangle representing the turtle. - See also: 1/ crayon + See also: 1/ crayon Ex1:dessine_tortue() Ex2:dessine_tortue(0) Ex3:dessine_tortue(1) - + ''' return GiacMethods['dessine_tortue'](self,*args) @@ -4034,10 +4034,10 @@ cdef class GiacMethods_base: Help for det: det(Mtrx) Determinant of a square matrix M. - See also: 1/ rref 2/ det_minor 3/ Det + See also: 1/ rref 2/ det_minor 3/ Det Ex1:det([[1,2],[3,4]]) Ex2:det([[1,2,3],[1,3,6],[2,5,7]]) - + ''' return GiacMethods['det'](self,*args) @@ -4046,9 +4046,9 @@ cdef class GiacMethods_base: Help for det_minor: det_minor(Mtrx(A)) Returns the determinant calculated with the calculus of minors. - See also: 1/ det + See also: 1/ det Ex1:det_minor([[1,2],[3,4]]) - + ''' return GiacMethods['det_minor'](self,*args) @@ -4057,13 +4057,13 @@ cdef class GiacMethods_base: Help for developper: developper(Expr) Full distribution of * and / over + and -. - See also: 1/ texpand 2/ normal 3/ simplify 4/ ratnormal + See also: 1/ texpand 2/ normal 3/ simplify 4/ ratnormal Ex1:developper((x+y)*(z+1)) Ex2:developper((a+b+c)/d) Ex3:developper((y+x)*(z+y)*(x+z)) Ex4:developper((x+3)^4) Ex5:developper((2*x-2*1)*(x^2-3*x+2)+(x^2-2*x+3)*(2*x-3*1)) - + ''' return GiacMethods['developper'](self,*args) @@ -4072,11 +4072,11 @@ cdef class GiacMethods_base: Help for developper_transcendant: developper_transcendant(Expr) Expands transcendental expressions. - See also: 1/ tcollect 2/ tlin 3/ lin 4/ trigexpand + See also: 1/ tcollect 2/ tlin 3/ lin 4/ trigexpand Ex1:developper_transcendant(sin(2*x)+exp(x+y)) Ex2:developper_transcendant(cos(x+y)) Ex3:developper_transcendant(cos(3*x)) - + ''' return GiacMethods['developper_transcendant'](self,*args) @@ -4085,13 +4085,13 @@ cdef class GiacMethods_base: Help for dfc: dfc(Real(x0),Int(n)||Real(eps)) Returns the continued fraction development at x0 of order n or with precision eps. - See also: 1/ dfc2f 2/ convert + See also: 1/ dfc2f 2/ convert Ex1:dfc(sqrt(2),5) Ex2:dfc(pi,4) Ex3:dfc(evalf(pi),1e-09) Ex4: convert(sqrt(2),confrac,'dev');dev Ex5: convert(9976/6961,confrac,'l');l - + ''' return GiacMethods['dfc'](self,*args) @@ -4100,10 +4100,10 @@ cdef class GiacMethods_base: Help for dfc2f: dfc2f(LstFrac_Cont)) Converts a continued fraction into a real. - See also: 1/ dfc 2/ convert + See also: 1/ dfc 2/ convert Ex1:dfc2f([1,1,1]) Ex2:dfc2f([1,2,[2]]) - + ''' return GiacMethods['dfc2f'](self,*args) @@ -4112,14 +4112,14 @@ cdef class GiacMethods_base: Help for diag: diag(Lst(l)||(Mtrx(A),[left||right||lu])||Lst(l),Lst(d),Lst(u)) With 1 argument returns either the diagonal matrix with diagonal l or the diagonal of A, with 2 arguments returns the large left (lower) triangular part of A or the large right (upper) triangular part of A or factors A into 3 parts : strict left (lower) triangular, diagonal, strict right (upper) triangular and with 3 arguments returns the tridiagonal matrix with diagonals l,d,u. - See also: 1/ identity 2/ lu 3/ BlockDiagonal 4/ upper 5/ lower + See also: 1/ identity 2/ lu 3/ BlockDiagonal 4/ upper 5/ lower Ex1:diag([[1,2],[3,4]]) Ex2:diag([1,2,3]) Ex3:diag([[1,2],[3,4]],left) Ex4:diag([[1,2],[3,4]],right) Ex5:diag([[1,2],[3,4]],lu) Ex6:diag([1,2],[3,4,5],[6,7]) - + ''' return GiacMethods['diag'](self,*args) @@ -4128,7 +4128,7 @@ cdef class GiacMethods_base: Help for diff: diff(Expr or Fnc,[SeqVar or LstVar],[n]) Returns the derivative with respect to the 2nd argument. - See also: 1/ ' 2/ function_diff 3/ integrate 4/ taux_accroissement 5/ implicitdiff + See also: 1/ ' 2/ function_diff 3/ integrate 4/ taux_accroissement 5/ implicitdiff Ex1:diff(x^3-x) Ex2:diff(x^3-x,x,3) Ex3:diff(x^3-x,quote(x)$3) @@ -4137,7 +4137,7 @@ cdef class GiacMethods_base: Ex6:diff(x*y+z*y,y,z) Ex7:diff(x*y+z*y,[y,z]) Ex8: f(x):=sin(2x);g:=diff(f);h:=diff(diff(f)) - + ''' return GiacMethods['diff'](self,*args) @@ -4146,10 +4146,10 @@ cdef class GiacMethods_base: Help for digraph: digraph([Lst(V)],[Set(E)],[Mtrx(A)],[options]) Create a directed (un)weighted graph from vertices V, edges E and/or adjacency or weight matrix A. All parameters are optional. - See also: 1/ graph 2/ trail + See also: 1/ graph 2/ trail Ex1:digraph(%{[1,2],[2,3],[3,4],[4,1]%}) Ex2:digraph([a,b,c,d],%{[[a,b],1.0],[[a,c],2.3],[[b,d],3.1],[[c,d],4]%}) - + ''' return GiacMethods['digraph'](self,*args) @@ -4158,9 +4158,9 @@ cdef class GiacMethods_base: Help for dijkstra: dijkstra(Graph(G),Vrtx(v),[Vrtx(w)||Lst(W)]) Returns the cheapest weighted path from vertex v to w (or to vertices from W) in undirected graph G. Output is in the form [[v1,v2,...,vk],d] (or list of these) where v1,v2,...,vk are vertices along each path and d is the weight of the path. - See also: 1/ allpairs_distance 2/ shortest_path + See also: 1/ allpairs_distance 2/ shortest_path Ex1:dijkstra(graph(%{[[1,2],1],[[2,3],3],[[3,4],7],[[4,5],3],[[5,6],3],[[1,6],3]%}),1,4) - + ''' return GiacMethods['dijkstra'](self,*args) @@ -4169,9 +4169,9 @@ cdef class GiacMethods_base: Help for dim: dim(Mtrx) Returns the list which gives the dimension of the matrix specified as argument. - See also: 1/ rowdim 2/ coldim 3/ sizes 4/ size + See also: 1/ rowdim 2/ coldim 3/ sizes 4/ size Ex1:dim([[1,2,3],[4,5,6]]) - + ''' return GiacMethods['dim'](self,*args) @@ -4180,8 +4180,8 @@ cdef class GiacMethods_base: Help for directed: directed(Opt) Option for graph and digraph commands. - See also: 1/ weighted 2/ graph 3/ digraph - + See also: 1/ weighted 2/ graph 3/ digraph + ''' return GiacMethods['directed'](self,*args) @@ -4190,9 +4190,9 @@ cdef class GiacMethods_base: Help for discard_edge_attribute: discard_edge_attribute(Graph(G),Edge(e),Seq(tag1=value1,tag2=value2,..)) Discards the attributes with tags tag1, tag2, ... assigned to edge e in G and returns the modified copy of G. - See also: 1/ get_edge_attribute 2/ set_edge_attribute 3/ list_edge_attributes + See also: 1/ get_edge_attribute 2/ set_edge_attribute 3/ list_edge_attributes Ex1:discard_edge_attribute(cycle_graph(3),[1,2],"cost") - + ''' return GiacMethods['discard_edge_attribute'](self,*args) @@ -4201,9 +4201,9 @@ cdef class GiacMethods_base: Help for discard_graph_attribute: discard_graph_attribute(Graph(G),Seq(tag1=value1,tag2=value2,..)) Discards the graph attributes with tags tag1, tag2, ... and returns the modified copy of G. - See also: 1/ get_graph_attribute 2/ set_graph_attribute 3/ list_graph_attributes + See also: 1/ get_graph_attribute 2/ set_graph_attribute 3/ list_graph_attributes Ex1:discard_graph_attribute(cycle_graph(3),"name") - + ''' return GiacMethods['discard_graph_attribute'](self,*args) @@ -4212,9 +4212,9 @@ cdef class GiacMethods_base: Help for discard_vertex_attribute: discard_vertex_attribute(Graph(G),Vrtx(v),Seq(tag1=value1,tag2=value2,..)) Discards the attributes with tags tag1, tag2, ... assigned to vertex v in G and returns the modified copy of G. - See also: 1/ get_vertex_attribute 2/ set_vertex_attribute 3/ list_vertex_attributes + See also: 1/ get_vertex_attribute 2/ set_vertex_attribute 3/ list_vertex_attributes Ex1:discard_vertex_attribute(cycle_graph(3),1,"supply") - + ''' return GiacMethods['discard_vertex_attribute'](self,*args) @@ -4223,9 +4223,9 @@ cdef class GiacMethods_base: Help for disjoint_union: disjoint_union(Seq(G1,G2,...)) Returns the disjoint union of the graphs G1, G2, ... Vertices in the resulting graph are labelled with "k:v", where k is index of the corresponding k-th graph Gk and v is vertex in Gk. - See also: 1/ graph_join 2/ graph_union + See also: 1/ graph_join 2/ graph_union Ex1:disjoint_union(is_connected(disjoint_union(cycle_graph(5),path_graph(4)))) - + ''' return GiacMethods['disjoint_union'](self,*args) @@ -4234,7 +4234,7 @@ cdef class GiacMethods_base: Help for display: display([GeoObj or legende],Intg) Draws a geometrical object with colors black=0 red=1 green=2 yellow=3 blue=4, filled with the color in the interior of a closed curve,line_width_n (0=0 or, the (-n)th previous question if n<0 (by default n=-1 for the previous question). - See also: 1/ ans + See also: 1/ ans Ex1:entry() Ex2:entry(2) Ex3:entry(-2) - + ''' return GiacMethods['entry'](self,*args) @@ -4916,10 +4916,10 @@ cdef class GiacMethods_base: Help for envelope: envelope(Expr(Xpr),Var(t)||[x,y,t]) Returns the envelope of the curves with equation Xpr=0 as t varies. - See also: 1/ tangent 2/ locus + See also: 1/ tangent 2/ locus Ex1:envelope(y+x*tan(t)-2*sin(t),t) Ex2:envelope(v+u*tan(t)-3*sin(t),[u,v,t]) - + ''' return GiacMethods['envelope'](self,*args) @@ -4928,9 +4928,9 @@ cdef class GiacMethods_base: Help for epsilon: epsilon(NULL) Returns the value of epsilon of the CAS configuration. - See also: 1/ epsilon2zero + See also: 1/ epsilon2zero Ex1:epsilon() - + ''' return GiacMethods['epsilon'](self,*args) @@ -4939,9 +4939,9 @@ cdef class GiacMethods_base: Help for epsilon2zero: epsilon2zero(Expr) Values < epsilon are replaced by zero. - See also: 1/ evalf + See also: 1/ evalf Ex1:epsilon2zero(1e-13+x+5) - + ''' return GiacMethods['epsilon2zero'](self,*args) @@ -4950,11 +4950,11 @@ cdef class GiacMethods_base: Help for equal: equal(Expr,Expr) Prefixed version of =. - See also: 1/ = 2/ equal2diff 3/ equal2list 4/ left 5/ right + See also: 1/ = 2/ equal2diff 3/ equal2list 4/ left 5/ right Ex1: 2*x=4 Ex2:equal(2*x,4) Ex3:equal(x^2-3x+2,0) - + ''' return GiacMethods['equal'](self,*args) @@ -4963,10 +4963,10 @@ cdef class GiacMethods_base: Help for equal2diff: equal2diff(Equal) A=B or equal(A,B) is converted into the difference A-B. - See also: 1/ left 2/ right 3/ equal2list 4/ equal 5/ = + See also: 1/ left 2/ right 3/ equal2list 4/ equal 5/ = Ex1:equal2diff(x=2) Ex2:equal2diff(equal(x,2)) - + ''' return GiacMethods['equal2diff'](self,*args) @@ -4975,10 +4975,10 @@ cdef class GiacMethods_base: Help for equal2list: equal2list(Equal) A=B or equal(A,B) is converted into the list [A,B]. - See also: 1/ left 2/ right 3/ equal2diff 4/ equal 5/ = + See also: 1/ left 2/ right 3/ equal2diff 4/ equal 5/ = Ex1:equal2list(x=2) Ex2:equal2list(equal(x,2)) - + ''' return GiacMethods['equal2list'](self,*args) @@ -4987,9 +4987,9 @@ cdef class GiacMethods_base: Help for equation: equation(GeoObj, VectParam) equation returns the cartesian equation of a curve. - See also: 1/ parameq + See also: 1/ parameq Ex1:equation(line(1-i,i),[x,y]) - + ''' return GiacMethods['equation'](self,*args) @@ -4998,12 +4998,12 @@ cdef class GiacMethods_base: Help for equilateral_triangle: equilateral_triangle((Pnt(A) or Cplx),(Pnt(B) or Cplx),[Pnt(P)],[Var(C)]) equilateral_triangle(A,B) (resp equilateral_triangle(A,B,P)) draws the direct equilateral triangle ABC with side AB (resp in the half-plane ABP). - See also: 1/ triangle + See also: 1/ triangle Ex1:equilateral_triangle(point(1+i),0) Ex2:equilateral_triangle(0,1+i,C) Ex3:equilateral_triangle(point(0,0,0),point(3,3,3),point(0,0,3)) Ex4:equilateral_triangle(point(0,0,0),point(3,3,3),point(0,0,3),C) - + ''' return GiacMethods['equilateral_triangle'](self,*args) @@ -5012,10 +5012,10 @@ cdef class GiacMethods_base: Help for erf: erf(Real(x0)) Returns the approximate value of 2/sqrt(pi)*int(exp(-t^2),t,0,x0). - See also: 1/ erfc + See also: 1/ erfc Ex1:erf(1) Ex2:erf(1/(sqrt(2)))*1/2 - + ''' return GiacMethods['erf'](self,*args) @@ -5024,10 +5024,10 @@ cdef class GiacMethods_base: Help for erfc: erfc(Real(x0)) Returns the approximate value of 2/sqrt(pi)*int(exp(-t^2),t,x0,+infinity). - See also: 1/ erf + See also: 1/ erf Ex1:erfc(1) Ex2:erfc(1/(sqrt(2)))*1/2 - + ''' return GiacMethods['erfc'](self,*args) @@ -5036,10 +5036,10 @@ cdef class GiacMethods_base: Help for error: error(Str) Generates the display of an error in a program. - See also: 1/ try 2/ catch + See also: 1/ try 2/ catch Ex1:error("Argument should be integer") Ex2:error("je provoque une erreur") - + ''' return GiacMethods['error'](self,*args) @@ -5048,10 +5048,10 @@ cdef class GiacMethods_base: Help for est_permu: est_permu(Lst) Returns 1 if the argument is a permutation and 0 otherwise. - See also: 1/ is_cycle 2/ permu2cycles + See also: 1/ is_cycle 2/ permu2cycles Ex1:est_permu([4,2,3,1]) Ex2:est_permu([4,2,3,1,0]) - + ''' return GiacMethods['est_permu'](self,*args) @@ -5060,10 +5060,10 @@ cdef class GiacMethods_base: Help for euler: euler(Intg(n)) Euler's function (euler(n)=card({p=0):; euler_lagrange(sqrt((1+y'^2)/y),t,y) - + ''' return GiacMethods['euler_lagrange'](self,*args) @@ -5100,7 +5100,7 @@ cdef class GiacMethods_base: Ex3: purge(a,b,c);eval_level(1);a:=b+1; b:=c+1;c:=3; Ex4: purge(a,b,c);eval_level(2);a:=b+1; b:=c+1;c:=3; Ex5: purge(a,b,c);eval_level(3);a:=b+1; b:=c+1;c:=3; - + ''' return GiacMethods['eval_level'](self,*args) @@ -5109,11 +5109,11 @@ cdef class GiacMethods_base: Help for evala: evala(Expr) Simplifies the expression. - See also: 1/ simplify + See also: 1/ simplify Ex1:evala(2*x+y=1) Ex2:evala(2*x*2) Ex3:evala((2*x+1)^2) - + ''' return GiacMethods['evala'](self,*args) @@ -5122,10 +5122,10 @@ cdef class GiacMethods_base: Help for evalb: evalb(Expr) Boolean evaluation of the argument. - See also: 1/ evalf 2/ eval + See also: 1/ evalf 2/ eval Ex1:evalb(a==2) Ex2:evalb(sqrt(2)+pi>a) - + ''' return GiacMethods['evalb'](self,*args) @@ -5134,10 +5134,10 @@ cdef class GiacMethods_base: Help for evalc: evalc(Expr) Returns a complex expression simplified to the format real+i*imag. - See also: 1/ normal + See also: 1/ normal Ex1:evalc(-3+4*i+exp(i)) Ex2:evalc(1/(x+y*i)) - + ''' return GiacMethods['evalc'](self,*args) @@ -5146,14 +5146,14 @@ cdef class GiacMethods_base: Help for evalf: evalf(Expr,[Int]) Numerical evaluation of the first argument (we can give the number of digits as second argument). - See also: 1/ evalb 2/ eval + See also: 1/ evalb 2/ eval Ex1:evalf(2/3) Ex2:evalf(2/3,2) Ex3:evalf(2*sin(1)) Ex4:evalf(2*sin(1),40) Ex5:evalf(sqrt(2)+pi) Ex6:evalf(sqrt(2)+pi,30) - + ''' return GiacMethods['evalf'](self,*args) @@ -5162,9 +5162,9 @@ cdef class GiacMethods_base: Help for evalm: evalm(Expr) Evaluates its argument. - See also: 1/ evalf + See also: 1/ evalf Ex1:evalm(2*sin(pi)) - + ''' return GiacMethods['evalm'](self,*args) @@ -5173,10 +5173,10 @@ cdef class GiacMethods_base: Help for even: even(Intg(n)) Returns 1 if the integer is even, else returns 0. - See also: 1/ odd + See also: 1/ odd Ex1:even(6) Ex2:even(1251) - + ''' return GiacMethods['even'](self,*args) @@ -5185,11 +5185,11 @@ cdef class GiacMethods_base: Help for evolute: evolute(Curve) Evolute of a curve C. - See also: 1/ curvature 2/ osculating_circle + See also: 1/ curvature 2/ osculating_circle Ex1:evolute(plot(x^2)) Ex2:evolute([t,t^2],t) Ex3:evolute([3*exp(t/2)*cos(t),3*exp(t/2)*sin(t)],t) - + ''' return GiacMethods['evolute'](self,*args) @@ -5198,12 +5198,12 @@ cdef class GiacMethods_base: Help for exact: exact(Expr) Converts the expression to a rational or real expression. - See also: 1/ + See also: 1/ Ex1:exact(-2) Ex2:exact(1.5) Ex3:exact(1.4141) Ex4:exact(0.156381102937) - + ''' return GiacMethods['exact'](self,*args) @@ -5212,9 +5212,9 @@ cdef class GiacMethods_base: Help for exbisector: exbisector((Pnt(A) or Cplx),(Pnt(B) or Cplx),(Pnt(C) or Cplx)) Draws the exterior bisector of the angle (AB,AC) given by 3 points A,B,C. - See also: 1/ angle 2/ bisector + See also: 1/ angle 2/ bisector Ex1:exbisector(0,1,i) - + ''' return GiacMethods['exbisector'](self,*args) @@ -5223,9 +5223,9 @@ cdef class GiacMethods_base: Help for excircle: excircle((Pnt or Cplx),(Pnt or Cplx),(Pnt or Cplx)) excircle(A,B,C) draws the A-excircle of the triangle ABC. - See also: 1/ incircle 2/ circumcircle + See also: 1/ incircle 2/ circumcircle Ex1:excircle(0,1,1+i) - + ''' return GiacMethods['excircle'](self,*args) @@ -5234,12 +5234,12 @@ cdef class GiacMethods_base: Help for execute: execute(Str) Instruction transforming a string into a command or into a number. - See also: 1/ string + See also: 1/ string Ex1:execute("ifactor(54)") Ex2:execute("123") Ex3:execute("0123") Ex4:execute(sin,x) - + ''' return GiacMethods['execute'](self,*args) @@ -5248,10 +5248,10 @@ cdef class GiacMethods_base: Help for exp: exp(Expr or Opt) Exponential or option of the convert or convertir command (id trig2exp). - See also: 1/ ln 2/ convert 3/ trig2exp + See also: 1/ ln 2/ convert 3/ trig2exp Ex1:exp(0) Ex2: convert(cos(x),exp) - + ''' return GiacMethods['exp'](self,*args) @@ -5260,10 +5260,10 @@ cdef class GiacMethods_base: Help for exp2list: exp2list(Expr) Returns the list made with the righthand member of (var=expr0 or var=expr1), to be used after solve in TI mode. - See also: 1/ list2exp + See also: 1/ list2exp Ex1:exp2list((x=2) or (x=0)) Ex2:exp2list((x=3 and y=9) or (x=-1 and y=1) ) - + ''' return GiacMethods['exp2list'](self,*args) @@ -5272,10 +5272,10 @@ cdef class GiacMethods_base: Help for exp2pow: exp2pow(Expr) Transforms exp(n*ln(x)) to x^n. - See also: 1/ pow2exp + See also: 1/ pow2exp Ex1:exp2pow(exp(3*ln(x))) Ex2:exp2pow(exp(x*ln(x))) - + ''' return GiacMethods['exp2pow'](self,*args) @@ -5284,10 +5284,10 @@ cdef class GiacMethods_base: Help for exp2trig: exp2trig(Expr) Transforms the complex exponential into sine and cosine. - See also: 1/ trig2exp 2/ atrig2ln + See also: 1/ trig2exp 2/ atrig2ln Ex1:exp2trig(exp(i*x)) Ex2:exp2trig(exp(-i*x)) - + ''' return GiacMethods['exp2trig'](self,*args) @@ -5296,13 +5296,13 @@ cdef class GiacMethods_base: Help for expand: expand(Expr) Full distribution of * and / over + and -. - See also: 1/ texpand 2/ normal 3/ simplify 4/ ratnormal + See also: 1/ texpand 2/ normal 3/ simplify 4/ ratnormal Ex1:expand((x+y)*(z+1)) Ex2:expand((a+b+c)/d) Ex3:expand((y+x)*(z+y)*(x+z)) Ex4:expand((x+3)^4) Ex5:expand((2*x-2*1)*(x^2-3*x+2)+(x^2-2*x+3)*(2*x-3*1)) - + ''' return GiacMethods['expand'](self,*args) @@ -5311,9 +5311,9 @@ cdef class GiacMethods_base: Help for expexpand: expexpand(Expr) Expands exponentials. - See also: 1/ texpand 2/ lnexpand 3/ trigexpand + See also: 1/ texpand 2/ lnexpand 3/ trigexpand Ex1:expexpand(exp(3*x)) - + ''' return GiacMethods['expexpand'](self,*args) @@ -5322,9 +5322,9 @@ cdef class GiacMethods_base: Help for expln: expln(Opt) Option of the convert or convertir command (id trig2exp). - See also: 1/ exp 2/ ln 3/ convert 4/ trig2exp + See also: 1/ exp 2/ ln 3/ convert 4/ trig2exp Ex1: convert(cos(x),expln) - + ''' return GiacMethods['expln'](self,*args) @@ -5333,12 +5333,12 @@ cdef class GiacMethods_base: Help for exponential: exponential(Real(lambda),Real(x)) Returns the probability density at x of the exponential law of parameter lambda. - See also: 1/ exponential_cdf 2/ exponential_icdf 3/ randvector 4/ ranm + See also: 1/ exponential_cdf 2/ exponential_icdf 3/ randvector 4/ ranm Ex1:exponential(2.1,3.5) Ex2:exponential(2.1,0.5) Ex3: randvector(3,exponential,1.2) Ex4: ranm(4,3,exponential,1.2) - + ''' return GiacMethods['exponential'](self,*args) @@ -5347,10 +5347,10 @@ cdef class GiacMethods_base: Help for exponential_cdf: exponential_cdf(Real(lambda),Real(x0),[Real(y0)]) Returns the probability that a exponential random variable of parameter lambda is less than x0 (or between x0 and y0). - See also: 1/ exponentiald 2/ exponential_icdf + See also: 1/ exponentiald 2/ exponential_icdf Ex1:exponential_cdf(4.2,2.1) Ex2:exponential_cdf(4.2,2.1,3.2) - + ''' return GiacMethods['exponential_cdf'](self,*args) @@ -5359,10 +5359,10 @@ cdef class GiacMethods_base: Help for exponential_icdf: exponential_icdf(Real(lambda),Real(x0),Real(p)) Returns h such that the probability that a exponential random variable of parameter lambda is less than h is p (0<=p<=1). - See also: 1/ exponential_cdf 2/ exponentiald + See also: 1/ exponential_cdf 2/ exponentiald Ex1:exponential_icdf(4.2,0.95) Ex2:exponential_icdf(4.2,0.6) - + ''' return GiacMethods['exponential_icdf'](self,*args) @@ -5371,10 +5371,10 @@ cdef class GiacMethods_base: Help for exponential_regression: exponential_regression(Lst||Mtrx(A),[Lst]) Returns the coefficients (a,b) of y=b*a^x : it is the best exponential which approx the points where the coordinates are the rows of A (or the 2 lists). - See also: 1/ logarithmic_regression + See also: 1/ logarithmic_regression Ex1:exponential_regression([[1.0,2.0],[0.0,1.0],[4.0,7.0]]) Ex2:exponential_regression([1.0,0.0,4.0],[2.0,1.0,7.0]) - + ''' return GiacMethods['exponential_regression'](self,*args) @@ -5383,10 +5383,10 @@ cdef class GiacMethods_base: Help for exponential_regression_plot: exponential_regression_plot(Lst||Mtrx(A),[Lst]) Returns the plot of y=b*a^x : it is the best exponential which approx the points where the coordinates are the rows of A (or the 2 lists). - See also: 1/ logarithmic_regression_plot + See also: 1/ logarithmic_regression_plot Ex1:exponential_regression_plot([[1.0,2.0],[0.0,1.0],[4.0,7.0]]) Ex2:exponential_regression_plot([1.0,0.0,4.0],[2.0,1.0,7.0]) - + ''' return GiacMethods['exponential_regression_plot'](self,*args) @@ -5395,12 +5395,12 @@ cdef class GiacMethods_base: Help for exponentiald: exponentiald(Real(lambda),Real(x)) Returns the probability density at x of the exponential law of parameter lambda. - See also: 1/ exponential_cdf 2/ exponential_icdf 3/ randvector 4/ ranm + See also: 1/ exponential_cdf 2/ exponential_icdf 3/ randvector 4/ ranm Ex1:exponentiald(2.1,3.5) Ex2:exponentiald(2.1,0.5) Ex3: randvector(3,exponential,1.2) Ex4: ranm(4,3,exponential,1.2) - + ''' return GiacMethods['exponentiald'](self,*args) @@ -5409,10 +5409,10 @@ cdef class GiacMethods_base: Help for exponentiald_cdf: exponentiald_cdf(Real(lambda),Real(x0),[Real(y0)]) Returns the probability that a exponential random variable of parameter lambda is less than x0 (or between x0 and y0). - See also: 1/ exponentiald 2/ exponential_icdf + See also: 1/ exponentiald 2/ exponential_icdf Ex1:exponentiald_cdf(4.2,2.1) Ex2:exponentiald_cdf(4.2,2.1,3.2) - + ''' return GiacMethods['exponentiald_cdf'](self,*args) @@ -5421,10 +5421,10 @@ cdef class GiacMethods_base: Help for exponentiald_icdf: exponentiald_icdf(Real(lambda),Real(x0),Real(p)) Returns h such that the probability that a exponential random variable of parameter lambda is less than h is p (0<=p<=1). - See also: 1/ exponential_cdf 2/ exponentiald + See also: 1/ exponential_cdf 2/ exponentiald Ex1:exponentiald_icdf(4.2,0.95) Ex2:exponentiald_icdf(4.2,0.6) - + ''' return GiacMethods['exponentiald_icdf'](self,*args) @@ -5433,9 +5433,9 @@ cdef class GiacMethods_base: Help for export_graph: export_graph(Graph(G),Str("path/to/graphname")) Writes G to the file 'graphname.dot' in directory 'path/to' in dot format, returns 1 on success and 0 on failure. - See also: 1/ import_graph + See also: 1/ import_graph Ex1:export_graph(complete_graph(5),"K5") - + ''' return GiacMethods['export_graph'](self,*args) @@ -5444,11 +5444,11 @@ cdef class GiacMethods_base: Help for export_mathml: export_mathml(Expr,[display||content]) Converts an expression to presentation or content MathML block. - See also: 1/ mathml 2/ latex + See also: 1/ mathml 2/ latex Ex1:export_mathml(a+2*b) Ex2:export_mathml(a+2*b,display) Ex3:export_mathml(a+2*b,content) - + ''' return GiacMethods['export_mathml'](self,*args) @@ -5457,10 +5457,10 @@ cdef class GiacMethods_base: Help for expovariate: expovariate(Real(a)) Returns a random real according to the exponential distribution with parameter a>0. - See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector + See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector Ex1:expovariate(1) Ex2:expovariate(2) - + ''' return GiacMethods['expovariate'](self,*args) @@ -5469,12 +5469,12 @@ cdef class GiacMethods_base: Help for expr: expr(Str) Instruction transforming a string into a command or into a number. - See also: 1/ string + See also: 1/ string Ex1:expr("ifactor(54)") Ex2:expr("123") Ex3:expr("0123") Ex4:expr(sin,x) - + ''' return GiacMethods['expr'](self,*args) @@ -5483,13 +5483,13 @@ cdef class GiacMethods_base: Help for extend: extend(Lst,Lst||Seq,Seq||Str,Str||Mtrx,Mtrx) Concatenates two lists or two strings or two sequences or 2 matrices; L:=concat(L,L1) or L.concat(L1). - See also: 1/ append 2/ cat 3/ semi_augment 4/ border 5/ + + See also: 1/ append 2/ cat 3/ semi_augment 4/ border 5/ + Ex1:extend([1,2],[3,4,5]) Ex2:extend("bon","jour") Ex3:extend([[1,2],[3,4]],[[4,5,6],[6,7,8]]) Ex4: L:=[1,2];L.concat([3,4,5]) Ex5: S:="abcd";S.concat("efghi") - + ''' return GiacMethods['extend'](self,*args) @@ -5498,11 +5498,11 @@ cdef class GiacMethods_base: Help for extract_measure: extract_measure(Var) extract_measure gives as answer the value calculated by the argument. - See also: 1/ angleatraw 2/ distanceatraw 3/ angleat 4/ distanceat 5/ slopeatraw 6/ areaatraw 7/ perimeteratraw 8/ slopeat 5/ areaat 10/ perimeterat + See also: 1/ angleatraw 2/ distanceatraw 3/ angleat 4/ distanceat 5/ slopeatraw 6/ areaatraw 7/ perimeteratraw 8/ slopeat 5/ areaat 10/ perimeterat Ex1:extract_measure(distanceatraw(0,1+i,(1+i)/2)) Ex2:extract_measure(angleatraw(0,1,1+i,1)) Ex3: A:=point(0);B:=point(1+i);a:=distanceatraw(A,B,(1+i)/2);extract_measure(a) - + ''' return GiacMethods['extract_measure'](self,*args) @@ -5556,7 +5556,7 @@ cdef class GiacMethods_base: Ex43:extrema(4x*y-x^4-y^4,[x,y]) Ex44:extrema(x*sin(y),[x,y]) Ex45:extrema(x^4+y^4,[x,y]) - Ex46:extrema(x^3*y-x*y^3,[x,y]) + Ex46:extrema(x^3*y-x*y^3,[x,y]) Ex47:extrema(x^2+y^2+z^2,x^4+y^4+z^4=1,[x,y,z]) Ex48:extrema(3x+3y+8z,[x^2+z^2=1,y^2+z^2=1],[x,y,z]) Ex49:extrema(2x^2+y^2,x^4-x^2+y^2=5,[x,y]) @@ -5565,10 +5565,10 @@ cdef class GiacMethods_base: Ex52:extrema(ln(x)+2*ln(y)+3*ln(z)+4*ln(u)+5*ln(v),x+y+z+u+v=1,[x,y,z,u,v]) Ex53:extrema(x*y*z,-2x^3+15x^2*y+11y^3-24y=0,[x,y,z]) Ex54:extrema(x+y-exp(x)-exp(y)-exp(x+y),[x,y]) - Ex55:extrema(x^2*sin(y)-4*x,[x,y]) + Ex55:extrema(x^2*sin(y)-4*x,[x,y]) Ex56:extrema((1+y*sinh(x))/(1+y^2+tanh(x)^2),[x,y]) Ex57:extrema((1+y*sinh(x))/(1+y^2+tanh(x)^2),y=x^2,[x,y]) - + ''' return GiacMethods['extrema'](self,*args) @@ -5577,11 +5577,11 @@ cdef class GiacMethods_base: Help for ezgcd: ezgcd(Poly,Poly) GCD of 2 polynomials with at least 2 variables, with the ezgcd algorithm. - See also: 1/ gcd 2/ modgcd 3/ heugcd 4/ psrgcd + See also: 1/ gcd 2/ modgcd 3/ heugcd 4/ psrgcd Ex1:ezgcd(x^2-2*xy+y^2-1,x-y) Ex2:ezgcd((x+1)^4-y^4,(x+1-y)^2) Ex3:ezgcd((x+y-1)*(x+y+1),(x+y+1)^2) - + ''' return GiacMethods['ezgcd'](self,*args) @@ -5590,10 +5590,10 @@ cdef class GiacMethods_base: Help for f2nd: f2nd(Frac or RatFrac) Returns the list built with the numerator and the denominator of the simplified fraction. - See also: 1/ simp2 2/ numer 3/ denom 4/ getNum 5/ getDenom + See also: 1/ simp2 2/ numer 3/ denom 4/ getNum 5/ getDenom Ex1:f2nd(42/12) Ex2:f2nd((x^2+2*x+1)/(x^2-1)) - + ''' return GiacMethods['f2nd'](self,*args) @@ -5602,10 +5602,10 @@ cdef class GiacMethods_base: Help for fMax: fMax(Expr,[Var]) Returns the abscissa of the maximum of the expression. - See also: 1/ fMin + See also: 1/ fMin Ex1:fMax(-x^2+2*x+1,x) Ex2:fMax(-x^2+2*x+1,x=1..2) - + ''' return GiacMethods['fMax'](self,*args) @@ -5614,12 +5614,12 @@ cdef class GiacMethods_base: Help for fMin: fMin(Expr,[Var]) Returns the abscissa of the minimum of the expression. - See also: 1/ fMax + See also: 1/ fMax Ex1:fMin(x^2-2*x+1,x) Ex2:fMin(x^2-2*x+1,x=1..2) Ex3:fMin((x-3)^2+(y-5)^2+1,[],[x,y],[1,1]) Ex4:fMin((x-3)^2+(y-5)^2+1,[x+y^2=1],[x,y],[1,1]) - + ''' return GiacMethods['fMin'](self,*args) @@ -5628,13 +5628,13 @@ cdef class GiacMethods_base: Help for fPart: fPart(Real||LstReal) Returns the fractional part (if x<0 then frac(x)+floor(x)+1=x else frac(x)+floor(x)=x). - See also: 1/ floor 2/ iPart 3/ trunc + See also: 1/ floor 2/ iPart 3/ trunc Ex1:fPart(1/2) Ex2:fPart(-1/2) Ex3:fPart(1.2) Ex4:fPart(-1.2) Ex5:fPart([3.4,sqrt(2)]) - + ''' return GiacMethods['fPart'](self,*args) @@ -5643,10 +5643,10 @@ cdef class GiacMethods_base: Help for faces: faces(Polygon or Polyedr(P)) Returns the list of the faces (1 face=matrix(n,3) where the n rows are the n vertices of the face) of the polyhedron P. - See also: 1/ polyhedron + See also: 1/ polyhedron Ex1:faces(polyhedron([0,0,0],[0,5,0],[0,0,5],[1,2,6])) Ex2:faces(polyhedron([0,0,0],[0,5,0],[0,0,5],[1,2,6]))[2] - + ''' return GiacMethods['faces'](self,*args) @@ -5655,10 +5655,10 @@ cdef class GiacMethods_base: Help for facteurs_premiers: facteurs_premiers(Intg(a) or LstIntg) Returns the list of prime factors of an integer (each factor is followed by its multiplicity). - See also: 1/ ifactor 2/ factors + See also: 1/ ifactor 2/ factors Ex1:facteurs_premiers(36) Ex2:facteurs_premiers([36,52]) - + ''' return GiacMethods['facteurs_premiers'](self,*args) @@ -5667,11 +5667,11 @@ cdef class GiacMethods_base: Help for factor: factor(Expr) Factors a polynomial. - See also: 1/ ifactor 2/ cfactor 3/ partfrac 4/ normal + See also: 1/ ifactor 2/ cfactor 3/ partfrac 4/ normal Ex1:factor(x^4-1) Ex2:factor(x^4-4,sqrt(2)) Ex3:factor(x^4+12*x^3+54*x^2+108*x+81) - + ''' return GiacMethods['factor'](self,*args) @@ -5680,10 +5680,10 @@ cdef class GiacMethods_base: Help for factor_xn: factor_xn(Poly(P)) Factors x^n in P (n=degree of polynomial P). - See also: 1/ ifactor 2/ partfrac 3/ normal + See also: 1/ ifactor 2/ partfrac 3/ normal Ex1:factor_xn(x^4-1) Ex2:factor_xn(x^4+12*x^3+54*x^2+108*x+81) - + ''' return GiacMethods['factor_xn'](self,*args) @@ -5692,10 +5692,10 @@ cdef class GiacMethods_base: Help for factorial: factorial(Intg(n)|| Real(a)) factorial(n)=n!. For non-integers, factorial(a)=a! = G(a + 1). This calculates the Gamma function. - See also: 1/ comb 2/ perm + See also: 1/ comb 2/ perm Ex1:factorial(4) Ex2:factorial(1.2) - + ''' return GiacMethods['factorial'](self,*args) @@ -5704,11 +5704,11 @@ cdef class GiacMethods_base: Help for factoriser: factoriser(Expr) Factors a polynomial. - See also: 1/ ifactor 2/ cfactor 3/ partfrac 4/ normal + See also: 1/ ifactor 2/ cfactor 3/ partfrac 4/ normal Ex1:factoriser(x^4-1) Ex2:factoriser(x^4-4,sqrt(2)) Ex3:factoriser(x^4+12*x^3+54*x^2+108*x+81) - + ''' return GiacMethods['factoriser'](self,*args) @@ -5717,10 +5717,10 @@ cdef class GiacMethods_base: Help for factoriser_entier: factoriser_entier(Intg(a)) Factorization of an integer into prime factors. - See also: 1/ factor 2/ ecm_factor + See also: 1/ factor 2/ ecm_factor Ex1:factoriser_entier(50) Ex2:factoriser_entier(123456789) - + ''' return GiacMethods['factoriser_entier'](self,*args) @@ -5729,11 +5729,11 @@ cdef class GiacMethods_base: Help for factoriser_sur_C: factoriser_sur_C(Expr) Factorization of the expression in ℂ (on the Gaussian integers if there are more than 2 variables). - See also: 1/ factor + See also: 1/ factor Ex1:factoriser_sur_C(x^2*y+y) Ex2:factoriser_sur_C(x^2*y^2+y^2+4*x^2+4) Ex3:factoriser_sur_C(x^2*y^2+y^2+2*x^2+2) - + ''' return GiacMethods['factoriser_sur_C'](self,*args) @@ -5742,10 +5742,10 @@ cdef class GiacMethods_base: Help for factors: factors(Poly or LstPoly) Returns the list of prime factors of a polynomial (each factor is followed by its multiplicity). - See also: 1/ factor 2/ ifactors + See also: 1/ factor 2/ ifactors Ex1:factors(x^4-1) Ex2:factors([x^2,x^2-1]) - + ''' return GiacMethods['factors'](self,*args) @@ -5754,9 +5754,9 @@ cdef class GiacMethods_base: Help for fadeev: fadeev(Opt) Option of the pcar or charpoly command to specify the algorithm. - See also: 1/ pcar + See also: 1/ pcar Ex1: pcar([[4,1,-2],[1,2,-1],[2,1,0]],fadeev) - + ''' return GiacMethods['fadeev'](self,*args) @@ -5765,9 +5765,9 @@ cdef class GiacMethods_base: Help for false: false() Boolean equal to false or 0. - See also: 1/ true + See also: 1/ true Ex1: a:=false - + ''' return GiacMethods['false'](self,*args) @@ -5776,14 +5776,14 @@ cdef class GiacMethods_base: Help for falsepos_solver: falsepos_solver(Opt) Argument for fsolve giving the method for solving a numerical equation. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve(cos(x)=x,x,0..1,bisection_solver) Ex2: fsolve(cos(x)=x,x,0..1,brent_solver) Ex3: fsolve(cos(x)=x,x,0..1,falsepos_solver) Ex4: fsolve(cos(x)=x,x,0,newton_solver) Ex5: fsolve(cos(x)=x,x,0,secant_solver) Ex6: fsolve(cos(x)=x,x,0,steffenson_solver) - + ''' return GiacMethods['falsepos_solver'](self,*args) @@ -5792,9 +5792,9 @@ cdef class GiacMethods_base: Help for fclose: fclose(File(f)) Closes the file f. - See also: 1/ fprint 2/ fopen + See also: 1/ fprint 2/ fopen Ex1:fclose(f) - + ''' return GiacMethods['fclose'](self,*args) @@ -5803,9 +5803,9 @@ cdef class GiacMethods_base: Help for fcoeff: fcoeff(Lst(root||pole,order)) Returns the polynomial described by the list (root or pole, order). - See also: 1/ pcoeff 2/ froot 3/ proot + See also: 1/ pcoeff 2/ froot 3/ proot Ex1:fcoeff([1,2,0,1,3,-1]) - + ''' return GiacMethods['fcoeff'](self,*args) @@ -5814,13 +5814,13 @@ cdef class GiacMethods_base: Help for fdistrib: fdistrib(Expr) Full distribution of * and / over + and -. - See also: 1/ texpand 2/ normal 3/ simplify 4/ ratnormal + See also: 1/ texpand 2/ normal 3/ simplify 4/ ratnormal Ex1:fdistrib((x+y)*(z+1)) Ex2:fdistrib((a+b+c)/d) Ex3:fdistrib((y+x)*(z+y)*(x+z)) Ex4:fdistrib((x+3)^4) Ex5:fdistrib((2*x-2*1)*(x^2-3*x+2)+(x^2-2*x+3)*(2*x-3*1)) - + ''' return GiacMethods['fdistrib'](self,*args) @@ -5829,10 +5829,10 @@ cdef class GiacMethods_base: Help for fft: fft(Vect or (Vect(L),Intg(a),Intg(p)) Fast Fourier Transform in ℝ or in the field ℤ/pℤ, with a as primitive n-th root of 1 (n=size(L)). - See also: 1/ ifft + See also: 1/ ifft Ex1:fft([1,2,3,4,0,0,0,0]) Ex2:fft(ranm(128),22798,35969) - + ''' return GiacMethods['fft'](self,*args) @@ -5841,13 +5841,13 @@ cdef class GiacMethods_base: Help for fieldplot: fieldplot(Expr,VectVar,[Opt]) fieldplot(f(t,y),[t,y]) draws the plotfield of the diff equation y'=f(t,y). - See also: 1/ interactive_plotode 2/ odeplot 3/ odesolve 4/ desolve + See also: 1/ interactive_plotode 2/ odeplot 3/ odesolve 4/ desolve Ex1:fieldplot(sin(t*y),[t=-5..5,y=-3..3],xstep=0.5,ystep=0.5) Ex2:fieldplot(-t*y,[t,y]) Ex3:fieldplot(-t*y,[t,y],normalize) Ex4:fieldplot(-t*y,[t,y],normalize,xstep=0.5,ystep=0.5) Ex5:fieldplot(-t*y,[t=-6.868..6.868,y=-6.868..6.868],normalize) - + ''' return GiacMethods['fieldplot'](self,*args) @@ -5856,13 +5856,13 @@ cdef class GiacMethods_base: Help for find: find(Expr,Vect) List of positions of an object in a list, a string or a set. - See also: 1/ index 2/ member + See also: 1/ index 2/ member Ex1:find(1,[3,x,1,2,1,3]) Ex2:find(2,[0,1,3,2,4,2,5])[0] Ex3:find("a","abracadabrant") Ex4:find("ab","abracadabrant") Ex5:find(1,%{4,3,1,2%}) - + ''' return GiacMethods['find'](self,*args) @@ -5871,11 +5871,11 @@ cdef class GiacMethods_base: Help for find_cycles: find_cycles(Graph(G,[length=k||l..u])) Returns the list of elementary cycles of the digraph G. If option "length" is specified, only cycles of length k resp. of length between l and u are returned. - See also: 1/ is_acyclic + See also: 1/ is_acyclic Ex1:find_cycles(digraph(%{[1,2],[1,3],[3,1],[1,4],[2,3],[4,3],[4,5],[5,3],[5,6],[7,6],[8,6],[8,7]%})) Ex2:find_cycles(digraph(%{[1,2],[1,3],[3,1],[1,4],[2,3],[4,3],[4,5],[5,3],[5,6],[7,6],[8,6],[8,7]%}),length=3) Ex3:find_cycles(digraph(%{[1,2],[1,3],[3,1],[1,4],[2,3],[4,3],[4,5],[5,3],[5,6],[7,6],[8,6],[8,7]%}),length=3..4) - + ''' return GiacMethods['find_cycles'](self,*args) @@ -5884,9 +5884,9 @@ cdef class GiacMethods_base: Help for findhelp: findhelp(Cmd) Returns help about the command (if ? is infixed see when) . - See also: 1/ ifte 2/ when + See also: 1/ ifte 2/ when Ex1:findhelp(ifactor) - + ''' return GiacMethods['findhelp'](self,*args) @@ -5895,12 +5895,12 @@ cdef class GiacMethods_base: Help for fisher: fisher(Intg(n),Intg(m),Real(x0)) Returns the probability density of the Fisher-Snedecor law (n and m are the numbers of degrees of freedom). - See also: 1/ fisher_cdf 2/ fisher_icdf 3/ randvector 4/ ranm + See also: 1/ fisher_cdf 2/ fisher_icdf 3/ randvector 4/ ranm Ex1:fisher(4,10,2.1) Ex2:fisher(4,4,2.1) Ex3: randvector(5,fisher,4,6) Ex4: ranm(2,3,fisher,4,6) - + ''' return GiacMethods['fisher'](self,*args) @@ -5909,10 +5909,10 @@ cdef class GiacMethods_base: Help for fisher_cdf: fisher_cdf(Intg(n),Intg(m),Real(x0)) Returns the probability that a Fisher-Snedecor random variable is less than x0 (n and m are the numbers of degrees of freedom). - See also: 1/ UTPF 2/ fisher_icdf 3/ fisherd + See also: 1/ UTPF 2/ fisher_icdf 3/ fisherd Ex1:fisher_cdf(4,4,2.1) Ex2:fisher_cdf(4,10,3.5) - + ''' return GiacMethods['fisher_cdf'](self,*args) @@ -5921,10 +5921,10 @@ cdef class GiacMethods_base: Help for fisher_icdf: fisher_icdf(Intg(n),Intg(m),Real(p)) Returns h such as the probability that a Fisher-Snedecor random variable is less than h is p (n and m are the numbers of degrees of freedom and 0<=p<=1). - See also: 1/ fisher_cdf 2/ fisherd + See also: 1/ fisher_cdf 2/ fisherd Ex1:fisher_icdf(4,10,0.95) Ex2:fisher_icdf(4,10,0.05) - + ''' return GiacMethods['fisher_icdf'](self,*args) @@ -5933,12 +5933,12 @@ cdef class GiacMethods_base: Help for fisherd: fisherd(Intg(n),Intg(m),Real(x0)) Returns the probability density of the Fisher-Snedecor law (n and m are the numbers of degrees of freedom). - See also: 1/ fisher_cdf 2/ fisher_icdf 3/ randvector 4/ ranm + See also: 1/ fisher_cdf 2/ fisher_icdf 3/ randvector 4/ ranm Ex1:fisherd(4,10,2.1) Ex2:fisherd(4,4,2.1) Ex3: randvector(5,fisher,4,6) Ex4: ranm(2,3,fisher,4,6) - + ''' return GiacMethods['fisherd'](self,*args) @@ -5947,10 +5947,10 @@ cdef class GiacMethods_base: Help for fisherd_cdf: fisherd_cdf(Intg(n),Intg(m),Real(x0)) Returns the probability that a Fisher-Snedecor random variable is less than x0 (n and m are the numbers of degrees of freedom). - See also: 1/ UTPF 2/ fisher_icdf 3/ fisherd + See also: 1/ UTPF 2/ fisher_icdf 3/ fisherd Ex1:fisherd_cdf(4,4,2.1) Ex2:fisherd_cdf(4,10,3.5) - + ''' return GiacMethods['fisherd_cdf'](self,*args) @@ -5959,10 +5959,10 @@ cdef class GiacMethods_base: Help for fisherd_icdf: fisherd_icdf(Intg(n),Intg(m),Real(p)) Returns h such as the probability that a Fisher-Snedecor random variable is less than h is p (n and m are the numbers of degrees of freedom and 0<=p<=1). - See also: 1/ fisher_cdf 2/ fisherd + See also: 1/ fisher_cdf 2/ fisherd Ex1:fisherd_icdf(4,10,0.95) Ex2:fisherd_icdf(4,10,0.05) - + ''' return GiacMethods['fisherd_icdf'](self,*args) @@ -5971,11 +5971,11 @@ cdef class GiacMethods_base: Help for fitdistr: fitdistr(Lst(L),Fnc(D)) Returns the distribution of type D which fits most closely to the i.i.d. samples in the list L. - See also: 1/ normald 2/ poisson 3/ exponentiald 4/ geometric 5/ gammad 6/ betad 7/ cauchyd 8/ weibulld 9/ sample 10/ randvector 11/ randvar + See also: 1/ normald 2/ poisson 3/ exponentiald 4/ geometric 5/ gammad 6/ betad 7/ cauchyd 8/ weibulld 9/ sample 10/ randvector 11/ randvar Ex1:fitdistr(randvector(1000,weibulld,1/2,1),weibull) Ex2: X:=randvar(normal,stddev=9.5):;Y:=randvar(normal,stddev=1.5):;S:=sample(eval(X/Y,0),1000):;Z:=fitdistr(S,cauchy) Ex3: X:=randvar(normal,mean=5,variance=2):;S:=sample(exp(X),1000):;fitdistr(log(S),normal) - + ''' return GiacMethods['fitdistr'](self,*args) @@ -5984,9 +5984,9 @@ cdef class GiacMethods_base: Help for flatten: flatten(Lst) Recursively flatten a list containing lists. - See also: 1/ mat2list + See also: 1/ mat2list Ex1:flatten([[1,[2,3],4],[5,6]]) - + ''' return GiacMethods['flatten'](self,*args) @@ -5995,12 +5995,12 @@ cdef class GiacMethods_base: Help for float2rational: float2rational(Expr) Converts the expression to a rational or real expression. - See also: 1/ + See also: 1/ Ex1:float2rational(-2) Ex2:float2rational(1.5) Ex3:float2rational(1.4141) Ex4:float2rational(0.156381102937) - + ''' return GiacMethods['float2rational'](self,*args) @@ -6009,10 +6009,10 @@ cdef class GiacMethods_base: Help for floor: floor(Real or Cplx) Returns the greatest integer <= to the argument. - See also: 1/ round 2/ ceil 3/ iPart 4/ trunc + See also: 1/ round 2/ ceil 3/ iPart 4/ trunc Ex1:floor(-2.5) Ex2:floor(2.5-4.2*i) - + ''' return GiacMethods['floor'](self,*args) @@ -6021,10 +6021,10 @@ cdef class GiacMethods_base: Help for flow_polynomial: flow_polynomial(Graph(G),[Var(x)]) Returns the flow polynomial [or its value at point x] of undirected unweighted graph G. - See also: 1/ chromatic_polynomial 2/ reliability_polynomial 3/ tutte_polynomial + See also: 1/ chromatic_polynomial 2/ reliability_polynomial 3/ tutte_polynomial Ex1:flow_polynomial(graph("tetrahedron")) Ex2:flow_polynomial(graph("tetrahedron"),5) - + ''' return GiacMethods['flow_polynomial'](self,*args) @@ -6034,7 +6034,7 @@ cdef class GiacMethods_base: fmod(Real(a),Real(b)) Returns a mod b for a and b floats. Ex1:fmod(10.0,pi) - + ''' return GiacMethods['fmod'](self,*args) @@ -6043,9 +6043,9 @@ cdef class GiacMethods_base: Help for foldl: foldl(op,id,Seq(r1,r2,...)) Returns the composition of the binary operator or function op, with an identity or initial value id onto its arguments r1, r2, ..., associating from the left. - See also: 1/ apply 2/ foldr 3/ map + See also: 1/ apply 2/ foldr 3/ map Ex1:foldl(F,init,a,b,c) - + ''' return GiacMethods['foldl'](self,*args) @@ -6054,9 +6054,9 @@ cdef class GiacMethods_base: Help for foldr: foldr(op,id,Seq(r1,r2,...)) Returns the composition of the binary operator or function op, with an identity or initial value id onto its arguments r1, r2, ..., associating from the right. - See also: 1/ apply 2/ foldl 3/ map + See also: 1/ apply 2/ foldl 3/ map Ex1:foldr(F,init,a,b,c) - + ''' return GiacMethods['foldr'](self,*args) @@ -6065,13 +6065,13 @@ cdef class GiacMethods_base: Help for fonction_derivee: fonction_derivee(Fnc(f)) Returns the derivative function of the function f. - See also: 1/ diff 2/ ' 3/ @ + See also: 1/ diff 2/ ' 3/ @ Ex1:fonction_derivee(sin+id) Ex2:fonction_derivee(sq@sin+id) Ex3:fonction_derivee(ln)(x,y) Ex4:fonction_derivee(ln)([x,y]) - Ex5: (function_diff @@3)(ln)('x') - + Ex5: (function_diff @@3)(ln)('x') + ''' return GiacMethods['fonction_derivee'](self,*args) @@ -6080,10 +6080,10 @@ cdef class GiacMethods_base: Help for forward: forward(NULL or Real(n)) The turtle takes n steps forward (by default n=10). - See also: 1/ recule 2/ saute + See also: 1/ recule 2/ saute Ex1: avance 30 Ex2:forward(30) - + ''' return GiacMethods['forward'](self,*args) @@ -6092,7 +6092,7 @@ cdef class GiacMethods_base: Help for fourier: fourier(Expr(f(x)),[Var(x),[Var(s)]]) Returns the Fourier transform F(s) of f(x). - See also: 1/ ifourier 2/ fourier_cn 3/ fft + See also: 1/ ifourier 2/ fourier_cn 3/ fft Ex1:fourier(x/(x^3-19x+30),x,s) Ex2:fourier((x^2+1)/(x^2-1),x,s) Ex3:fourier(3x^2+2x+1,x,s) @@ -6109,7 +6109,7 @@ cdef class GiacMethods_base: Ex14:fourier(Gamma(1+i*x/3),x,s) Ex15:fourier(atan(x/4)/x,x,s) Ex16:fourier(piecewise(x<=-1,exp(x+1),x<=1,1,exp(2-2x)),x,s) - + ''' return GiacMethods['fourier'](self,*args) @@ -6118,10 +6118,10 @@ cdef class GiacMethods_base: Help for fourier_an: fourier_an(Expr(f(x)),Var(x),Period(T),Intg(n),Real(a)) Returns the n-th Fourier coefficient an=2/T*integrate(f(x)*cos(2*pi*n*x/T),a,a+T). - See also: 1/ fourier_cn 2/ fourier_bn 3/ assume + See also: 1/ fourier_cn 2/ fourier_bn 3/ assume Ex1:fourier_an(x^2,x,2,0,-1) Ex2:fourier_an(x^2,x,2,n,-1) - + ''' return GiacMethods['fourier_an'](self,*args) @@ -6130,10 +6130,10 @@ cdef class GiacMethods_base: Help for fourier_bn: fourier_bn(Expr(f(x)),Var(x),Period(T),Intg(n),Real(a)) Returns the n-th Fourier coefficient bn=2/T*integrate(f(x)*sin(2*pi*n*x/T),a,a+T). - See also: 1/ fourier_cn 2/ fourier_an 3/ assume + See also: 1/ fourier_cn 2/ fourier_an 3/ assume Ex1:fourier_bn(x^2,x,2,0,-1) Ex2:fourier_bn(x^2,x,2,n,-1) - + ''' return GiacMethods['fourier_bn'](self,*args) @@ -6142,10 +6142,10 @@ cdef class GiacMethods_base: Help for fourier_cn: fourier_cn(Expr(f(x)),Var(x),Period(T),Intg(n),Real(a)) Returns the n-th Fourier coefficient cn=1/T*integrate(f(x)*exp(-2*i*pi*n*x/T),a,a+T). - See also: 1/ fourier_an 2/ fourier_bn 3/ assume + See also: 1/ fourier_an 2/ fourier_bn 3/ assume Ex1:fourier_cn(x^2,x,2,0,-1) Ex2:fourier_cn(x^2,x,2,n,-1) - + ''' return GiacMethods['fourier_cn'](self,*args) @@ -6154,11 +6154,11 @@ cdef class GiacMethods_base: Help for fprint: fprint(File(f),Var,[Var,Var...]) Writes in the file f some data. - See also: 1/ fopen 2/ fclose + See also: 1/ fopen 2/ fclose Ex1:fprint(f,x+1,"2") Ex2:fprint(f,"blabla") Ex3:fprint(f,Unquoted,"blabla") - + ''' return GiacMethods['fprint'](self,*args) @@ -6167,13 +6167,13 @@ cdef class GiacMethods_base: Help for frac: frac(Real||LstReal) Returns the fractional part (if x<0 then frac(x)+floor(x)+1=x else frac(x)+floor(x)=x). - See also: 1/ floor 2/ iPart 3/ trunc + See also: 1/ floor 2/ iPart 3/ trunc Ex1:frac(1/2) Ex2:frac(-1/2) Ex3:frac(1.2) Ex4:frac(-1.2) Ex5:frac([3.4,sqrt(2)]) - + ''' return GiacMethods['frac'](self,*args) @@ -6182,9 +6182,9 @@ cdef class GiacMethods_base: Help for fracmod: fracmod(Expr(Xpr),Intg(n)) Returns the fraction a/b such as b*Xpr=a mod n, -sqrt(n)/20),Real(b>0),Real(x>=0)) Returns the probability density of the Gamma law (=x^(a-1)*exp(-b*x)*b^a/Gamma(a)). - See also: 1/ gammad_cdf; 2/ gammad_icdf + See also: 1/ gammad_cdf; 2/ gammad_icdf Ex1:gammad(2.2,1.5,0.8) - + ''' return GiacMethods['gammad'](self,*args) @@ -6318,10 +6318,10 @@ cdef class GiacMethods_base: Help for gammad_cdf: gammad_cdf(Real(a>0),Real(b>0),Real(x0>=0),[Real(y0>=0)]) Returns the probability that a Gamma random variable (with a and b as parameters) is less than x0 or between x0 and y0. - See also: 1/ gammad 2/ gammad_icdf + See also: 1/ gammad 2/ gammad_icdf Ex1:gammad_cdf(2,1,2.96) Ex2:gammad_cdf(2,1,1.4,2.96) - + ''' return GiacMethods['gammad_cdf'](self,*args) @@ -6330,10 +6330,10 @@ cdef class GiacMethods_base: Help for gammad_icdf: gammad_icdf(Real(a>0),Real(b>0),Real(0<=p<=1)) Returns h such that the probability that a Gamma random variable is less than h is p (0<=p<=1). - See also: 1/ gammad_cdf 2/ gammad + See also: 1/ gammad_cdf 2/ gammad Ex1:gammad_icdf(2,1,0.95) Ex2:gammad_icdf(2,1,0.5) - + ''' return GiacMethods['gammad_icdf'](self,*args) @@ -6342,10 +6342,10 @@ cdef class GiacMethods_base: Help for gammavariate: gammavariate(Real(a),Real(b)) Returns a random real according to the Gamma distribution with parameters a>0 and b>0. - See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector + See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector Ex1:gammavariate(1,2) Ex2:gammavariate(1.5,4) - + ''' return GiacMethods['gammavariate'](self,*args) @@ -6354,9 +6354,9 @@ cdef class GiacMethods_base: Help for gauss: gauss(Expr,VectVar) Splits a quadratic form as a sum/difference of squares. - See also: 1/ cholesky + See also: 1/ cholesky Ex1:gauss(x^2+2*a*x*y,[x,y]) - + ''' return GiacMethods['gauss'](self,*args) @@ -6365,12 +6365,12 @@ cdef class GiacMethods_base: Help for gauss15: gauss15(Opt) Option of the area command. - See also: 1/ area + See also: 1/ area Ex1: area(x^2,x=0..1,5,simpson) Ex2: area(x^2,x=0..1,5,rombergt) Ex3: area(x^2,x=0..1,5,rombergm) Ex4:gauss15(area(x^2,x=0..1,5,gauss15)) - + ''' return GiacMethods['gauss15'](self,*args) @@ -6379,12 +6379,12 @@ cdef class GiacMethods_base: Help for gauss_seidel_linsolve: gauss_seidel_linsolve([Real(omega)],Mtrx(A),Vect(b),Real(eps),[Int(maxiter)]) Resolution of a linear system A*X=b by the iterative Gauss-Seidel method (by defaut omega=1) or by relaxation method, with eps as error margin and a number of iterations less than maxiter. - See also: 1/ jacobi_linsolve 2/ linsolve + See also: 1/ jacobi_linsolve 2/ linsolve Ex1: a:=[[100,2],[2,100]];gauss_seidel_linsolve(a,[0,1],1e-12); - Ex2: a:=[[100,2],[2,100]];gauss_seidel_linsolve(table(a),[0,1],1e-12); + Ex2: a:=[[100,2],[2,100]];gauss_seidel_linsolve(table(a),[0,1],1e-12); Ex3: a:=[[100,2],[2,100]];gauss_seidel_linsolve(1.5,a,[0,1],1e-12); - Ex4: a:=[[100,2],[2,100]];gauss_seidel_linsolve(1.5,table(a),[0,1],1e-12); - + Ex4: a:=[[100,2],[2,100]];gauss_seidel_linsolve(1.5,table(a),[0,1],1e-12); + ''' return GiacMethods['gauss_seidel_linsolve'](self,*args) @@ -6393,9 +6393,9 @@ cdef class GiacMethods_base: Help for gaussian_window: gaussian_window(Lst,[Real(a)],[Interval(n1..n2)]) Applies the Gaussian windowing function with parameter 0= b (default a=0.2 and b=1/6.) - See also: 1/ gbasis 2/ gbasis_max_pairs 3/ gbasis_reinject + See also: 1/ gbasis 2/ gbasis_max_pairs 3/ gbasis_reinject Ex1:gbasis_reinject(0.1) Ex2:gbasis_reinject(0.1,0.05) - + ''' return GiacMethods['gbasis_reinject'](self,*args) @@ -6470,9 +6470,9 @@ cdef class GiacMethods_base: Help for gbasis_simult_primes: gbasis_simult_primes(Intg) Gbasis fine-tuning: maximal number of Groebner basis modulo a prime that are computed simultaneously to rebuild a Groebner basis over Q (default 16). Set it to a smaller value if short in memory. - See also: 1/ gbasis 2/ gbasis_max_pairs 3/ gbasis_reinject + See also: 1/ gbasis 2/ gbasis_max_pairs 3/ gbasis_reinject Ex1:gbasis_simult_primes(3) - + ''' return GiacMethods['gbasis_simult_primes'](self,*args) @@ -6481,13 +6481,13 @@ cdef class GiacMethods_base: Help for gcd: gcd((Intg(a) or Poly),(Intg(b) or Poly)) Returns the greatest common divisor of 2 polynomials of several variables or of 2 integers or of 2 rationals. - See also: 1/ lcm 2/ euler 2/ modgcd 3/ ezgcd 4/ psrgcd 5/ heugcd 6/ Gcd + See also: 1/ lcm 2/ euler 2/ modgcd 3/ ezgcd 4/ psrgcd 5/ heugcd 6/ Gcd Ex1:gcd(45,75) Ex2:gcd(15/7,50/9) Ex3:gcd(x^2-2*x+1,x^3-1) Ex4:gcd(t^2-2*t+1,t^2+t-2) Ex5:gcd((x^2-1)*(y^2-1)*z^2,x^3*y^3*z+(-(y^3))*z+x^3*z-z) - + ''' return GiacMethods['gcd'](self,*args) @@ -6496,12 +6496,12 @@ cdef class GiacMethods_base: Help for gcdex: gcdex((Poly or Lst),(Poly or Lst),[Var]) Extended greatest common divisor of 2 polynomials. - See also: 1/ gcd 2/ iegcd + See also: 1/ gcd 2/ iegcd Ex1:gcdex((x-1)^2,x^3-1) Ex2:gcdex((X-1)^2,X^3-1,X) Ex3:gcdex([1,-2,1],[1,0,0,-1]) Ex4:gcdex([1,-2,1],[1,-1,2]) - + ''' return GiacMethods['gcdex'](self,*args) @@ -6510,11 +6510,11 @@ cdef class GiacMethods_base: Help for genpoly: genpoly(Poly(P),Intg(b),Var) Returns the reconstruction of a n-variables polynomial Q(-b/2<=coef<=b/2) from an (n-1)-variable polynomial P and a base b (subst(Q,var=b)=P). - See also: 1/ + See also: 1/ Ex1:genpoly(15,4,x) Ex2:genpoly(7*y+5,6,x) Ex3:genpoly(7*y-5*z,10,x) - + ''' return GiacMethods['genpoly'](self,*args) @@ -6523,12 +6523,12 @@ cdef class GiacMethods_base: Help for geometric: geometric(Real(p),Intg(k)) Returns the value at k of the geometric law with parameter p (0cos(2*x)) Ex4:getType(1.414) - + ''' return GiacMethods['getType'](self,*args) @@ -6611,9 +6611,9 @@ cdef class GiacMethods_base: Help for get_edge_attribute: get_edge_attribute(Graph(G),Edge(e),Seq(tag1=value1,tag2=value2,..)) Returns the attributes tag1, tag2, ... assigned to edge e in G as a sequence of the corresponding values. - See also: 1/ discard_edge_attribute 2/ set_edge_attribute 3/ list_edge_attributes + See also: 1/ discard_edge_attribute 2/ set_edge_attribute 3/ list_edge_attributes Ex1:get_edge_attribute(cycle_graph(3),[1,2],"cost") - + ''' return GiacMethods['get_edge_attribute'](self,*args) @@ -6622,9 +6622,9 @@ cdef class GiacMethods_base: Help for get_edge_weight: get_edge_weight(Graph(G),Edge(e)) Returns the weight of the edge e in the weighted graph G. - See also: 1/ is_weighted 2/ make_weighted 3/ set_edge_weight 4/ weight_matrix + See also: 1/ is_weighted 2/ make_weighted 3/ set_edge_weight 4/ weight_matrix Ex1:get_edge_weight(graph(%{[[1,2],5],[[2,3],6]%}),[1,2]) - + ''' return GiacMethods['get_edge_weight'](self,*args) @@ -6633,9 +6633,9 @@ cdef class GiacMethods_base: Help for get_graph_attribute: get_graph_attribute(Graph(G),Seq(tag1=value1,tag2=value2,..)) Return the graph attributes tag1, tag2, ..., as a sequence of the corresponding values. - See also: 1/ discard_graph_attribute 2/ set_graph_attribute 3/ list_graph_attributes + See also: 1/ discard_graph_attribute 2/ set_graph_attribute 3/ list_graph_attributes Ex1:get_graph_attribute(cycle_graph(3),"name") - + ''' return GiacMethods['get_graph_attribute'](self,*args) @@ -6644,9 +6644,9 @@ cdef class GiacMethods_base: Help for get_vertex_attribute: get_vertex_attribute(Graph(G),Vrtx(v),Seq(tag1=value1,tag2=value2,..)) Returns the attributes tag1, tag2, ... assigned to vertex v in G as a sequence of the corresponding values. - See also: 1/ discard_vertex_attribute 2/ set_vertex_attribute 3/ list_vertex_attributes + See also: 1/ discard_vertex_attribute 2/ set_vertex_attribute 3/ list_vertex_attributes Ex1:get_vertex_attribute(cycle_graph(3),1,"supply") - + ''' return GiacMethods['get_vertex_attribute'](self,*args) @@ -6655,10 +6655,10 @@ cdef class GiacMethods_base: Help for girth: girth(Graph(G)) Returns the length of the shortest cycle in the undirected unweighted graph G. - See also: 1/ odd_girth + See also: 1/ odd_girth Ex1:girth(graph("petersen")) Ex2:girth(hypercube_graph(3)) - + ''' return GiacMethods['girth'](self,*args) @@ -6667,10 +6667,10 @@ cdef class GiacMethods_base: Help for gl_showaxes: gl_showaxes(Opt=Boolean) Option that shows or hides axes. - See also: 1/ switch_axes 2/ axes + See also: 1/ switch_axes 2/ axes Ex1: gl_showaxes=true;plot(sin(x)) - Ex2: gl_showaxes=false;plot(sin(x)) - + Ex2: gl_showaxes=false;plot(sin(x)) + ''' return GiacMethods['gl_showaxes'](self,*args) @@ -6679,9 +6679,9 @@ cdef class GiacMethods_base: Help for grad: grad(Expr(Xpr),LstVar) Returns the gradient of the expression Xpr. - See also: 1/ hessian + See also: 1/ hessian Ex1:grad(2*x^2*y-x*z^3,[x,y,z]) - + ''' return GiacMethods['grad'](self,*args) @@ -6690,10 +6690,10 @@ cdef class GiacMethods_base: Help for gramschmidt: gramschmidt(Basis(B),ScalarProd(Sp)) Returns an orthonormal basis of E with basis B for the scalar product Sp. - See also: 1/ + See also: 1/ Ex1:gramschmidt(-2) Ex2:gramschmidt([1,1+x],(p,q)->integrate(p*q,x,-1,1)) - + ''' return GiacMethods['gramschmidt'](self,*args) @@ -6702,7 +6702,7 @@ cdef class GiacMethods_base: Help for graph: graph([Lst(V)],[Set(E)],[Mtrx(A)],[options]) Create an (un)directed (un)weighted graph from vertices V, edges E, and/or adjacency or weight matrix A. All parameters are optional. - See also: 1/ digraph 2/ trail + See also: 1/ digraph 2/ trail Ex1:graph(5) Ex2:graph([a,b,c]) Ex3:graph([1,2,3],%{[1,2],[2,3],[3,1]%}) @@ -6710,7 +6710,7 @@ cdef class GiacMethods_base: Ex5:graph([a,b,c],[[0,2,0],[2,0,3],[0,3,0]]) Ex6:graph("petersen") Ex7:graph([[0,1,1,0],[1,0,0,1],[1,0,0,0],[0,1,0,0]]) - + ''' return GiacMethods['graph'](self,*args) @@ -6719,9 +6719,9 @@ cdef class GiacMethods_base: Help for graph_automorphisms: graph_automorphisms(Graph(G)) Returns the sequence of generators of Aut(G), the automorphism group of G. Each element is a permutation in the form of list of disjoint cycles. - See also: 1/ cycles2permu 2/ isomorphic_copy 3/ permute_vertices + See also: 1/ cycles2permu 2/ isomorphic_copy 3/ permute_vertices Ex1:graph_automorphisms(graph("petersen")) - + ''' return GiacMethods['graph_automorphisms'](self,*args) @@ -6730,10 +6730,10 @@ cdef class GiacMethods_base: Help for graph_charpoly: graph_charpoly(Graph(G),[Var(x)]) Returns the value p(x) of the characteristic polynomial p of G. If x is omitted, a list of coefficients of p is returned. - See also: 1/ graph_spectrum 2/ charpoly + See also: 1/ graph_spectrum 2/ charpoly Ex1:graph_charpoly(graph(%{[1,2],[2,3]%})) Ex2:graph_charpoly(graph("shrikhande")) - + ''' return GiacMethods['graph_charpoly'](self,*args) @@ -6742,9 +6742,9 @@ cdef class GiacMethods_base: Help for graph_complement: graph_complement(Graph(G)) Return the graph with the same vertex set as G, but whose edge (arc) set consists of the edges (arcs) not present in G. - See also: 1/ edges + See also: 1/ edges Ex1:graph_complement(cycle_graph(5)) - + ''' return GiacMethods['graph_complement'](self,*args) @@ -6753,9 +6753,9 @@ cdef class GiacMethods_base: Help for graph_diameter: graph_diameter(Graph(G)) Returns the maximum distance between a pair of vertices in G or +infinity if G is disconnected. - See also: 1/ allpairs_distance 2/ dijkstra 3/ shortest_path 4/ vertex_distance + See also: 1/ allpairs_distance 2/ dijkstra 3/ shortest_path 4/ vertex_distance Ex1:graph_diameter(graph("petersen")) - + ''' return GiacMethods['graph_diameter'](self,*args) @@ -6764,9 +6764,9 @@ cdef class GiacMethods_base: Help for graph_equal: graph_equal(Graph(G1),Graph(G2)) Returns true iff the input graphs G1 and G2 are equal, that is when the sets of vertices and edges of G1 and G2, as well as the orderings of vertices in both graphs, mutually coincide. If the graphs are weighted (they must both be (un)weighted and (un)directed), weights given to the same edge in two graphs must be equal. - See also: 1/ edges 2/ graph_vertices + See also: 1/ edges 2/ graph_vertices Ex1:graph_equal(graph([1,2,3],%{[1,2],[2,3],[3,1]%}),graph(trail(1,2,3,1))) - + ''' return GiacMethods['graph_equal'](self,*args) @@ -6775,9 +6775,9 @@ cdef class GiacMethods_base: Help for graph_join: graph_join(Graph(G),Graph(H)) Returns the graph obtained by connecting every vertex from G with every vertex from H. The vertex labels in the resulting graph are strings of form "1:u" and "2:v" where u and v are vertices from G and H, respectively. - See also: 1/ disjoint_union 2/ graph_union + See also: 1/ disjoint_union 2/ graph_union Ex1:graph_join(edges(graph_join(cycle_graph(3),graph(2)))) - + ''' return GiacMethods['graph_join'](self,*args) @@ -6786,9 +6786,9 @@ cdef class GiacMethods_base: Help for graph_power: graph_power(Graph(G),Intg(k)) Returns the k-th power of G, where two vertices are connected iff there exists a path of length at most k in the original graph. - See also: 1/ adjacency matrix 2/ graph_diameter 3/ shortest_path + See also: 1/ adjacency matrix 2/ graph_diameter 3/ shortest_path Ex1:graph_power(edges(graph_power(path_graph(5),3))) - + ''' return GiacMethods['graph_power'](self,*args) @@ -6797,10 +6797,10 @@ cdef class GiacMethods_base: Help for graph_rank: graph_rank(Graph(G),[Lst(E)]) Returns the graph rank of G. If optional set E of edges is given, the rank of the spanning subgraph of G with edge set E is returned. - See also: 1/ connected_components 2/ number_of_vertices + See also: 1/ connected_components 2/ number_of_vertices Ex1:graph_rank(graph(%{[1,2],[3,4],[4,5]%})) Ex2:graph_rank(graph(%{[1,2],[3,4],[4,5]%}),[[1,2],[3,4]) - + ''' return GiacMethods['graph_rank'](self,*args) @@ -6809,9 +6809,9 @@ cdef class GiacMethods_base: Help for graph_spectrum: graph_spectrum(Graph(G)) Returns the graph spectrum of G as a list of lists with two elements, each containing an eigenvalue and its multiplicity. - See also: 1/ graph_charpoly 2/ seidel_spectrum 3/ is_integer_graph + See also: 1/ graph_charpoly 2/ seidel_spectrum 3/ is_integer_graph Ex1:graph_spectrum(cycle_graph(5)) - + ''' return GiacMethods['graph_spectrum'](self,*args) @@ -6820,9 +6820,9 @@ cdef class GiacMethods_base: Help for graph_union: graph_union(Seq(G1,G2,...)) Returns the union of the graphs G1, G2, ... The set of vertices of the resulting graph is the union of the sets of vertices of the input graphs and the set of edges of the resulting graph is the union of sets of edges of the input graphs. If the input graphs are weighted, the weight of any common edge is the sum of the weights of that edge in G1, G2, ... - See also: 1/ disjoint_union 2/ graph_join + See also: 1/ disjoint_union 2/ graph_join Ex1:graph_union(edges(graph_union(cycle_graph(4),path_graph(5)))) - + ''' return GiacMethods['graph_union'](self,*args) @@ -6831,9 +6831,9 @@ cdef class GiacMethods_base: Help for graph_vertices: graph_vertices(Graph(G)) Return the list of vertices in G. - See also: 1/ add_vertex 2/ graph 3/ neighbors 4/ permute_vertices 5/ relabel_vertices + See also: 1/ add_vertex 2/ graph 3/ neighbors 4/ permute_vertices 5/ relabel_vertices Ex1:graph_vertices(graph(%{[a,c],[b,c],[a,b]%})) - + ''' return GiacMethods['graph_vertices'](self,*args) @@ -6842,11 +6842,11 @@ cdef class GiacMethods_base: Help for greduce: greduce(Poly,LstPoly,LstVar,[order]) Returns the remainder of the division of a polynomial by a Groebner basis. - See also: 1/ gbasis + See also: 1/ gbasis Ex1:greduce(x*y-1,[x^2-y^2,2*x*y-y^2,y^3],[x,y]) Ex2:greduce(x1^2*x3^2,[x3^3-1,-x2^2-x2*x3-x3^2,x1+x2+x3],[x1,x2,x3],tdeg) Ex3:greduce(x1^2*x3^2-x2,[x3^3-1,-x2^2-x2*x3-x3^2,x1+x2+x3],[x1,x2,x3]) - + ''' return GiacMethods['greduce'](self,*args) @@ -6855,9 +6855,9 @@ cdef class GiacMethods_base: Help for greedy_color: greedy_color(Graph(G),[Permu(p)]) Returns the list of vertex colors (positive integers) obtained by coloring vertices one at a time [in the order given by permutation p], assigning to it the smallest available color. - See also: 1/ is_vertex_colorable 2/ chromatic_number + See also: 1/ is_vertex_colorable 2/ chromatic_number Ex1:greedy_color(graph("petersen")) - + ''' return GiacMethods['greedy_color'](self,*args) @@ -6866,9 +6866,9 @@ cdef class GiacMethods_base: Help for grid_graph: grid_graph(Intg(m),Intg(n),[triangle]) Returns a [triangular] grid graph on m*n vertices, where m,n>=2. - See also: 1/ torus_grid_graph + See also: 1/ torus_grid_graph Ex1:grid_graph(5,8) - + ''' return GiacMethods['grid_graph'](self,*args) @@ -6877,9 +6877,9 @@ cdef class GiacMethods_base: Help for groupermu: groupermu(Permut(a),Permut(b)) Returns the group of permutations generated by a and b. - See also: 1/ + See also: 1/ Ex1:groupermu([1,2,0],[3,1,2,0]) - + ''' return GiacMethods['groupermu'](self,*args) @@ -6888,10 +6888,10 @@ cdef class GiacMethods_base: Help for hadamard: hadamard(Mtrx,Mtrx) Hadamard bound of a matrix or element by element multiplication of 2 matrices. - See also: 1/ .* 2/ * + See also: 1/ .* 2/ * Ex1:hadamard([[1,2],[3,4]]) Ex2:hadamard([[1,2],[3,4]],[[3,4],[5,6]]) - + ''' return GiacMethods['hadamard'](self,*args) @@ -6900,10 +6900,10 @@ cdef class GiacMethods_base: Help for half_cone: half_cone(Pnt(A),Vect(v),Real(t),[Real(h)]) Draws a half-cone with vertex A, direction v and with half_angle=t [and with altitude h]. - See also: 1/ cone 2/ cylinder + See also: 1/ cone 2/ cylinder Ex1:half_cone([0,0,0],[0,0,1],pi/6) Ex2:half_cone([0,0,0],[0,1,1],pi/6,-4) - + ''' return GiacMethods['half_cone'](self,*args) @@ -6912,10 +6912,10 @@ cdef class GiacMethods_base: Help for half_line: half_line((Pnt or Cplx),(Pnt or Cplx)) half_line(A,B) draws the half-line AB with A as origin. - See also: 1/ line + See also: 1/ line Ex1:half_line(i,1+i) Ex2:half_line(point(i),point(1+i)) - + ''' return GiacMethods['half_line'](self,*args) @@ -6927,7 +6927,7 @@ cdef class GiacMethods_base: Ex1:halftan(sin(x)) Ex2:halftan(cos(x)) Ex3:halftan(tan(x)) - + ''' return GiacMethods['halftan'](self,*args) @@ -6936,9 +6936,9 @@ cdef class GiacMethods_base: Help for halftan_hyp2exp: halftan_hyp2exp(ExprTrig) Transforms the trigonometric functions in tan(x/2) and hyperbolic functions to exp. - See also: 1/ hyp2exp 2/ halftan + See also: 1/ hyp2exp 2/ halftan Ex1:halftan_hyp2exp(sin(x)+sinh(x)) - + ''' return GiacMethods['halftan_hyp2exp'](self,*args) @@ -6947,9 +6947,9 @@ cdef class GiacMethods_base: Help for halt: halt(NULL) Puts a program in step-by-step debug mode. - See also: 1/ + See also: 1/ Ex1:halt() - + ''' return GiacMethods['halt'](self,*args) @@ -6959,7 +6959,7 @@ cdef class GiacMethods_base: hamdist(Intg,Intg) Bitwise Hamming distance. Ex1:hamdist(0x12,0x38) - + ''' return GiacMethods['hamdist'](self,*args) @@ -6968,9 +6968,9 @@ cdef class GiacMethods_base: Help for hamming_window: hamming_window(Lst,[Interval(n1..n2)]) Applies the Hamming windowing function to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ bartlett_hann_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ bartlett_hann_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(hamming_window(randvector(1000,0..1))) - + ''' return GiacMethods['hamming_window'](self,*args) @@ -6979,9 +6979,9 @@ cdef class GiacMethods_base: Help for hann_poisson_window: hann_poisson_window(Lst,[Interval(n1..n2)]) Applies the Hann-Poisson windowing function with parameter a (by default a=1) to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ bartlett_hann_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ bartlett_hann_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(hann_poisson_window(randvector(1000,0..1),2)) - + ''' return GiacMethods['hann_poisson_window'](self,*args) @@ -6990,9 +6990,9 @@ cdef class GiacMethods_base: Help for hann_window: hann_window(Lst,[Interval(n1..n2)]) Applies the Hann windowing function to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ bartlett_hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ bartlett_hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(hann_window(randvector(1000,0..1))) - + ''' return GiacMethods['hann_window'](self,*args) @@ -7001,12 +7001,12 @@ cdef class GiacMethods_base: Help for harmonic_conjugate: harmonic_conjugate(Line or Pnt(A),Line or Pnt(B),Line or Pnt(C)) Returns the harmonic conjugate C with respect to A and B of 3 points or of 3 parallel or concurrent lines or the line of conjugates of a point with respect to 2 lines. - See also: 1/ is_harmonic 2/ harmonic_division + See also: 1/ is_harmonic 2/ harmonic_division Ex1:harmonic_conjugate(0,2,3/2) Ex2:harmonic_conjugate(0,1+i,2+2*i) Ex3:harmonic_conjugate(line(0,1+i),line(0,3+i),line(0,i)) Ex4:harmonic_conjugate(line(0,1+i),line(0,3+i),point(3/2+i)) - + ''' return GiacMethods['harmonic_conjugate'](self,*args) @@ -7015,12 +7015,12 @@ cdef class GiacMethods_base: Help for harmonic_division: harmonic_division(Pnt or Line,Pnt or Line,Pnt or Line,Var) Returns 4 points (resp lines) and affects the last argument, such that the 4 points (resp lines) are in a harmonic division and assigns the fourth point to the variable name. - See also: 1/ harmonic_conjugate 2/ is_harmonic + See also: 1/ harmonic_conjugate 2/ is_harmonic Ex1:harmonic_division(0,2,3/2,D) Ex2:harmonic_division(0,1+i,2+2*i,D) Ex3:harmonic_division(line(i,0),line(i,1+i),line(i,3+2*i),D) Ex4:harmonic_division(line(0,1+i),line(0,3+i),line(0,i),D) - + ''' return GiacMethods['harmonic_division'](self,*args) @@ -7029,10 +7029,10 @@ cdef class GiacMethods_base: Help for has: has(Expr,Var) Checks if a variable is in an expression. - See also: 1/ lname 2/ lvar + See also: 1/ lname 2/ lvar Ex1:has(x+y,x) Ex2:has(x+y,n) - + ''' return GiacMethods['has'](self,*args) @@ -7041,10 +7041,10 @@ cdef class GiacMethods_base: Help for has_arc: has_arc(Graph(G),Edge(e)) Returns true iff the arc e=[i,j] is contained in digraph G or, if e={i,j} is a set, iff G has both edges [i,j] and [j,i]. - See also: 1/ edges 2/ has_edge + See also: 1/ edges 2/ has_edge Ex1:has_arc(digraph(trail(1,2,3,4,1)),[4,2]) Ex2:has_arc(digraph(trail(1,2,3,4,1)),%{4,2%}) - + ''' return GiacMethods['has_arc'](self,*args) @@ -7053,9 +7053,9 @@ cdef class GiacMethods_base: Help for has_edge: has_edge(Graph(G),Edge(e)) Returns true iff the edge e=[i,j] is contained in undirected graph G. - See also: 1/ edges 2/ has_arc + See also: 1/ edges 2/ has_arc Ex1:has_edge(graph(trail(1,2,3,4,1)),[2,4]) - + ''' return GiacMethods['has_edge'](self,*args) @@ -7064,7 +7064,7 @@ cdef class GiacMethods_base: Help for hasard: hasard(Intg(n) or Interval(p..n) or NULL,[Intg(b1) or Lst(L)],[Intg(b2)]) (hasard n)=a random integer (resp (hasard p,n)=a real or hasard(p..n)=a real function) with uniform distribution in 0..n-1 (resp in [p;n])(hasard= (hasard 0,1)=a random real in [0,1[) or hasard(n,b1,b2)=n integers between b1 and b2 or hasard(n,L)=n elements of L. If hasard has only one argument, () are not necessary (compatibility with turtle language). - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ srand + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ srand Ex1: hasard 4 Ex2: hasard(4) Ex3:hasard(0,2) @@ -7072,7 +7072,7 @@ cdef class GiacMethods_base: Ex5: f:=hasard 0..2 Ex6:hasard(3,1,10) Ex7:hasard(3,["r","r","r","b","n"]) - + ''' return GiacMethods['hasard'](self,*args) @@ -7081,11 +7081,11 @@ cdef class GiacMethods_base: Help for head: head(Vect or Seq or Str) Shows the first element of a vector or a sequence or a string. - See also: 1/ back 2/ tail 3/ mid 4/ left 5/ right + See also: 1/ back 2/ tail 3/ mid 4/ left 5/ right Ex1:head(1,2,3) Ex2:head([1,2,3]) Ex3:head("bonjour") - + ''' return GiacMethods['head'](self,*args) @@ -7094,11 +7094,11 @@ cdef class GiacMethods_base: Help for heading: heading(NULL or Real) Returns the turtle cap in degrees or turns the turtle in the direction given by the argument. - See also: 1/ position 2/ initialise + See also: 1/ position 2/ initialise Ex1: cap Ex2:heading() Ex3:heading(cap 90) - + ''' return GiacMethods['heading'](self,*args) @@ -7107,8 +7107,8 @@ cdef class GiacMethods_base: Help for heapify: heapify(List) Partial ordering of a list as a heap. - See also: 1/ heappush 2/ heappop - + See also: 1/ heappush 2/ heappop + ''' return GiacMethods['heapify'](self,*args) @@ -7117,8 +7117,8 @@ cdef class GiacMethods_base: Help for heappop: heappop(List) Removes and returns the root node of a heap. - See also: 1/ heapify 2/ heappush - + See also: 1/ heapify 2/ heappush + ''' return GiacMethods['heappop'](self,*args) @@ -7127,8 +7127,8 @@ cdef class GiacMethods_base: Help for heappush: heappush(List,Object) Adds an object in a heap. - See also: 1/ heapify 2/ heappop - + See also: 1/ heapify 2/ heappop + ''' return GiacMethods['heappush'](self,*args) @@ -7137,10 +7137,10 @@ cdef class GiacMethods_base: Help for hermite: hermite(Intg(n)||Matr(A)) Returns the Hermite polynomial of degree n or the Hermite normal form for a matrix with polynomial coefficients (I,U such that I*A=U). - See also: 1/ legendre 2/ laguerre 3/ smith 4/ ihermite 5/ ismith + See also: 1/ legendre 2/ laguerre 3/ smith 4/ ihermite 5/ ismith Ex1:hermite(3) Ex2: n:=5; a:=ranm(n,n) % 17; l,u:=hermite(x-a);normal(l*(x-a)-u); - + ''' return GiacMethods['hermite'](self,*args) @@ -7149,13 +7149,13 @@ cdef class GiacMethods_base: Help for hessenberg: hessenberg(Mtrx(A),[Intg(n)]) Matrix reduction to Hessenberg form. Returns [P,B] such that B=inv(P)*A*P, by default n=0 the result is exact else the result is numeric. For n=-1 B is triangular, n=-2 P is orthogonal and if n is prime the result is mod n. - See also: 1/ SCHUR + See also: 1/ SCHUR Ex1:hessenberg([[1,2,3],[4,5,6],[7,8,1]]) Ex2:hessenberg([[1,2,3,4],[4,5,6,7],[7,8,9,0],[0,1,2,3]]) Ex3:hessenberg([[1,2,3],[4,5,6],[7,8,1]],-1) Ex4:hessenberg([[1,2,3],[4,5,6],[7,8,1]],-2) Ex5:hessenberg([[1,2,3],[4,5,6],[7,8,1]],3) - + ''' return GiacMethods['hessenberg'](self,*args) @@ -7164,9 +7164,9 @@ cdef class GiacMethods_base: Help for hessian: hessian(Expr(Xpr),LstVar) Returns the hessian of the expression Xpr. - See also: 1/ grad + See also: 1/ grad Ex1:hessian(2*x^2*y-x*z,[x,y,z]) - + ''' return GiacMethods['hessian'](self,*args) @@ -7175,9 +7175,9 @@ cdef class GiacMethods_base: Help for heugcd: heugcd(Poly,Poly) GCD of 2 polynomials, with the algorithm called heuristic pgcd. - See also: 1/ gcd 2/ modgcd 3/ ezgcd 4/ psrgcd + See also: 1/ gcd 2/ modgcd 3/ ezgcd 4/ psrgcd Ex1:heugcd(x^4-1,(x-1)^2) - + ''' return GiacMethods['heugcd'](self,*args) @@ -7186,12 +7186,12 @@ cdef class GiacMethods_base: Help for hexagon: hexagon(Pnt(A)||Cplx,Pnt(B)||Cplx,[Pnt(P)],[Var(C)],[Var(D)],[Var(E)],[Var(F)]) Returns and draws the hexagon of side AB (ABCDEF is direct) (in the plane ABP). - See also: 1/ isopolygon 2/ polygon + See also: 1/ isopolygon 2/ polygon Ex1:hexagon(i,1+i) Ex2:hexagon(i,1+i,C,D,E,F) Ex3:hexagon(point(0,0,0),point(3,3,3),point(0,0,3)) Ex4:hexagon(point(0,0,0),point(3,3,3),point(0,0,3),C,D,E,F) - + ''' return GiacMethods['hexagon'](self,*args) @@ -7200,9 +7200,9 @@ cdef class GiacMethods_base: Help for highlight_edges: highlight_edges(Graph(G),Edge(e)||Lst(E),[Color(c)||Lst(C)]) Changes color of edge e resp. colors of edges in E of the input graph V to c resp C (by default red) and returns the modified copy of G. - See also: 1/ highlight_vertex 2/ highlight_subgraph 3/ highlight_trail + See also: 1/ highlight_vertex 2/ highlight_subgraph 3/ highlight_trail Ex1: draw_graph(highlight_edges(cycle_graph(3),[1,2])) - + ''' return GiacMethods['highlight_edges'](self,*args) @@ -7211,9 +7211,9 @@ cdef class GiacMethods_base: Help for highlight_subgraph: highlight_subgraph(Graph(G),Graph(S)||Lst(S1,S2,..),Seq(c1,c2)) Changes colors of edges and vertices from the sugbraph S or list of subgraphs S1, S2, ... of G to c1 and c2, respectively (red and green by default), and returns the modified copy of G. - See also: 1/ highlight_edges 2/ highlight_vertex 3/ highlight_trail + See also: 1/ highlight_edges 2/ highlight_vertex 3/ highlight_trail Ex1: draw_graph(highlight_subgraph(cycle_graph(5),path_graph(3))) - + ''' return GiacMethods['highlight_subgraph'](self,*args) @@ -7222,9 +7222,9 @@ cdef class GiacMethods_base: Help for highlight_trail: highlight_trail(Graph(G),Trail(t)||Lst(T),[Color(c)||Lst(C)]) Changes colors of edges in G which lie along the trail t resp. trails in T to c resp. C (by default red) and returns the modified copy of G. - See also: 1/ highlight_edges 2/ highlight_subgraph 3/ highlight_vertex + See also: 1/ highlight_edges 2/ highlight_subgraph 3/ highlight_vertex Ex1: draw_graph(highlight_trail(cycle_graph(5),trail(1,2,3),green) - + ''' return GiacMethods['highlight_trail'](self,*args) @@ -7233,9 +7233,9 @@ cdef class GiacMethods_base: Help for highlight_vertex: highlight_vertex(Graph(G),Vrtx(v)||Lst(V),[Color(c)||Lst(C)]) Changes the color of vertex v resp. colors of vertices from V in G to c resp. C (green by default) and returns the modified copy of G. - See also: 1/ highlight_edges 2/ highlight_subgraph 3/ highlight_trail + See also: 1/ highlight_edges 2/ highlight_subgraph 3/ highlight_trail Ex1: draw_graph(highlight_vertex(cycle_graph(3),1)) - + ''' return GiacMethods['highlight_vertex'](self,*args) @@ -7244,9 +7244,9 @@ cdef class GiacMethods_base: Help for highpass: highpass(Lst(s),Real(c),[Intg(samplerate)]) Returns the result of applying a simple first-order highpass RC filter with cutoff frequency c (the default samplerate is 44100) to the given signal s. - See also: 1/ lowpass 2/ moving_average + See also: 1/ lowpass 2/ moving_average Ex1: f:=unapply(periodic(sign(x),x,-1/880,1/880),x):;s:=createwav(apply(f,soundsec(1))):;playsnd(highpass(s,5000)) - + ''' return GiacMethods['highpass'](self,*args) @@ -7255,9 +7255,9 @@ cdef class GiacMethods_base: Help for hilbert: hilbert(Intg(n)) Returns the order n Hilbert matrix : Hjk=1/(j+k+1) j,k=1..n. - See also: 1/ + See also: 1/ Ex1:hilbert(4) - + ''' return GiacMethods['hilbert'](self,*args) @@ -7266,7 +7266,7 @@ cdef class GiacMethods_base: Help for histogram: histogram(Lst(data),[Lst(eff) || Intg(nc) || Real(classmin)],[Real(classsize)]) Draws the histogram of data, optional arguments are eff (number of data for each data element) or nc the number of classes or the classes minimum and size. - See also: 1/ cumulated_frequencies 2/ classes 3/ bar_plot 4/ frequencies + See also: 1/ cumulated_frequencies 2/ classes 3/ bar_plot 4/ frequencies Ex1:histogram([1,2,1,1,2,1,2,4,3,3]) Ex2:histogram([1,2,1,1,2,1,2,4,3,3],0.5,1) Ex3:histogram(seq(rand(1000),k,0,100),0,100) @@ -7275,7 +7275,7 @@ cdef class GiacMethods_base: Ex6:histogram([[1.5..1.65,50],[1.65..1.7,20],[1.7..1.8,30]]) Ex7:histogram(seq(rand(1000),k,0,100),0,100) Ex8:histogram(seq(rand(1000),k,0,100),10) - + ''' return GiacMethods['histogram'](self,*args) @@ -7284,11 +7284,11 @@ cdef class GiacMethods_base: Help for hold: hold(Expr) Returns its argument unevaluated (and also a:=quote(a) purges a). - See also: 1/ + See also: 1/ Ex1:hold(1+2) Ex2:hold(1/x+1/(x-1)) Ex3:hold((x+1)*(x-1)) - + ''' return GiacMethods['hold'](self,*args) @@ -7299,7 +7299,7 @@ cdef class GiacMethods_base: Make P homogeneous by adding a variable (by default t) Ex1:homogeneize(x^2-1) Ex2:homogeneize(x^2-y,z) - + ''' return GiacMethods['homogeneize'](self,*args) @@ -7308,12 +7308,12 @@ cdef class GiacMethods_base: Help for homothety: homothety(Pnt(C),Real(k),Pnt(A)) homothety(C,k,A)=point A1 such as vect(C,A1)=k*vect(C,A) i.e in 2d it is the similarity with center C, coeff abs(k) and angle arg(k). - See also: 1/ similarity 2/ inversion + See also: 1/ similarity 2/ inversion Ex1:homothety(1+i,1/3,i) Ex2:homothety(point(1,1,1),1/3,point(0,1,0)) Ex3: h:=homothety(1+i,1/3);h(i) Ex4: h:=homothety(point(1,1,1),1/3);h(point(0,1,0)) - + ''' return GiacMethods['homothety'](self,*args) @@ -7322,12 +7322,12 @@ cdef class GiacMethods_base: Help for horner: horner(Poly(P),Real(a)) Returns the value of P(a) calculated with Horner's method. With horner(list_alpha_i,list_x_i,x), evals an interpolation polynomial from the divided differences of x. - See also: 1/ convert 2/ base 3/ revlist + See also: 1/ convert 2/ base 3/ revlist Ex1:horner(x^2+1,2) Ex2:horner([1,0,1],2) Ex3:horner(x^2+y*x+y^3-1,2,y) Ex4: X:=[0.0,1.0,2.0]; A:=lagrange(X,exp,lagrange); horner(A,X,1.5); - + ''' return GiacMethods['horner'](self,*args) @@ -7336,14 +7336,14 @@ cdef class GiacMethods_base: Help for hybrid_solver: hybrid_solver(Opt) Argument for fsolve giving the method for solving a system of numerical equations. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],dnewton_solver) Ex2: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrid_solver) Ex3: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrids_solver) Ex4: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridj_solver) Ex5: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridsj_solver) Ex6: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],newtonj_solver) - + ''' return GiacMethods['hybrid_solver'](self,*args) @@ -7352,14 +7352,14 @@ cdef class GiacMethods_base: Help for hybridj_solver: hybridj_solver(Opt) Argument for fsolve giving the method for solving a system of numerical equations. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],dnewton_solver) Ex2: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrid_solver) Ex3: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrids_solver) Ex4: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridj_solver) Ex5: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridsj_solver) Ex6: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],newtonj_solver) - + ''' return GiacMethods['hybridj_solver'](self,*args) @@ -7368,14 +7368,14 @@ cdef class GiacMethods_base: Help for hybrids_solver: hybrids_solver(Opt) Argument for fsolve giving the method for solving a system of numerical equations. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],dnewton_solver) Ex2: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrid_solver) Ex3: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrids_solver) Ex4: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridj_solver) Ex5: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridsj_solver) Ex6: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],newtonj_solver) - + ''' return GiacMethods['hybrids_solver'](self,*args) @@ -7384,14 +7384,14 @@ cdef class GiacMethods_base: Help for hybridsj_solver: hybridsj_solver(Opt) Argument for fsolve giving the method for solving a system of numerical equations. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],dnewton_solver) Ex2: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrid_solver) Ex3: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrids_solver) Ex4: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridj_solver) Ex5: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridsj_solver) Ex6: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],newtonj_solver) - + ''' return GiacMethods['hybridsj_solver'](self,*args) @@ -7400,9 +7400,9 @@ cdef class GiacMethods_base: Help for hyp2exp: hyp2exp(ExprHyperb) Transforms the hyperbolic functions to the exponential function. - See also: 1/ halftan_hyp2exp + See also: 1/ halftan_hyp2exp Ex1:hyp2exp(cosh(x)) - + ''' return GiacMethods['hyp2exp'](self,*args) @@ -7411,12 +7411,12 @@ cdef class GiacMethods_base: Help for hyperbola: hyperbola(Focus(F1),Focus(F2),(Pnt(M) or Real(a))) hyperbola(F1,F2,M)=hyperbola with foci F1,F2 through M or (|MF1-MF2|=2*a geo2d) and hyperbola(p(x,y)) draws the conic if deg(p)=2. - See also: 1/ ellipse 2/ parabola + See also: 1/ ellipse 2/ parabola Ex1:hyperbola(-1,1,point(1+i)) Ex2:hyperbola(-1,1,sqrt(5)-1) Ex3:hyperbola(point(-1,0,0),point(1,0,0),point(1,1,1)) Ex4:hyperbola(x^2-y^2+y+2) - + ''' return GiacMethods['hyperbola'](self,*args) @@ -7425,9 +7425,9 @@ cdef class GiacMethods_base: Help for hypercube_graph: hypercube_graph(Intg(n)) Constructs and returns the hypercube graph in dimension n (with 2^n vertices). - See also: 1/ graph + See also: 1/ graph Ex1:hypercube_graph(3) - + ''' return GiacMethods['hypercube_graph'](self,*args) @@ -7436,11 +7436,11 @@ cdef class GiacMethods_base: Help for iPart: iPart(Real||LstReal) Returns the argument without its fractional part (type=DOM_FLOAT). - See also: 1/ fPart 2/ floor 3/ trunc + See also: 1/ fPart 2/ floor 3/ trunc Ex1:iPart(4.3) Ex2:iPart(sqrt(2)) Ex3:iPart(4.3,sqrt(2)) - + ''' return GiacMethods['iPart'](self,*args) @@ -7449,11 +7449,11 @@ cdef class GiacMethods_base: Help for iabcuv: iabcuv(Intg(a),Intg(b),Intg(c)) Returns [u,v] such that au+bv=c for 3 integers a,b,c. - See also: 1/ iegcd 2/ abcuv + See also: 1/ iegcd 2/ abcuv Ex1:iabcuv(21,28,7) Ex2:iabcuv(21,28,14) Ex3:iabcuv(21,28,1) - + ''' return GiacMethods['iabcuv'](self,*args) @@ -7462,9 +7462,9 @@ cdef class GiacMethods_base: Help for ibasis: ibasis(Lst(Vect,..,Vect),Lst(Vect,..,Vect)) Basis of the intersection of two vector spaces. - See also: 1/ basis + See also: 1/ basis Ex1:ibasis([[1,0,0],[0,1,0]],[[1,1,1],[0,0,1]]) - + ''' return GiacMethods['ibasis'](self,*args) @@ -7473,13 +7473,13 @@ cdef class GiacMethods_base: Help for ibpdv: ibpdv(Expr(f(x)),Expr(v(x)),[Var(x)],[Real(a)],[Real(b)]) Integration by parts of f(x)=u(x)*v'(x) with f(x) as 1st argument and v(x) (or 0) as 2nd argument. You can specify a variable of integration and also calculate the integral (bounds a and b). - See also: 1/ ibpu 2/ int + See also: 1/ ibpu 2/ int Ex1:ibpdv(ln(x),x) Ex2:ibpdv(ln(x),x,x,1,3) Ex3:ibpdv(x*ln(x),x^2/2) Ex4:ibpdv([x*ln(x),-1],0) Ex5:ibpdv(ibpdv(ln(x),x,x,2,3),0,x,2,3) - + ''' return GiacMethods['ibpdv'](self,*args) @@ -7488,13 +7488,13 @@ cdef class GiacMethods_base: Help for ibpu: ibpu(Expr(f(x)),Expr(u(x)),[Var(x)],[Real(a)],[Real(b)]) Integration by parts of f(x)=u(x)*v'(x) with f(x) as 1st argument and u(x) (or 0) as 2nd argument. You can specify a variable of integration and also calculate the integral (bounds a and b). - See also: 1/ ibpdv 2/ int + See also: 1/ ibpdv 2/ int Ex1:ibpu(ln(x),ln(x)) Ex2:ibpu(ln(x),ln(x),x,1,3) Ex3:ibpu(x*ln(x),ln(x)) Ex4:ibpu([x*ln(x),-1],0) Ex5:ibpu(ibpu(ln(x),ln(x),x,2,3),0,x,2,3) - + ''' return GiacMethods['ibpu'](self,*args) @@ -7503,10 +7503,10 @@ cdef class GiacMethods_base: Help for icdf: icdf(Func,FuncParams) Inverse cumulative distribution function. - See also: 1/ cdf 2/ binomial_icdf 3/ normald_icdf + See also: 1/ cdf 2/ binomial_icdf 3/ normald_icdf Ex1:icdf(binomial,10,0.5,0.6) Ex2:icdf(normald,0.0,1.0,0.975) - + ''' return GiacMethods['icdf'](self,*args) @@ -7515,12 +7515,12 @@ cdef class GiacMethods_base: Help for ichinrem: ichinrem(LstIntg(a,p),LstIntg(b,q)) Chinese remainders for integers. - See also: 1/ gcd 2/ fracmod 3/ chinrem 4/ chrem + See also: 1/ gcd 2/ fracmod 3/ chinrem 4/ chrem Ex1:ichinrem([2,7],[3,5]) Ex2:ichinrem([2%7,3%5]) Ex3:ichinrem([2%7,3%5,1%9]) Ex4:ichinrem([(x+1)%2,(x+2)%3,(3*x-1)%5]) - + ''' return GiacMethods['ichinrem'](self,*args) @@ -7529,12 +7529,12 @@ cdef class GiacMethods_base: Help for ichrem: ichrem(LstIntg(a,p),LstIntg(b,q)) Chinese remainders for integers. - See also: 1/ gcd 2/ fracmod 3/ chinrem 4/ chrem + See also: 1/ gcd 2/ fracmod 3/ chinrem 4/ chrem Ex1:ichrem([2,7],[3,5]) Ex2:ichrem([2%7,3%5]) Ex3:ichrem([2%7,3%5,1%9]) Ex4:ichrem([(x+1)%2,(x+2)%3,(3*x-1)%5]) - + ''' return GiacMethods['ichrem'](self,*args) @@ -7543,10 +7543,10 @@ cdef class GiacMethods_base: Help for icomp: icomp(Intg(n),Intg(k),[zeros=true||false]) Returns the list of compositions of n into k parts. - See also: 1/ sum + See also: 1/ sum Ex1:icomp(4,2) Ex2:icomp(6,3,zeros=false) - + ''' return GiacMethods['icomp'](self,*args) @@ -7555,10 +7555,10 @@ cdef class GiacMethods_base: Help for icontent: icontent(Poly,[Var]) GCD of the integer coefficients of a polynomial. - See also: 1/ + See also: 1/ Ex1:icontent(24x^3+6x^2-12x+18) Ex2:icontent(24t^3+6t^2-12t+18,t) - + ''' return GiacMethods['icontent'](self,*args) @@ -7567,10 +7567,10 @@ cdef class GiacMethods_base: Help for icosahedron: icosahedron(Pnt(A),Pnt(B),Pnt(C)) Draws an icosahedron with center A, vertex B and such that the plane ABC contains one vertex among the 5 nearest vertices from B. - See also: 1/ octahedron 2/ dodecahedron 3/ cube 4/ tetrahedron + See also: 1/ octahedron 2/ dodecahedron 3/ cube 4/ tetrahedron Ex1:icosahedron([0,0,0],[sqrt(5),0,0],[1,2,0]) Ex2:icosahedron(evalf([0,0,0],[3,2,4],[1,1,0])) - + ''' return GiacMethods['icosahedron'](self,*args) @@ -7579,9 +7579,9 @@ cdef class GiacMethods_base: Help for id: id(Seq) The name of the identity function (ℝ^n -> ℝ^n). - See also: 1/ sq 2/ sqrt + See also: 1/ sq 2/ sqrt Ex1:id(1,2,3) - + ''' return GiacMethods['id'](self,*args) @@ -7590,10 +7590,10 @@ cdef class GiacMethods_base: Help for identity: identity(Intg(n)) Returns the identity matrix of specified dimension n. - See also: 1/ ranm + See also: 1/ ranm Ex1:identity(3) Ex2:identity(5) - + ''' return GiacMethods['identity'](self,*args) @@ -7602,10 +7602,10 @@ cdef class GiacMethods_base: Help for idivis: idivis(Intg(a) or LstIntg) Returns the list of divisors of an integer. - See also: 1/ divis 2/ ifactors + See also: 1/ divis 2/ ifactors Ex1:idivis(36) Ex2:idivis([36,49]) - + ''' return GiacMethods['idivis'](self,*args) @@ -7614,10 +7614,10 @@ cdef class GiacMethods_base: Help for idn: idn(Intg(n)) Returns the identity matrix of specified dimension n. - See also: 1/ ranm + See also: 1/ ranm Ex1:idn(3) Ex2:idn(5) - + ''' return GiacMethods['idn'](self,*args) @@ -7626,11 +7626,11 @@ cdef class GiacMethods_base: Help for iegcd: iegcd(Intg,Intg) Extended greatest common divisor of 2 integers. - See also: 1/ gcd 2/ iabcuv 3/ egcd + See also: 1/ gcd 2/ iabcuv 3/ egcd Ex1:iegcd(45,75) Ex2:iegcd(21,28) Ex3:iegcd(30,49) - + ''' return GiacMethods['iegcd'](self,*args) @@ -7639,10 +7639,10 @@ cdef class GiacMethods_base: Help for ifactor: ifactor(Intg(a)) Factorization of an integer into prime factors. - See also: 1/ factor 2/ ecm_factor + See also: 1/ factor 2/ ecm_factor Ex1:ifactor(50) Ex2:ifactor(123456789) - + ''' return GiacMethods['ifactor'](self,*args) @@ -7651,10 +7651,10 @@ cdef class GiacMethods_base: Help for ifactors: ifactors(Intg(a) or LstIntg) Returns the list of prime factors of an integer (each factor is followed by its multiplicity). - See also: 1/ ifactor 2/ factors + See also: 1/ ifactor 2/ factors Ex1:ifactors(36) Ex2:ifactors([36,52]) - + ''' return GiacMethods['ifactors'](self,*args) @@ -7663,7 +7663,7 @@ cdef class GiacMethods_base: Help for ifourier: ifourier(Expr(F(s)),[Var(s),[Var(x)]]) Returns the inverse Fourier transform f(x) of F(s). - See also: 1/ fourier 2/ fourier_cn 3/ ifft + See also: 1/ fourier 2/ fourier_cn 3/ ifft Ex1:ifourier(2*pi*(Dirac(s)-sign(s)*sin(s)),s,x) Ex2:ifourier(-2/(s^2-1),s,x) Ex3:ifourier(pi/(exp(pi*s/4)+exp(-pi*s/4)),s,x) @@ -7671,7 +7671,7 @@ cdef class GiacMethods_base: Ex5:ifourier(pi*ugamma(0,4*abs(s)),s,x) Ex6:ifourier(fourier(exp(-abs(x)),x,s)^2,s,x) Ex7:ifourier(sinc(s),s,x) - + ''' return GiacMethods['ifourier'](self,*args) @@ -7680,11 +7680,11 @@ cdef class GiacMethods_base: Help for igamma: igamma(Real(a),Real(x),[1]) Calculates of gamma at a point (a,x). If a and x>0, igamma(a,x)=int(e^{-t}*t^{a-1},t=0..x), (igamma(a,x,1)=igamma(a,x)/Gamma(a)). - See also: 1/ Psi 2/ Beta 3/ Gamma 3/ ugamma + See also: 1/ Psi 2/ Beta 3/ Gamma 3/ ugamma Ex1:igamma(5.0,2.0) Ex2:igamma(-5.1,2.1) Ex3:igamma(5.0,2.0,1) - + ''' return GiacMethods['igamma'](self,*args) @@ -7693,13 +7693,13 @@ cdef class GiacMethods_base: Help for igcd: igcd((Intg(a) or Poly),(Intg(b) or Poly)) Returns the greatest common divisor of 2 polynomials of several variables or of 2 integers or of 2 rationals. - See also: 1/ lcm 2/ euler 2/ modgcd 3/ ezgcd 4/ psrgcd 5/ heugcd 6/ Gcd + See also: 1/ lcm 2/ euler 2/ modgcd 3/ ezgcd 4/ psrgcd 5/ heugcd 6/ Gcd Ex1:igcd(45,75) Ex2:igcd(15/7,50/9) Ex3:igcd(x^2-2*x+1,x^3-1) Ex4:igcd(t^2-2*t+1,t^2+t-2) Ex5:igcd((x^2-1)*(y^2-1)*z^2,x^3*y^3*z+(-(y^3))*z+x^3*z-z) - + ''' return GiacMethods['igcd'](self,*args) @@ -7708,11 +7708,11 @@ cdef class GiacMethods_base: Help for igcdex: igcdex(Intg,Intg) Extended greatest common divisor of 2 integers. - See also: 1/ gcd 2/ iabcuv 3/ egcd + See also: 1/ gcd 2/ iabcuv 3/ egcd Ex1:igcdex(45,75) Ex2:igcdex(21,28) Ex3:igcdex(30,49) - + ''' return GiacMethods['igcdex'](self,*args) @@ -7721,10 +7721,10 @@ cdef class GiacMethods_base: Help for ihermite: ihermite(Mtrx(A)) Hermite normal form of a matrix with coefficients in ℤ : returns L,U such that L is invertible in ℤ, U is upper triangular and U=L*A. - See also: 1/ ismith + See also: 1/ ismith Ex1:ihermite([[9,-36,30], [-36,192,-180], [30,-180,180]]) Ex2:ihermite([[1,2,3],[4,5,6],[7,8,9]]) - + ''' return GiacMethods['ihermite'](self,*args) @@ -7733,11 +7733,11 @@ cdef class GiacMethods_base: Help for ilaplace: ilaplace(Expr,[Var],[IlapVar]) Inverse Laplace transform of a rational fraction. - See also: 1/ laplace 2/ ztrans 3/ invztrans 4/ Heaviside + See also: 1/ laplace 2/ ztrans 3/ invztrans 4/ Heaviside Ex1:ilaplace(1/(x^2+1)^2) Ex2:ilaplace(s/(s^4-1),s,x) Ex3:ilaplace(exp(-s)/s,s,x) - + ''' return GiacMethods['ilaplace'](self,*args) @@ -7746,11 +7746,11 @@ cdef class GiacMethods_base: Help for im: im(Cplx) Returns the imaginary part of a complex number. - See also: 1/ re 2/ conj + See also: 1/ re 2/ conj Ex1:im(1+2*i) Ex2:im((1+2*i)^2) Ex3:im([1+2*i,(1+2*i)^2]) - + ''' return GiacMethods['im'](self,*args) @@ -7759,11 +7759,11 @@ cdef class GiacMethods_base: Help for imag: imag(Cplx) Returns the imaginary part of a complex number. - See also: 1/ re 2/ conj + See also: 1/ re 2/ conj Ex1:imag(1+2*i) Ex2:imag((1+2*i)^2) Ex3:imag([1+2*i,(1+2*i)^2]) - + ''' return GiacMethods['imag'](self,*args) @@ -7772,10 +7772,10 @@ cdef class GiacMethods_base: Help for image: image(Mtrx(M)) Image of a linear map with matrix M. - See also: 1/ ker 2/ rref + See also: 1/ ker 2/ rref Ex1:image([[1,2],[3,6]]) Ex2:image([[1,2,3],[1,3,6],[2,5,9]]) - + ''' return GiacMethods['image'](self,*args) @@ -7784,7 +7784,7 @@ cdef class GiacMethods_base: Help for implicitdiff: implicitdiff(constr,[depvars],y,diffvars) Implicit differentiation. - See also: 1/ diff + See also: 1/ diff Ex1:implicitdiff(x^2*y+y^2=1,y,x) Ex2:implicitdiff(R=P*V/T,P,T) Ex3:implicitdiff([x^2+y=z,x+y*z=1],[y(x),z(x)],y,x) @@ -7803,7 +7803,7 @@ cdef class GiacMethods_base: Ex16:implicitdiff(x*y*z,-2x^3+15x^2*y+11y^3-24y=0,[x,z,y],order=1) Ex17:implicitdiff(x*y*z,-2x^3+15x^2*y+11y^3-24y=0,[x,z,y],order=2,[1,-1,0]) Ex18: pd:=implicitdiff(x*y*z,-2x^3+15x^2*y+11y^3-24y=0,[x,z,y],order=4,[0,z,0]);pd[4,0,0] - + ''' return GiacMethods['implicitdiff'](self,*args) @@ -7812,7 +7812,7 @@ cdef class GiacMethods_base: Help for implicitplot: implicitplot(Expr,Var1,Var2) plotimplicit(f(x,y),x,y) or plotimplicit(f(x,y),[x,y]) draws graph of f(x,y)=0. - See also: 1/ plotcontour 2/ unfactored 3/ plotinequation + See also: 1/ plotcontour 2/ unfactored 3/ plotinequation Ex1:implicitplot(x^2+y^2-1,x,y) Ex2:implicitplot(x^4+y^4=x^2-y^2) Ex3:implicitplot(x^2+y^2-1,x,y,unfactored) @@ -7822,7 +7822,7 @@ cdef class GiacMethods_base: Ex7:implicitplot(y^3=x^3-x^2,[x,y],xstep=0.1,ystep=0.1) Ex8:implicitplot((x+5)^2+(y+4)^2-1,x=-6..-4,y=-5..-3) Ex9:implicitplot((x+5)^2+(y+4)^2-1,[x=-6..-4,y=-5..-3]) - + ''' return GiacMethods['implicitplot'](self,*args) @@ -7832,7 +7832,7 @@ cdef class GiacMethods_base: import_graph(Str("path/to/graphname[.dot]")) Returns the graph constructed from instructions in the file 'path/to/graphname.dot' (in dot format), or "undef" on failure. Ex1:import_graph("K5.dot") - + ''' return GiacMethods['import_graph'](self,*args) @@ -7841,10 +7841,10 @@ cdef class GiacMethods_base: Help for inString: inString(Str(l),Elem(e)) Tests if e is in the string l (returns -1 or k if l[k]=e). - See also: 1/ contains + See also: 1/ contains Ex1:inString("abcd","b") Ex2:inString("abcd","e") - + ''' return GiacMethods['inString'](self,*args) @@ -7853,10 +7853,10 @@ cdef class GiacMethods_base: Help for in_ideal: in_ideal(Poly,Lst,LstVar,[order]) Checks whether a polynomial or list of polynomials belongs to an ideal given by a Grobner basis (2nd argument) with respect to a variable list. - See also: 1/ gbasis 2/ greduce + See also: 1/ gbasis 2/ greduce Ex1:in_ideal((x+y)^2,[y^2,x^2+2*x*y],[x,y]) Ex2:in_ideal(x+y,[y^2,x^2+2*x*y],[x,y]) - + ''' return GiacMethods['in_ideal'](self,*args) @@ -7865,9 +7865,9 @@ cdef class GiacMethods_base: Help for incidence_matrix: incidence_matrix(Graph(G)) Returns the incidence matrix of G whose rows are indexed by the vertices and columns by the edges (in order defined by the command 'edges'). - See also: 1/ incident_edges + See also: 1/ incident_edges Ex1:incidence_matrix(graph("tetrahedron")) - + ''' return GiacMethods['incidence_matrix'](self,*args) @@ -7876,9 +7876,9 @@ cdef class GiacMethods_base: Help for incident_edges: incident_edges(Graph(G),Vrtx(v)) Returns the list of all edges incident to the vertex v of G (or to the vertices in the list v). - See also: 1/ adjacency_matrix 2/ vertex_degree 3/ incidence_matrix 4/ neighbors + See also: 1/ adjacency_matrix 2/ vertex_degree 3/ incidence_matrix 4/ neighbors Ex1:incident_edges(cycle_graph(8),[1,5,7]) - + ''' return GiacMethods['incident_edges'](self,*args) @@ -7887,9 +7887,9 @@ cdef class GiacMethods_base: Help for incircle: incircle((Pnt or Cplx),(Pnt or Cplx),(Pnt or Cplx)) incircle(A,B,C) draws the incircle of the triangle ABC. - See also: 1/ excircle 2/ circumcircle + See also: 1/ excircle 2/ circumcircle Ex1:incircle(0,1,1+i) - + ''' return GiacMethods['incircle'](self,*args) @@ -7898,10 +7898,10 @@ cdef class GiacMethods_base: Help for increasing_power: increasing_power(:=Intg(0 or 1)) Pseudo-variable to control the display of polynomials. - See also: 1/ cas_setup + See also: 1/ cas_setup Ex1: increasing_power:=1 Ex2: increasing_power:=0 - + ''' return GiacMethods['increasing_power'](self,*args) @@ -7910,9 +7910,9 @@ cdef class GiacMethods_base: Help for independence_number: independence_number(Graph(G)) Returns the independence number of G. - See also: 1/ clique_number 2/ graph_complement 3/ maximum_clique 4/ maximum_independent_set + See also: 1/ clique_number 2/ graph_complement 3/ maximum_clique 4/ maximum_independent_set Ex1:independence_number(complete_graph(3,4)) - + ''' return GiacMethods['independence_number'](self,*args) @@ -7921,9 +7921,9 @@ cdef class GiacMethods_base: Help for indets: indets(Expr) List of variables in the expression. - See also: 1/ has 2/ lvar + See also: 1/ has 2/ lvar Ex1:indets(exp(x)*2*sin(y)) - + ''' return GiacMethods['indets'](self,*args) @@ -7932,12 +7932,12 @@ cdef class GiacMethods_base: Help for index: index(Vect,Expr) Index of the first position of an object in a list, a string or a set or returns an error message. - See also: 1/ find 2/ member + See also: 1/ find 2/ member Ex1:index([3,x,1,2,1,3],1) Ex2:index([0,1,3,2,4,2,5],2) Ex3:index(%{4,3,1,2%},1) Ex4:index("abracadabrant","c") - + ''' return GiacMethods['index'](self,*args) @@ -7946,9 +7946,9 @@ cdef class GiacMethods_base: Help for induced_subgraph: induced_subgraph(Graph(G),Lst(V)) Returns the subgraph of G induced by the vertices in list V. - See also: 1/ subgraph + See also: 1/ subgraph Ex1:induced_subgraph(cycle_graph(6),[1,2,6]) - + ''' return GiacMethods['induced_subgraph'](self,*args) @@ -7957,12 +7957,12 @@ cdef class GiacMethods_base: Help for inequationplot: inequationplot(Expr,[x=xrange,y=yrange],[xstep],[ystep]) Shows the graph of the solutions of inequalities with 2 variables. - See also: 1/ plotfunc 2/ plotcontour 3/ plotdensity 4/ plotimplicit + See also: 1/ plotfunc 2/ plotcontour 3/ plotdensity 4/ plotimplicit Ex1:inequationplot(x^2-y^2<3) Ex2:inequationplot(x^2-y^2<3,[x=-2..2,y=-2..2],xstep=0.1,ystep=0.1) Ex3:inequationplot(3-(x^2-y^2),[x=-2..2,y=-2..2],xstep=0.1,ystep=0.1) Ex4:inequationplot([x+y>3,x^2ln(a*b^n) for integers n. - See also: 1/ texpand + See also: 1/ texpand Ex1:lncollect(ln(x)+2*ln(y)) - + ''' return GiacMethods['lncollect'](self,*args) @@ -9904,9 +9904,9 @@ cdef class GiacMethods_base: Help for lnexpand: lnexpand(Expr) Expands logarithms. - See also: 1/ texpand 2/ expexpand 3/ trigexpand + See also: 1/ texpand 2/ expexpand 3/ trigexpand Ex1:lnexpand(ln(3*x)) - + ''' return GiacMethods['lnexpand'](self,*args) @@ -9915,10 +9915,10 @@ cdef class GiacMethods_base: Help for locus: locus(Pnt,Elem) locus(M,A) draws the locus of M (or locus(d,A) draws the envelope of d) when A:=element(C) (C is a curve). The example instructions below must be written in a geometric level on different lines. - See also: 1/ envelope 2/ trace + See also: 1/ envelope 2/ trace Ex1: A:=element(circle(i,1+i));M:=homothety(0,2,A);locus(M,A) Ex2: A:=element(line(x=0));d:=perpen_bisector(1,A);locus(d,A) - + ''' return GiacMethods['locus'](self,*args) @@ -9927,11 +9927,11 @@ cdef class GiacMethods_base: Help for log: log(Expr or Opt) Natural logarithm or option of the convert or convertir command (id trig2exp). - See also: 1/ exp 2/ convert 3/ trig2exp 4/ log10 + See also: 1/ exp 2/ convert 3/ trig2exp 4/ log10 Ex1:log(1) Ex2:log(e) Ex3: convert(cos(x),ln) - + ''' return GiacMethods['log'](self,*args) @@ -9940,9 +9940,9 @@ cdef class GiacMethods_base: Help for log10: log10(Expr) Common logarithm (base 10). - See also: 1/ alog10 2/ ln + See also: 1/ alog10 2/ ln Ex1:log10(10) - + ''' return GiacMethods['log10'](self,*args) @@ -9951,10 +9951,10 @@ cdef class GiacMethods_base: Help for logarithmic_regression: logarithmic_regression(Lst||Mtrx(A),[Lst]) Returns the coefficients a and b of y=a*ln(x)+b : it is the best logarithm which approx the points where the coordinates are the rows of A (or the 2 lists). - See also: 1/ exponential_regression + See also: 1/ exponential_regression Ex1:logarithmic_regression([[1.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]]) Ex2:logarithmic_regression([1.0,2.0,3.0,4.0],[1.0,4.0,9.0,16.0]) - + ''' return GiacMethods['logarithmic_regression'](self,*args) @@ -9963,10 +9963,10 @@ cdef class GiacMethods_base: Help for logarithmic_regression_plot: logarithmic_regression_plot(Lst||Mtrx(A),[Lst]) Returns the plot of y=a*ln(x)+b : it is the best logarithm which approx the points where the coordinates are the rows of A (or the 2 lists). - See also: 1/ exponential_regression_plot + See also: 1/ exponential_regression_plot Ex1:logarithmic_regression_plot([[1.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]]) Ex2:logarithmic_regression_plot([1.0,2.0,3.0,4.0],[1.0,4.0,9.0,16.0]) - + ''' return GiacMethods['logarithmic_regression_plot'](self,*args) @@ -9975,10 +9975,10 @@ cdef class GiacMethods_base: Help for logb: logb(Real) Logarithm with base b. - See also: 1/ log 2/ log10 + See also: 1/ log 2/ log10 Ex1:logb(5,2) Ex2:logb(7,10) - + ''' return GiacMethods['logb'](self,*args) @@ -9987,10 +9987,10 @@ cdef class GiacMethods_base: Help for logistic_regression: logistic_regression(Lst(L),Real(x0),Real(y0)) Returns y,y',C,y'max,xmax,R : y is a logistic function (sol of y'/y=a*y+b), such that y(x0)=y0 and where [y'(x0),y'(x0+1)...] is the best approximation of L. - See also: 1/ polynomial_regression 2/ power_regression 3/ linear_regression + See also: 1/ polynomial_regression 2/ power_regression 3/ linear_regression Ex1:logistic_regression(evalf([1,2,4,6,8,7,5]),1,2) Ex2:logistic_regression([0.0,1.0,2.0,3.0,4.0],0.0,1.0) - + ''' return GiacMethods['logistic_regression'](self,*args) @@ -9999,10 +9999,10 @@ cdef class GiacMethods_base: Help for logistic_regression_plot: logistic_regression_plot(Lst(L),Real(x0),Real(y0)) Returns the plot of a logistic function y such that y(x0)=y0 and where [y'(x0),y'(x0+1)...] is the best approximation of L. - See also: 1/ polynomial_regression_plot 2/ power_regression_plot 3/ linear_regression_plot + See also: 1/ polynomial_regression_plot 2/ power_regression_plot 3/ linear_regression_plot Ex1:logistic_regression_plot(evalf([1,2,4,6,8,7,5]),1,2) Ex2:logistic_regression_plot([0.0,1.0,2.0,3.0,4.0],0.0,1.0) - + ''' return GiacMethods['logistic_regression_plot'](self,*args) @@ -10011,10 +10011,10 @@ cdef class GiacMethods_base: Help for lower: lower(Mtrx||Strng) Returns the lower triangular matrix (under the diagonal, included) or writes a string in lowercase. - See also: 1/ diag 2/ upper + See also: 1/ diag 2/ upper Ex1:lower([[1,2,3],[4,5,6],[7,8,9]]) Ex2:lower("HELLO") - + ''' return GiacMethods['lower'](self,*args) @@ -10023,10 +10023,10 @@ cdef class GiacMethods_base: Help for lowest_common_ancestor: lowest_common_ancestor(Graph(T),Vrtx(r),Seq(u,v)||Lst([u1,v1],[u2,v2],...)) Returns the lowest common ancestor of nodes u and v in the tree graph T with root r, or the list of lowest common ancestors of all pairs [uk,vk]. - See also: 1/ is_tree 2/ tree_height + See also: 1/ is_tree 2/ tree_height Ex1: T:=random_tree(30); lowest_common_ancestor(T,15,10,20) Ex2: T:=random_tree(30); lowest_common_ancestor(T,15,[[10,20],[11,19]]) - + ''' return GiacMethods['lowest_common_ancestor'](self,*args) @@ -10035,9 +10035,9 @@ cdef class GiacMethods_base: Help for lowpass: lowpass(Lst(s),Real(c),[Intg(samplerate)]) Returns the result of applying a simple first-order lowpass RC filter with cutoff frequency c (the default samplerate is 44100) to the given signal s. - See also: 1/ highpass 2/ moving_average + See also: 1/ highpass 2/ moving_average Ex1: f:=unapply(periodic(sign(x),x,-1/880,1/880),x):;s:=createwav(apply(f,soundsec(1))):;playsnd(lowpass(s,1000)) - + ''' return GiacMethods['lowpass'](self,*args) @@ -10046,8 +10046,8 @@ cdef class GiacMethods_base: Help for lp_assume: lp_assume(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_assume'](self,*args) @@ -10056,8 +10056,8 @@ cdef class GiacMethods_base: Help for lp_bestprojection: lp_bestprojection(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_bestprojection'](self,*args) @@ -10066,8 +10066,8 @@ cdef class GiacMethods_base: Help for lp_binary: lp_binary(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_binary'](self,*args) @@ -10076,8 +10076,8 @@ cdef class GiacMethods_base: Help for lp_binaryvariables: lp_binaryvariables(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_binaryvariables'](self,*args) @@ -10086,8 +10086,8 @@ cdef class GiacMethods_base: Help for lp_breadthfirst: lp_breadthfirst(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_breadthfirst'](self,*args) @@ -10096,8 +10096,8 @@ cdef class GiacMethods_base: Help for lp_depthfirst: lp_depthfirst(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_depthfirst'](self,*args) @@ -10106,8 +10106,8 @@ cdef class GiacMethods_base: Help for lp_depthlimit: lp_depthlimit(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_depthlimit'](self,*args) @@ -10116,8 +10116,8 @@ cdef class GiacMethods_base: Help for lp_firstfractional: lp_firstfractional(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_firstfractional'](self,*args) @@ -10126,8 +10126,8 @@ cdef class GiacMethods_base: Help for lp_gaptolerance: lp_gaptolerance(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_gaptolerance'](self,*args) @@ -10136,8 +10136,8 @@ cdef class GiacMethods_base: Help for lp_hybrid: lp_hybrid(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_hybrid'](self,*args) @@ -10146,8 +10146,8 @@ cdef class GiacMethods_base: Help for lp_initialpoint: lp_initialpoint(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_initialpoint'](self,*args) @@ -10156,8 +10156,8 @@ cdef class GiacMethods_base: Help for lp_integer: lp_integer(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_integer'](self,*args) @@ -10166,8 +10166,8 @@ cdef class GiacMethods_base: Help for lp_integertolerance: lp_integertolerance(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_integertolerance'](self,*args) @@ -10176,8 +10176,8 @@ cdef class GiacMethods_base: Help for lp_integervariables: lp_integervariables(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_integervariables'](self,*args) @@ -10186,8 +10186,8 @@ cdef class GiacMethods_base: Help for lp_interiorpoint: lp_interiorpoint(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_interiorpoint'](self,*args) @@ -10196,8 +10196,8 @@ cdef class GiacMethods_base: Help for lp_iterationlimit: lp_iterationlimit(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_iterationlimit'](self,*args) @@ -10206,8 +10206,8 @@ cdef class GiacMethods_base: Help for lp_lastfractional: lp_lastfractional(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_lastfractional'](self,*args) @@ -10216,8 +10216,8 @@ cdef class GiacMethods_base: Help for lp_maxcuts: lp_maxcuts(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_maxcuts'](self,*args) @@ -10226,8 +10226,8 @@ cdef class GiacMethods_base: Help for lp_maximize: lp_maximize(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_maximize'](self,*args) @@ -10236,8 +10236,8 @@ cdef class GiacMethods_base: Help for lp_method: lp_method(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_method'](self,*args) @@ -10246,8 +10246,8 @@ cdef class GiacMethods_base: Help for lp_mostfractional: lp_mostfractional(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_mostfractional'](self,*args) @@ -10256,8 +10256,8 @@ cdef class GiacMethods_base: Help for lp_nodelimit: lp_nodelimit(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_nodelimit'](self,*args) @@ -10266,8 +10266,8 @@ cdef class GiacMethods_base: Help for lp_nodeselect: lp_nodeselect(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_nodeselect'](self,*args) @@ -10276,8 +10276,8 @@ cdef class GiacMethods_base: Help for lp_nonnegative: lp_nonnegative(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_nonnegative'](self,*args) @@ -10286,8 +10286,8 @@ cdef class GiacMethods_base: Help for lp_nonnegint: lp_nonnegint(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_nonnegint'](self,*args) @@ -10296,8 +10296,8 @@ cdef class GiacMethods_base: Help for lp_pseudocost: lp_pseudocost(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_pseudocost'](self,*args) @@ -10306,8 +10306,8 @@ cdef class GiacMethods_base: Help for lp_simplex: lp_simplex(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_simplex'](self,*args) @@ -10316,8 +10316,8 @@ cdef class GiacMethods_base: Help for lp_timelimit: lp_timelimit(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_timelimit'](self,*args) @@ -10326,8 +10326,8 @@ cdef class GiacMethods_base: Help for lp_variables: lp_variables(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_variables'](self,*args) @@ -10336,8 +10336,8 @@ cdef class GiacMethods_base: Help for lp_varselect: lp_varselect(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_varselect'](self,*args) @@ -10346,8 +10346,8 @@ cdef class GiacMethods_base: Help for lp_verbose: lp_verbose(Opt) Options for lpsolve command. - See also: 1/ lpsolve - + See also: 1/ lpsolve + ''' return GiacMethods['lp_verbose'](self,*args) @@ -10356,7 +10356,7 @@ cdef class GiacMethods_base: Help for lpsolve: lpsolve(Expr(o),[List(c)],[bounds],[options]) Solves a (mixed integer/binary) LP problem in general form. - See also: 1/ nlpsolve 2/ fsolve + See also: 1/ nlpsolve 2/ fsolve Ex1:lpsolve(2x+y-z+4,[x<=1,y>=2,x+3y-z=2,2x-y+z<=8,-x+y<=5]) Ex2:lpsolve(-4x-5y,[x+2y<=6,5x+4y<=20,0<=x,0<=y]) Ex3:lpsolve(-7x+2y,[4x-12y<=20,-x+3y<=3],x=-5..5,y=0..inf,lp_maximize=true) @@ -10372,7 +10372,7 @@ cdef class GiacMethods_base: Ex13:lpsolve(x1+x2,[2x1+5x2<=16,6x1+5x2<=30],assume=nonnegint,lp_maximize) Ex14:lpsolve(8x1+11x2+6x3+4x4,[5x1+7x2+4x3+3x4<=14],assume=lp_binary,lp_maximize) Ex15:lpsolve(x1+x2,[1867x1+1913x2=3618894],assume=nonnegint,lp_verbose=true) - + ''' return GiacMethods['lpsolve'](self,*args) @@ -10381,9 +10381,9 @@ cdef class GiacMethods_base: Help for lsmod: lsmod(NULL) Displays the installed dynamic libraries. - See also: 1/ insmod 2/ rmmod + See also: 1/ insmod 2/ rmmod Ex1:lsmod() - + ''' return GiacMethods['lsmod'](self,*args) @@ -10392,10 +10392,10 @@ cdef class GiacMethods_base: Help for lsq: lsq(Mtrx(A),(Mtrx || Vect)(B)) Returns the vector (resp matrix) X which is the minimum of the euclidean (resp Frobenius) norm of A*X-B corresponding to the linear system A*X=B when B is a vector (resp matrix). - See also: 1/ lu 2/ QR + See also: 1/ lu 2/ QR Ex1:lsq([[1,2],[3,4]],[5,11]) Ex2:lsq([[1,2],[3,4]],[[5,-1],[11,-1]]) - + ''' return GiacMethods['lsq'](self,*args) @@ -10404,10 +10404,10 @@ cdef class GiacMethods_base: Help for lu: lu(Mtrx) For a numerical matrix A, returns p permutation, L and U such that PA=LU (P=permu2mat(p)). - See also: 1/ qr 2/ cholesky 3/ LU + See also: 1/ qr 2/ cholesky 3/ LU Ex1:lu([[1,2],[3,4]]) Ex2:lu([[6,12,18],[5,14,31],[3,8,18]]) - + ''' return GiacMethods['lu'](self,*args) @@ -10416,10 +10416,10 @@ cdef class GiacMethods_base: Help for lvar: lvar(Expr) List of variables of an object (with rational dependence). - See also: 1/ lname 2/ has + See also: 1/ lname 2/ has Ex1:lvar(exp(x)*2*sin(y)) Ex2:lvar(exp(x)*2*sin(y)+ln(x)) - + ''' return GiacMethods['lvar'](self,*args) @@ -10428,9 +10428,9 @@ cdef class GiacMethods_base: Help for mRow: mRow(Expr(Xpr),Mtrx(A),Intg(n1)) Multiplies row n1 of the matrix A by Xpr. - See also: 1/ rowAdd 2/ mRowAdd + See also: 1/ rowAdd 2/ mRowAdd Ex1:mRow(12,[[1,2],[3,4],[5,6]],0) - + ''' return GiacMethods['mRow'](self,*args) @@ -10439,9 +10439,9 @@ cdef class GiacMethods_base: Help for mRowAdd: mRowAdd(Expr(Xpr),Mtrx(A),Intg(n1),Intg(n2)) Multiplies row n1 of the matrix A by Xpr, then adds it to the row n2. - See also: 1/ rowAdd 2/ mRow + See also: 1/ rowAdd 2/ mRow Ex1:mRowAdd(12,[[1,2],[3,4],[5,6]],0,2) - + ''' return GiacMethods['mRowAdd'](self,*args) @@ -10450,10 +10450,10 @@ cdef class GiacMethods_base: Help for magenta: magenta(Opt) Option of the display command to display with color. - See also: 1/ display + See also: 1/ display Ex1: F:=display(point(2+1.5*i),red) Ex2: F:=display(point(2+1.5*i),point_point+green) - + ''' return GiacMethods['magenta'](self,*args) @@ -10462,9 +10462,9 @@ cdef class GiacMethods_base: Help for make_directed: make_directed(Graph(G),[Mrtx(A)]) Returns the copy of undirected graph G in which every edge is converted to a pair of arcs [and with weights specified by matrix A]. - See also: 1/ is_directed 2/ make_weighted 3/ underlying_graph + See also: 1/ is_directed 2/ make_weighted 3/ underlying_graph Ex1:make_directed(cycle_graph(4),[[0,0,0,1],[2,0,1,3],[0,1,0,4],[5,0,4,0]]) - + ''' return GiacMethods['make_directed'](self,*args) @@ -10473,9 +10473,9 @@ cdef class GiacMethods_base: Help for make_weighted: make_weighted(Graph(G),[Mrtx(M)]) Returns a copy of G with edge/arc weights set as specified by matrix M. If M is omitted, a square matrix of ones is used. If G is undirected, M is assumed to be symmetric. - See also: 1/ get_edge_weight 2/ is_weighted 3/ make_directed 4/ set_edge_weight 5/ underlying_graph 6/ weight_matrix + See also: 1/ get_edge_weight 2/ is_weighted 3/ make_directed 4/ set_edge_weight 5/ underlying_graph 6/ weight_matrix Ex1:make_weighted(cycle_graph(3),[[0,2,3],[2,0,1],[3,1,0]]) - + ''' return GiacMethods['make_weighted'](self,*args) @@ -10484,12 +10484,12 @@ cdef class GiacMethods_base: Help for makelist: makelist(Fnc,InitVal,FinalVal,StepVal) Returns a list made with a function or with a constant. - See also: 1/ seq 2/ range 3/ makemat 4/ $ + See also: 1/ seq 2/ range 3/ makemat 4/ $ Ex1:makelist(x->x^2,1,10,2) Ex2:makelist(4,1,10) Ex3:makelist(4,5,10) Ex4:makelist(x->ifte(x<5,"A","B"),1,10) - + ''' return GiacMethods['makelist'](self,*args) @@ -10498,11 +10498,11 @@ cdef class GiacMethods_base: Help for makemat: makemat(Fnct(f),RowsNumb,ColsNumb) Creates a matrix. - See also: 1/ matrix + See also: 1/ matrix Ex1:makemat((j,k)->j+k,3,2) Ex2:makemat((j,k)->1/(j+k+1),2,3) Ex3:makemat(sqrt(2),2,3) - + ''' return GiacMethods['makemat'](self,*args) @@ -10511,9 +10511,9 @@ cdef class GiacMethods_base: Help for makesuite: makesuite(Vect||Lst) Returns a sequence made with a vector. - See also: 1/ makevector 2/ op + See also: 1/ makevector 2/ op Ex1:makesuite([1,2,3]) - + ''' return GiacMethods['makesuite'](self,*args) @@ -10522,9 +10522,9 @@ cdef class GiacMethods_base: Help for makevector: makevector(Seq) Returns a vector made with a sequence. - See also: 1/ makesuite + See also: 1/ makesuite Ex1:makevector(1,2,3) - + ''' return GiacMethods['makevector'](self,*args) @@ -10533,11 +10533,11 @@ cdef class GiacMethods_base: Help for map: map(Lst(l),Fnc(f)) Applies the function f at the elements of the list l or at a polynomial of internal format. - See also: 1/ apply 2/ set 3/ unapply + See also: 1/ apply 2/ set 3/ unapply Ex1:map([1,2,3],x->x^3) Ex2:map([1,2,3],unapply(x^3,x)) Ex3:map(%%%{1,[2,0]%%%}+%%%{2,[1,1]%%%},(a,b,c)->a*(b+2*c)) - + ''' return GiacMethods['map'](self,*args) @@ -10546,8 +10546,8 @@ cdef class GiacMethods_base: Help for maple2mupad: maple2mupad(Str("Name_Maplefile"),Str("Name_Mupadfile")) maple2mupad("file1","file2") translates file1(Maple) to file2(MuPAD). - See also: 1/ maple2xcas - + See also: 1/ maple2xcas + ''' return GiacMethods['maple2mupad'](self,*args) @@ -10556,8 +10556,8 @@ cdef class GiacMethods_base: Help for maple2xcas: maple2xcas(Str("NameMapleFile"),Str("NameXcasFile")) maple2xcas("file1","file2") translates file1(Maple) to file2(Xcas). - See also: 1/ maple2mupad - + See also: 1/ maple2mupad + ''' return GiacMethods['maple2xcas'](self,*args) @@ -10566,9 +10566,9 @@ cdef class GiacMethods_base: Help for maple_ifactors: maple_ifactors(Intg(n)) Returns 1 or -1 for the sign and the prime factors with their multiplicity of n in a matrix, such as ifactors in Maple. - See also: 1/ ifactors + See also: 1/ ifactors Ex1:maple_ifactors(120) - + ''' return GiacMethods['maple_ifactors'](self,*args) @@ -10577,10 +10577,10 @@ cdef class GiacMethods_base: Help for maple_mode: maple_mode(Intg(0) or 1 or 2 or 3) Switches to mode Xcas (0), Maple (1), Mupad (2), TI89 (3). - See also: 1/ python_compat + See also: 1/ python_compat Ex1:maple_mode(1) Ex2:maple_mode(0) - + ''' return GiacMethods['maple_mode'](self,*args) @@ -10589,9 +10589,9 @@ cdef class GiacMethods_base: Help for markov: markov(Mtrx(M),[Real(eps)]) Computation of the proper elements of a Markov chain transition matrix M, returns the list of sequence of positive recurrent states, the list of corresponding invariant probabilities, the list of other strongly connected components, the list of probabilities to end up in the sequence of recurrent states. - See also: 1/ randmarkov 2/ plotproba + See also: 1/ randmarkov 2/ plotproba Ex1:markov([[0,0,1/2,0,1/2],[0,0,1,0,0],[1/4,1/4,0,1/4,1/4],[0,0,1/2,0,1/2],[0,0,0,0,1]]) - + ''' return GiacMethods['markov'](self,*args) @@ -10600,9 +10600,9 @@ cdef class GiacMethods_base: Help for mat2list: mat2list(Mtrx) Returns the list of the terms of the matrix. - See also: 1/ list2mat 2/ flatten + See also: 1/ list2mat 2/ flatten Ex1:mat2list([[1,8],[4,9]]) - + ''' return GiacMethods['mat2list'](self,*args) @@ -10611,9 +10611,9 @@ cdef class GiacMethods_base: Help for mathml: mathml(Expr) Converts the expression into a string to display maths for the web. - See also: 1/ export_mathml 2/ latex + See also: 1/ export_mathml 2/ latex Ex1:mathml(1/2) - + ''' return GiacMethods['mathml'](self,*args) @@ -10622,9 +10622,9 @@ cdef class GiacMethods_base: Help for matpow: matpow(Mtrx,Intg(n)) Calculates the nth power of a matrix by jordanization. - See also: 1/ &^ 2/ ^ + See also: 1/ &^ 2/ ^ Ex1:matpow([[1,2],[3,4]],n) - + ''' return GiacMethods['matpow'](self,*args) @@ -10633,12 +10633,12 @@ cdef class GiacMethods_base: Help for matrix: matrix(Intg(p),Intg(q),(Fnc(f) or Val(a))) Makes a matrix m(j,k) with p rows and q cols, m(j,k)=f(j,k) or m(j,k)=a : the index start at 0 or 1 according to the mode (Xcas or Maple) (or option of apply) or make a matrix with a table. - See also: 1/ makemat 2/ makelist 3/ apply + See also: 1/ makemat 2/ makelist 3/ apply Ex1:matrix(2,3,(j,k)->1/(j+k+1)) Ex2:matrix(3,2,(j,k)->j+k) Ex3:matrix(2,3,4) - Ex4: A[0..2,0..2]:=1;A[0..1,1..2]:=2;a:=matrix(A) - + Ex4: A[0..2,0..2]:=1;A[0..1,1..2]:=2;a:=matrix(A) + ''' return GiacMethods['matrix'](self,*args) @@ -10647,12 +10647,12 @@ cdef class GiacMethods_base: Help for matrix_norm: matrix_norm(Mtrx,[2]||[inf]) Matrix norm induced by l1norm or by l2norm or by linfinty norm. - See also: 1/ l1norm 2/ l2 norm 3/ linfnorm 4/ frobenius_norm + See also: 1/ l1norm 2/ l2 norm 3/ linfnorm 4/ frobenius_norm Ex1:matrix_norm([[1,2,3],[3,-9,6],[4,5,6]]) Ex2:matrix_norm([[1,2,3],[3,-9,6],[4,5,6]],1) Ex3:matrix_norm([[1,2,3],[3,-9,6],[4,5,6]],2) Ex4:matrix_norm([[1,2,3],[3,-9,6],[4,5,6]],inf) - + ''' return GiacMethods['matrix_norm'](self,*args) @@ -10661,9 +10661,9 @@ cdef class GiacMethods_base: Help for max: max(Seq||Lst) Maximum of elements of a sequence or a list of reals. - See also: 1/ min + See also: 1/ min Ex1:max(25,35) - + ''' return GiacMethods['max'](self,*args) @@ -10672,9 +10672,9 @@ cdef class GiacMethods_base: Help for maxflow: maxflow(Graph(G),Vrtx(s),Vrtx(t)) Returns the optimal value for the max flow problem for network G with the source s and sink t along with an optimal flow (as a matrix). - See also: 1/ minimum_cut + See also: 1/ minimum_cut Ex1:maxflow(digraph(%{[[1,2],2],[[2,3],4],[[3,4],3],[[1,5],3],[[5,2],1],[[5,4],2]%}),1,4) - + ''' return GiacMethods['maxflow'](self,*args) @@ -10683,9 +10683,9 @@ cdef class GiacMethods_base: Help for maximal_independent_set: maximal_independent_set(Graph(G)) Returns a maximal set of mutually independent (non-adjacent) vertices in G. - See also: 1/ maximum_independent_set + See also: 1/ maximum_independent_set Ex1:maximal_independent_set(graph("petersen")) - + ''' return GiacMethods['maximal_independent_set'](self,*args) @@ -10702,7 +10702,7 @@ cdef class GiacMethods_base: Ex6:maximize(sqrt(x^2+y^2)-z,[x^2+y^2<=16,x+y+z=10],[x,y,z]) Ex7:maximize((1+x^2+3y+5x-4*x*y)/(1+x^2+y^2),x^2/4+y^2/3=9,[x,y]) Ex8:maximize(cos(x)^2+cos(y)^2,x+y=pi/4,[x,y],locus) - + ''' return GiacMethods['maximize'](self,*args) @@ -10711,9 +10711,9 @@ cdef class GiacMethods_base: Help for maximum_clique: maximum_clique(Graph(G)) Returns the maximum clique of undirected graph G as a list of vertices. - See also: 1/ clique_number 2/ is_clique 3/ maximum_independent_set + See also: 1/ clique_number 2/ is_clique 3/ maximum_independent_set Ex1:maximum_clique(graph_complement(complete_graph(3,4))) - + ''' return GiacMethods['maximum_clique'](self,*args) @@ -10722,9 +10722,9 @@ cdef class GiacMethods_base: Help for maximum_degree: maximum_degree(Graph(G)) Returns the largest degree among the vertices of G. - See also: 1/ minimum_degree 2/ vertex_degree + See also: 1/ minimum_degree 2/ vertex_degree Ex1:maximum_degree(digraph(trail(1,2,3,4,5,6,4,7,8,2))) - + ''' return GiacMethods['maximum_degree'](self,*args) @@ -10733,9 +10733,9 @@ cdef class GiacMethods_base: Help for maximum_independent_set: maximum_independent_set(Graph(G)) Returns the maximum independent vertex set of G. - See also: 1/ clique_number 2/ graph_complement 3/ independence_number 4/ maximum_clique + See also: 1/ clique_number 2/ graph_complement 3/ independence_number 4/ maximum_clique Ex1:maximum_independent_set(complete_graph(3,4)) - + ''' return GiacMethods['maximum_independent_set'](self,*args) @@ -10744,9 +10744,9 @@ cdef class GiacMethods_base: Help for maximum_matching: maximum_matching(Graph(G)) Returns the list of edges representing maximum matching in G. - See also: 1/ maximum_independent_set + See also: 1/ maximum_independent_set Ex1: G:=graph("soccerball"); draw_graph(highlight_edges(G,maximum_matching(G))) - + ''' return GiacMethods['maximum_matching'](self,*args) @@ -10755,11 +10755,11 @@ cdef class GiacMethods_base: Help for maxnorm: maxnorm(Vect or Mtrx) Norm with the max of a vector (or of a matrix): maxnorm([x1,x2,..,xn])=max(|x1|,..,|xn|). - See also: 1/ l2norm 2/ l1norm + See also: 1/ l2norm 2/ l1norm Ex1:maxnorm([1,2]) Ex2:maxnorm([1,2,3,-4]) Ex3:maxnorm([[1,2],[3,-4]]) - + ''' return GiacMethods['maxnorm'](self,*args) @@ -10768,11 +10768,11 @@ cdef class GiacMethods_base: Help for mean: mean(Lst||Mtrx,[Lst]) Mean of a list with the second argument as weight or of the columns of a matrix. - See also: 1/ stddev + See also: 1/ stddev Ex1:mean([1,2,3]) Ex2:mean([1,2,3],[1,2,3]) Ex3:mean([[1,2,3],[1,2,3]]) - + ''' return GiacMethods['mean'](self,*args) @@ -10781,10 +10781,10 @@ cdef class GiacMethods_base: Help for median: median(Lst||Mtrx,[Lst]) Returns the median of a list with the second argument as weight or of the columns of a matrix. - See also: 1/ quartiles + See also: 1/ quartiles Ex1:median([1,2,3,5,10,4]) Ex2:median([1,2,3,5,10,4],[1,2,3,1,2,3]) - + ''' return GiacMethods['median'](self,*args) @@ -10793,9 +10793,9 @@ cdef class GiacMethods_base: Help for median_line: median_line((Pnt or Cplx),(Pnt or Cplx),(Pnt or Cplx)) median_line(A,B,C) draws the median-line through A of the triangle ABC. - See also: 1/ midpoint 2/ perpen_bisector + See also: 1/ midpoint 2/ perpen_bisector Ex1:median_line(-1,1-i,i) - + ''' return GiacMethods['median_line'](self,*args) @@ -10804,10 +10804,10 @@ cdef class GiacMethods_base: Help for member: member(Elem(e),(Lst(l) or Set(l))) Tests if e is in the list or set l (=0, or k+1 with l[k]=e). - See also: 1/ contains 2/ est_element 3/ find 4/ index + See also: 1/ contains 2/ est_element 3/ find 4/ index Ex1:member(1,[4,3,1,2]) Ex2:member(1,%{4,3,1,2%}) - + ''' return GiacMethods['member'](self,*args) @@ -10819,7 +10819,7 @@ cdef class GiacMethods_base: Ex1:mgf(normald,1,0) Ex2:mgf(poisson,5) Ex3:mgf(binomial,n,p) - + ''' return GiacMethods['mgf'](self,*args) @@ -10828,13 +10828,13 @@ cdef class GiacMethods_base: Help for mid: mid(Lst(l) or Str(l),Intg(d),Intg(n)) Returns the extracted list of l with n elements (by default n=size(l)-d) and beginning at index d. - See also: 1/ head 2/ tail 3/ left 4/ right 5/ subMat + See also: 1/ head 2/ tail 3/ left 4/ right 5/ subMat Ex1:mid([0,1,2,3,4,5,6],2,3) Ex2:mid([0,1,2,3,4,5,6],2) Ex3:mid("azertyuiop",2,4) Ex4:mid("azertyuiop",2) Ex5:mid([[1,2],[3,4],[5,6]],1) - + ''' return GiacMethods['mid'](self,*args) @@ -10843,14 +10843,14 @@ cdef class GiacMethods_base: Help for middle_point: middle_point(Opt) Option of the plotarea command and of the area command. - See also: 1/ plotarea 2/ area + See also: 1/ plotarea 2/ area Ex1: plotarea(x^2,x=0..1,5,trapezoid) Ex2: plotarea(x^2,x=0..1,5,middle_point) Ex3: plotarea(x^2,x=0..1,5,right_rectangle) Ex4: plotarea(x^2,x=0..1,5,left_rectangle) Ex5: area(x^2,x=0..1,5,middle_point) Ex6: area(x^2,x=0..1,5,trapezoid) - + ''' return GiacMethods['middle_point'](self,*args) @@ -10859,9 +10859,9 @@ cdef class GiacMethods_base: Help for midpoint: midpoint((Pnt or Cplx),(Pnt or Cplx)) midpoint(A,B) draws the midpoint of the segment AB. - See also: 1/ median_line 2/ perpen_bisector + See also: 1/ median_line 2/ perpen_bisector Ex1:midpoint(-2,2i) - + ''' return GiacMethods['midpoint'](self,*args) @@ -10870,9 +10870,9 @@ cdef class GiacMethods_base: Help for min: min(Seq||Lst) Minimum of elements of a sequence or a list of reals. - See also: 1/ max + See also: 1/ max Ex1:min(25,35) - + ''' return GiacMethods['min'](self,*args) @@ -10881,10 +10881,10 @@ cdef class GiacMethods_base: Help for minimal_edge_coloring: minimal_edge_coloring(Graph(G),[sto]) Finds the minimal edge coloring of G and returns the sequence n,L where n is the class of G (1 for D colors and 2 for D+1 colors) and L is the list of colors of edges of G as returned by the edges command, or a copy of G with colored edges if the option 'sto' is specified. - See also: 1/ chromatic_index 2/ minimal_vertex_coloring 3/ edges + See also: 1/ chromatic_index 2/ minimal_vertex_coloring 3/ edges Ex1:minimal_edge_coloring(graph("petersen")) Ex2: G:=minimal_edge_coloring(graph("dodecahedron"),sto); draw_graph(G) - + ''' return GiacMethods['minimal_edge_coloring'](self,*args) @@ -10893,9 +10893,9 @@ cdef class GiacMethods_base: Help for minimal_spanning_tree: minimal_spanning_tree(Graph(G)) Returns the minimal spanning tree of undirected graph G. - See also: 1/ spanning_tree + See also: 1/ spanning_tree Ex1:minimal_spanning_tree(graph([[0,1,0,4,0,0],[1,0,1,0,4,0],[0,1,0,3,0,1],[4,0,3,0,1,0],[0,4,0,1,0,4],[0,0,1,0,4,0]])) - + ''' return GiacMethods['minimal_spanning_tree'](self,*args) @@ -10904,10 +10904,10 @@ cdef class GiacMethods_base: Help for minimal_vertex_coloring: minimal_vertex_coloring(Graph(G),[sto]) Computes the minimal vertex coloring for G and returns the colors in the order of vertices. If optional parameter "sto" is given, the colors are assigned to vertices and the modified copy of G is returned. - See also: 1/ chromatic_number 2/ is_vertex_colorable + See also: 1/ chromatic_number 2/ is_vertex_colorable Ex1:minimal_vertex_coloring(graph("petersen")) Ex2: draw_graph(minimal_vertex_coloring(graph("petersen"),sto)) - + ''' return GiacMethods['minimal_vertex_coloring'](self,*args) @@ -10926,7 +10926,7 @@ cdef class GiacMethods_base: Ex8:minimax(abs(x)*sqrt(abs(x)),x=-2..2,15) Ex9:minimax(min(1/cosh(3*sin(x)),sin(9x/10)),x=-3..4,30) Ex10:minimax(when(x==0,0,exp(-1/x^2)),x=-1..1,25) - + ''' return GiacMethods['minimax'](self,*args) @@ -10943,7 +10943,7 @@ cdef class GiacMethods_base: Ex6:minimize(sqrt(x^2+y^2)-z,[x^2+y^2<=16,x+y+z=10],[x,y,z]) Ex7:minimize((1+x^2+3y+5x-4*x*y)/(1+x^2+y^2),x^2/4+y^2/3=9,[x,y]) Ex8:minimize(cos(x)^2+cos(y)^2,x+y=pi/4,[x,y],locus) - + ''' return GiacMethods['minimize'](self,*args) @@ -10952,9 +10952,9 @@ cdef class GiacMethods_base: Help for minimum_cut: minimum_cut(Graph(G),Vrtx(s),Vrtx(t)) Returns the list of edges forming a minimum cut in a directed graph G with the source s and sink t. - See also: 1/ maxflow + See also: 1/ maxflow Ex1:minimum_cut(digraph(%{[[1,2],2],[[2,3],4],[[3,4],3],[[1,5],3],[[5,2],1],[[5,4],2]%}),1,4) - + ''' return GiacMethods['minimum_cut'](self,*args) @@ -10963,9 +10963,9 @@ cdef class GiacMethods_base: Help for minimum_degree: minimum_degree(Graph(G)) Returns the smallest degree among the vertices of G. - See also: 1/ maximum_degree 2/ vertex_degree + See also: 1/ maximum_degree 2/ vertex_degree Ex1:minimum_degree(digraph(trail(1,2,3,4,5,6,4,7,8,2))) - + ''' return GiacMethods['minimum_degree'](self,*args) @@ -10974,11 +10974,11 @@ cdef class GiacMethods_base: Help for mkisom: mkisom(Vect,(Sign(1) or -1)) Matrix of an isometry given by its proper elements. - See also: 1/ isom + See also: 1/ isom Ex1:mkisom([1,2],1) Ex2:mkisom([[1,0,0],pi/3],-1) Ex3:mkisom(pi,1) - + ''' return GiacMethods['mkisom'](self,*args) @@ -10987,9 +10987,9 @@ cdef class GiacMethods_base: Help for mksa: mksa(Unit) Converts units to the MKSA international unit system. - See also: 1/ convert 2/ ufactor + See also: 1/ convert 2/ ufactor Ex1:mksa(1_N) - + ''' return GiacMethods['mksa'](self,*args) @@ -10998,9 +10998,9 @@ cdef class GiacMethods_base: Help for modgcd: modgcd(Poly,Poly) GCD of 2 polynomials, with the modular algorithm. - See also: 1/ gcd 2/ heugcd 3/ ezgcd 4/ psrgcd + See also: 1/ gcd 2/ heugcd 3/ ezgcd 4/ psrgcd Ex1:modgcd(x^4-1,(x-1)^2) - + ''' return GiacMethods['modgcd'](self,*args) @@ -11009,11 +11009,11 @@ cdef class GiacMethods_base: Help for mods: mods(Intg,Intg) Returns the Euclidean symmetric remainder of two integers. - See also: 1/ irem 2/ iquo 3/ mod 4/ fracmod + See also: 1/ irem 2/ iquo 3/ mod 4/ fracmod Ex1:mods(8,3) Ex2:mods(10,4) Ex3:mods(11,7) - + ''' return GiacMethods['mods'](self,*args) @@ -11023,7 +11023,7 @@ cdef class GiacMethods_base: monotonic() Returns a real that increases as time passes Ex1:monotonic() - + ''' return GiacMethods['monotonic'](self,*args) @@ -11032,9 +11032,9 @@ cdef class GiacMethods_base: Help for montre_tortue: montre_tortue(NULL) Shows the turtle. - See also: 1/ cache_tortue + See also: 1/ cache_tortue Ex1:montre_tortue() - + ''' return GiacMethods['montre_tortue'](self,*args) @@ -11043,12 +11043,12 @@ cdef class GiacMethods_base: Help for moustache: moustache(Lst,[Lst],[x=a..b||y=a..b]) Box and Whisker plot for a statistical series. - See also: 1/ quartiles + See also: 1/ quartiles Ex1:moustache([-1,1,2,2.2,3,4,-2,5]) Ex2:moustache([1,2,3,5,10,4],x=1..2) Ex3:moustache([1,2,3,5,10,4],[1,2,3,1,2,3]) Ex4:moustache([[6,0,1,3,4,2,5],[0,1,3,4,2,5,6],[1,3,4,2,5,6,0],[3,4,2,5,6,0,1],[4,2,5,6,0,1,3],[2,5,6,0,1,3,4]]) - + ''' return GiacMethods['moustache'](self,*args) @@ -11057,9 +11057,9 @@ cdef class GiacMethods_base: Help for moving_average: moving_average(Lst(A),Intg(n)) Applies a moving average filter of length n to a signal sample A, and returns its result as an array of length nops(A)-n+1. - See also: 1/ lowpass + See also: 1/ lowpass Ex1: snd:=soundsec(2):;data:=0.5*threshold(3*sin(2*pi*220*snd),[-1.0,1.0])+randvector(length(snd),normald,0,0.05):;moving_average(data,25) - + ''' return GiacMethods['moving_average'](self,*args) @@ -11068,9 +11068,9 @@ cdef class GiacMethods_base: Help for moyal: moyal(Expr,Expr,VectVar) Moyal product of 2 symbols. - See also: 1/ + See also: 1/ Ex1:moyal(x^2+y^4,x^4-y^2,[x,y],5) - + ''' return GiacMethods['moyal'](self,*args) @@ -11079,11 +11079,11 @@ cdef class GiacMethods_base: Help for moyenne: moyenne(Lst||Mtrx,[Lst]) Mean of a list with the second argument as weight or of the columns of a matrix. - See also: 1/ stddev + See also: 1/ stddev Ex1:moyenne([1,2,3]) Ex2:moyenne([1,2,3],[1,2,3]) Ex3:moyenne([[1,2,3],[1,2,3]]) - + ''' return GiacMethods['moyenne'](self,*args) @@ -11092,7 +11092,7 @@ cdef class GiacMethods_base: Help for mul: mul(Expr||Lst,[Var||Lst],[Intg(a)],[Intg(b)],[Intg(p)]) Multiplies the values of the expression when the variable go from a to b with a step p (product(expression,var,begin,end,step) by default p=1) or product of the elements of a list or product element by element of 2 lists or matrices. - See also: 1/ sum + See also: 1/ sum Ex1:mul(n,n,1,10,2) Ex2:mul(1/n,n,1,10) Ex3:mul(1/n,n,11,1) @@ -11100,7 +11100,7 @@ cdef class GiacMethods_base: Ex5:mul([2,3,4,5]) Ex6:mul([2,3,4],[5,6,7]) Ex7:mul([[2,3,4],[5,6,7]],[[2,3,4],[5,6,7]]) - + ''' return GiacMethods['mul'](self,*args) @@ -11109,10 +11109,10 @@ cdef class GiacMethods_base: Help for mult_c_conjugate: mult_c_conjugate(Expr) Returns the expression after multiplication by the complex conjugate of the denominator (or of the numerator if no denominator). - See also: 1/ mult_conjugate + See also: 1/ mult_conjugate Ex1:mult_c_conjugate(1/(3+i*2)) Ex2:mult_c_conjugate(3+i*2) - + ''' return GiacMethods['mult_c_conjugate'](self,*args) @@ -11121,10 +11121,10 @@ cdef class GiacMethods_base: Help for mult_conjugate: mult_conjugate(Expr) Returns the expression after multiplication by the conjugate of the denominator (or of the numerator if no denominator). - See also: 1/ mult_c_conjugate + See also: 1/ mult_c_conjugate Ex1:mult_conjugate(sqrt(3)-sqrt(2)) Ex2:mult_conjugate(1/(sqrt(3)-sqrt(2))) - + ''' return GiacMethods['mult_conjugate'](self,*args) @@ -11133,12 +11133,12 @@ cdef class GiacMethods_base: Help for multinomial: multinomial(Intg(n),Vect(p),Vect(k)) Returns n!/(k0!*k1!*..;kj!)*(p0^k0*p1^k1..*pj^kj) (sum(p)=1 and sum(k)=n). - See also: 1/ binomial 2/ randvector 3/ ranm + See also: 1/ binomial 2/ randvector 3/ ranm Ex1:multinomial(10,[0.5,0.5],[3,7]) Ex2:multinomial(10,[0.2,0.3,0.5],[1,3,6]) Ex3: randvector(3,multinomial,[1/2,1/3,1/6]) Ex4: ranm(4,3,multinomial,[1/2,1/3,1/6]) - + ''' return GiacMethods['multinomial'](self,*args) @@ -11147,10 +11147,10 @@ cdef class GiacMethods_base: Help for multiplier_conjugue: multiplier_conjugue(Expr) Returns the expression after multiplication by the conjugate of the denominator (or of the numerator if no denominator). - See also: 1/ mult_c_conjugate + See also: 1/ mult_c_conjugate Ex1:multiplier_conjugue(sqrt(3)-sqrt(2)) Ex2:multiplier_conjugue(1/(sqrt(3)-sqrt(2))) - + ''' return GiacMethods['multiplier_conjugue'](self,*args) @@ -11159,10 +11159,10 @@ cdef class GiacMethods_base: Help for multiplier_conjugue_complexe: multiplier_conjugue_complexe(Expr) Returns the expression after multiplication by the complex conjugate of the denominator (or of the numerator if no denominator). - See also: 1/ mult_conjugate + See also: 1/ mult_conjugate Ex1:multiplier_conjugue_complexe(1/(3+i*2)) Ex2:multiplier_conjugue_complexe(3+i*2) - + ''' return GiacMethods['multiplier_conjugue_complexe'](self,*args) @@ -11171,11 +11171,11 @@ cdef class GiacMethods_base: Help for multiply: multiply(Intg or Lst, Intg or Lst) Returns the product of the 2 arguments. - See also: 1/ * + See also: 1/ * Ex1:multiply(41,-4) Ex2:multiply([4,1],[-4,2]) Ex3:multiply([[4,1],[-4,1]],[[4,1],[-4,1]]) - + ''' return GiacMethods['multiply'](self,*args) @@ -11184,8 +11184,8 @@ cdef class GiacMethods_base: Help for mupad2maple: mupad2maple(Str("NameMupadFile"),Str("NameMapleFile")) mupad2maple("file1","file2") translates file1(MuPAD) to file2(Maple). - See also: 1/ mupad2xcas - + See also: 1/ mupad2xcas + ''' return GiacMethods['mupad2maple'](self,*args) @@ -11194,8 +11194,8 @@ cdef class GiacMethods_base: Help for mupad2xcas: mupad2xcas(Str("NameMupadFile"),Str("NameXcasFile")) mupad2xcas("file1","file2") translates file1(MuPAD) to file2(Xcas). - See also: 1/ mupad2maple - + See also: 1/ mupad2maple + ''' return GiacMethods['mupad2xcas'](self,*args) @@ -11204,10 +11204,10 @@ cdef class GiacMethods_base: Help for mycielski: mycielski(Graph(G)) Returns the Mycielskian of undirected graph G. - See also: 1/ chromatic_number 2/ number_of_triangles + See also: 1/ chromatic_number 2/ number_of_triangles Ex1:mycielski(graph("petersen")) Ex2: is_isomorphic(mycielski(mycielski(path_graph(2))),graph("grotzsch")) - + ''' return GiacMethods['mycielski'](self,*args) @@ -11216,9 +11216,9 @@ cdef class GiacMethods_base: Help for nCr: nCr(Intg(n),Intg(r)) comb(n,r)=number of combinations of r objects taken among n : n!/(r!(n-r)!) (If n<0 comb(n,r)=n(n-1)..(n-r+1)/r!). - See also: 1/ factorial 2/ perm + See also: 1/ factorial 2/ perm Ex1:nCr(4,2) - + ''' return GiacMethods['nCr'](self,*args) @@ -11227,11 +11227,11 @@ cdef class GiacMethods_base: Help for nDeriv: nDeriv(Expr(Xpr),Var(Var),[Real(h)]) Returns an approximation of the derivative number at a point: (Xpr(var+h)-Xpr(var-h))/(2*h) (by default h=0.001). - See also: 1/ avgRC + See also: 1/ avgRC Ex1:nDeriv(f(x),x,h) Ex2:nDeriv(x^2,x,0.1) Ex3:nDeriv(x^2,x) - + ''' return GiacMethods['nDeriv'](self,*args) @@ -11240,11 +11240,11 @@ cdef class GiacMethods_base: Help for nInt: nInt(Expr(f(x)),Var(x),Real(a),Real(b)) Returns the approximate value of integrate(f(x),x,a,b) by Romberg's method. - See also: 1/ integrate 2/ gaussquad + See also: 1/ integrate 2/ gaussquad Ex1:nInt(exp(x^2),x,0,1) Ex2:nInt(x^2,x,0,1) Ex3:nInt(exp(-x^2),x,-1,1) - + ''' return GiacMethods['nInt'](self,*args) @@ -11253,9 +11253,9 @@ cdef class GiacMethods_base: Help for nPr: nPr(Intg(n),Intg(p)) perm(n,p)=number of arrangements of p objects taken among n : n!/(n-p)! - See also: 1/ comb 2/ factorial + See also: 1/ comb 2/ factorial Ex1:nPr(4,2) - + ''' return GiacMethods['nPr'](self,*args) @@ -11264,10 +11264,10 @@ cdef class GiacMethods_base: Help for nSolve: nSolve(Expr,Var,[Guess or Interval],[Method]) Numerical solution of an equation or a system of equations. - See also: 1/ solve 2/ fsolve 3/ csolve + See also: 1/ solve 2/ fsolve 3/ csolve Ex1:nSolve(cos(x)=x,x) Ex2:nSolve(cos(x)=x,x=1.3) - + ''' return GiacMethods['nSolve'](self,*args) @@ -11276,10 +11276,10 @@ cdef class GiacMethods_base: Help for ncols: ncols(Mtrx) Number of columns of a matrix. - See also: 1/ rowdim + See also: 1/ rowdim Ex1:ncols([[1,2,3],[4,5,6]]) Ex2:ncols([[1,2],[3,4],[5,6]]) - + ''' return GiacMethods['ncols'](self,*args) @@ -11288,11 +11288,11 @@ cdef class GiacMethods_base: Help for negbinomial: negbinomial(Intg(n),Intg(k),Real(p in 0..1)) Returns comb(n+k-1,k)*p^k*(1-p)^n. - See also: 1/ negbinomial_cdf 2/ negbinomial_icdf 3/ binomial + See also: 1/ negbinomial_cdf 2/ negbinomial_icdf 3/ binomial Ex1:negbinomial(4,0,0.5) Ex2:negbinomial(4,2,0.6) Ex3:negbinomial(4,6,0.3) - + ''' return GiacMethods['negbinomial'](self,*args) @@ -11301,11 +11301,11 @@ cdef class GiacMethods_base: Help for negbinomial_cdf: negbinomial_cdf(Intg(n),Real(p),Real(x),[Real(y)]) Returns Proba(X<=x) or Proba(x<=X<=y) when X follows the negbinomial(n,p) law. - See also: 1/ negbinomial 2/ negbinomial_icdf + See also: 1/ negbinomial 2/ negbinomial_icdf Ex1:negbinomial_cdf(4,0.5,2) Ex2:negbinomial_cdf(4,0.1,2) Ex3:negbinomial_cdf(4,0.5,2,3) - + ''' return GiacMethods['negbinomial_cdf'](self,*args) @@ -11314,10 +11314,10 @@ cdef class GiacMethods_base: Help for negbinomial_icdf: negbinomial_icdf(Intg(n),Real(p),Real(t)) Returns h such as Proba(X<=h)=t when X follows the negbinomial(n,p) law. - See also: 1/ negbinomial 2/ negbinomial_cdf + See also: 1/ negbinomial 2/ negbinomial_cdf Ex1:negbinomial_icdf(4,0.5,0.68) Ex2:negbinomial_icdf(4,0.1,0.95) - + ''' return GiacMethods['negbinomial_icdf'](self,*args) @@ -11326,9 +11326,9 @@ cdef class GiacMethods_base: Help for neighbors: neighbors(Graph(G),[Vrtx(v)]) Returns the list of vertices adjacent to vertex v of G. If v is omitted, a list of adjacency lists of all vertices in G is returned. - See also: 1/ adjacency_matrix 2/ vertex_degree 3/ in_degree 3/ out_degree + See also: 1/ adjacency_matrix 2/ vertex_degree 3/ in_degree 3/ out_degree Ex1:neighbors(digraph(trail(1,2,3,4,5,6,4,7,8,2)),4) - + ''' return GiacMethods['neighbors'](self,*args) @@ -11337,9 +11337,9 @@ cdef class GiacMethods_base: Help for network_transitivity: network_transitivity(Graph(G)) Returns the transitivity (also called triangle density or global clustering coefficient) of G. - See also: 1/ clustering_coefficient 2/ number_of_triangles + See also: 1/ clustering_coefficient 2/ number_of_triangles Ex1:network_transitivity(graph(%{[1,2],[2,3],[2,4],[3,4],[4,1]%})) - + ''' return GiacMethods['network_transitivity'](self,*args) @@ -11348,9 +11348,9 @@ cdef class GiacMethods_base: Help for newList: newList(Intg(n)) Returns the list made with n zeros. - See also: 1/ newMat 2/ makelist + See also: 1/ newMat 2/ makelist Ex1:newList(4) - + ''' return GiacMethods['newList'](self,*args) @@ -11359,9 +11359,9 @@ cdef class GiacMethods_base: Help for newMat: newMat(Intg(n),Intg(p)) Returns the list with n rows and p columns, made with zeros. - See also: 1/ newList 2/ makemat + See also: 1/ newList 2/ makemat Ex1:newMat(2,3) - + ''' return GiacMethods['newMat'](self,*args) @@ -11370,12 +11370,12 @@ cdef class GiacMethods_base: Help for newton: newton(Expr(f(x)),Var(x),[ApproxVal(a),NumIter(p)]) newton(f(x),x,a,p)=one root of f(x) by Newton method beginning with a and p iterations (by default p=20). - See also: 1/ rootof + See also: 1/ rootof Ex1:newton(x^2-2,x) Ex2:newton(x^2-2,x,2) Ex3:newton(x^2-2,x,-2) Ex4:newton(x^2-2,x,2,5,1e-7) - + ''' return GiacMethods['newton'](self,*args) @@ -11384,14 +11384,14 @@ cdef class GiacMethods_base: Help for newton_solver: newton_solver(Opt) Argument for fsolve giving the method for solving a numerical equation. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve(cos(x)=x,x,0..1,bisection_solver) Ex2: fsolve(cos(x)=x,x,0..1,brent_solver) Ex3: fsolve(cos(x)=x,x,0..1,falsepos_solver) Ex4: fsolve(cos(x)=x,x,0,newton_solver) Ex5: fsolve(cos(x)=x,x,0,secant_solver) Ex6: fsolve(cos(x)=x,x,0,steffenson_solver) - + ''' return GiacMethods['newton_solver'](self,*args) @@ -11400,14 +11400,14 @@ cdef class GiacMethods_base: Help for newtonj_solver: newtonj_solver(Opt) Argument for fsolve giving the method for solving a system of numerical equations. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],dnewton_solver) Ex2: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrid_solver) Ex3: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybrids_solver) Ex4: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridj_solver) Ex5: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],hybridsj_solver) Ex6: fsolve([x^2+y-2,x+y^2-2],[x,y],[2,2],newtonj_solver) - + ''' return GiacMethods['newtonj_solver'](self,*args) @@ -11416,10 +11416,10 @@ cdef class GiacMethods_base: Help for nextperm: nextperm(Intg(n)) Returns the next permutation with the lexicographic order. - See also: 1/ prevperm 2/ is_permu + See also: 1/ prevperm 2/ is_permu Ex1:nextperm([0,2,1,3]) Ex2:nextperm([0,3,2,1]) - + ''' return GiacMethods['nextperm'](self,*args) @@ -11428,10 +11428,10 @@ cdef class GiacMethods_base: Help for nextprime: nextprime(Intg(a)) Next prime or pseudo-prime after a given integer. - See also: 1/ prevprime 2/ is_prime 3/ ithprime + See also: 1/ prevprime 2/ is_prime 3/ ithprime Ex1:nextprime(9856989898990) Ex2:nextprime(97160249868928888261606009) - + ''' return GiacMethods['nextprime'](self,*args) @@ -11440,7 +11440,7 @@ cdef class GiacMethods_base: Help for nlpsolve: nlpsolve(objective, [constr], [bd], [opts]) Solves a nonlinear programming problem of optimizing the objective obj under constraints constr (list of equations and/or inequations) and within bounds bd (sequence of x=a..b) with optional options (for example setting an initial point). - See also: 1/ lpsolve 2/ fsolve 3/ fMin 4/ fMax + See also: 1/ lpsolve 2/ fsolve 3/ fMin 4/ fMax Ex1:nlpsolve((x1-10)^3+(x2-20)^3,[(x1-5)^2+(x2-5)^2>=100,(x2-5)^2+(x1-6)^2<=82.81],nlp_initialpoint=[x1=20.1,x2=5.84]) Ex2:nlpsolve(sin(x1+x2)+(x1-x2)^2-1.5x1+2.5x2+1,x1=-1.5..4,x2=-3..3) Ex3:nlpsolve(ln(1+x1^2)-x2,[(1+x1^2)^2+x2^2=4]) @@ -11448,10 +11448,10 @@ cdef class GiacMethods_base: Ex5:nlpsolve(-x1*x2*x3,[72-x1-2x2-2x3>=0],x1=0..20,x2=0..11,x3=0..42) Ex6:nlpsolve(2-1/120*x1*x2*x3*x4*x5,[x1<=1,x2<=2,x3<=3,x4<=4,x5<=5],assume=nlp_nonnegative) Ex7:nlpsolve(sin(x)/x,x=1..30) - Ex8:nlpsolve(x^3+2x*y-2y^2,x=-10..10,y=-10..10,nlp_initialpoint=[x=3,y=4],maximize) + Ex8:nlpsolve(x^3+2x*y-2y^2,x=-10..10,y=-10..10,nlp_initialpoint=[x=3,y=4],maximize) Ex9:nlpsolve(w^3*(v-w)^2+(w-x-1)^2+(x-y-2)^2+(y-z-3)^2,[w+x+y+z<=5,3z+2v=3],assume=nlp_nonnegative) Ex10:nlpsolve(sin(x)*Psi(x),x=1..20,nlp_initialpoint=[x=16]) - + ''' return GiacMethods['nlpsolve'](self,*args) @@ -11461,7 +11461,7 @@ cdef class GiacMethods_base: nodisp(Expr) Displays Done in place of a value. Ex1:nodisp(A:=ranm(50,50)) - + ''' return GiacMethods['nodisp'](self,*args) @@ -11470,10 +11470,10 @@ cdef class GiacMethods_base: Help for non_recursive_normal: non_recursive_normal(Expr) Simplifies the expressions, but without simplification inside of non-rational expressions. - See also: 1/ normal + See also: 1/ normal Ex1:non_recursive_normal(sin(x+x)+sin(2*x)+x+x) Ex2:non_recursive_normal(sin(2*x)+sin(2*x)+x+x) - + ''' return GiacMethods['non_recursive_normal'](self,*args) @@ -11482,9 +11482,9 @@ cdef class GiacMethods_base: Help for nop: nop(NULL) No OPeration instruction. - See also: 1/ + See also: 1/ Ex1:nop() - + ''' return GiacMethods['nop'](self,*args) @@ -11493,11 +11493,11 @@ cdef class GiacMethods_base: Help for nops: nops(Lst or Str or Seq) Returns the size of a list, a string or a sequence. - See also: 1/ sizes 2/ dim 3/ degree + See also: 1/ sizes 2/ dim 3/ degree Ex1:nops([1,2,3]) Ex2:nops("bonjour") Ex3:nops(1,2,3) - + ''' return GiacMethods['nops'](self,*args) @@ -11506,12 +11506,12 @@ cdef class GiacMethods_base: Help for norm: norm(Vect or Mtrx) Returns the l2 norm of a vector = sqrt(x1^2+x2^2+...xn^2) or matrix norm induced by l2 norm. - See also: 1/ maxnorm 2/ l1norm + See also: 1/ maxnorm 2/ l1norm Ex1:norm([1,2]) Ex2:norm([1,2,3,-4]) Ex3:norm([[1,2],[3,-4]]) Ex4:norm([[1,2,3],[3,-9,6],[4,5,6]]) - + ''' return GiacMethods['norm'](self,*args) @@ -11520,11 +11520,11 @@ cdef class GiacMethods_base: Help for normal: normal(Expr) Simplifies the expression. - See also: 1/ simplify + See also: 1/ simplify Ex1:normal(2*x+y=1) Ex2:normal(2*x*2) Ex3:normal((2*x+1)^2) - + ''' return GiacMethods['normal'](self,*args) @@ -11533,11 +11533,11 @@ cdef class GiacMethods_base: Help for normal_cdf: normal_cdf(Real(mu),Real(sigma),Real(x0),[Real(y0)]) Returns the probability that a Normal random variable is less than x0 or between x0 and y0 (mu is the mean and sigma the standard deviation). - See also: 1/ UTPN 2/ normal_icdf 3/ normald + See also: 1/ UTPN 2/ normal_icdf 3/ normald Ex1:normal_cdf(1.96) Ex2:normal_cdf(1,2,2.96*sqrt(2)) Ex3:normal_cdf(1,2,1.4*sqrt(2),2.96*sqrt(2)) - + ''' return GiacMethods['normal_cdf'](self,*args) @@ -11546,10 +11546,10 @@ cdef class GiacMethods_base: Help for normal_icdf: normal_icdf(Real(mu),Real(sigma),Real(p)) Returns h such as the probability that a Normal random variable is less than h is p (mu is the mean and sigma the standard deviation and 0<=p<=1). - See also: 1/ normal_cdf 2/ normald + See also: 1/ normal_cdf 2/ normald Ex1:normal_icdf(0.95) Ex2:normal_icdf(1,2,0.95) - + ''' return GiacMethods['normal_icdf'](self,*args) @@ -11558,12 +11558,12 @@ cdef class GiacMethods_base: Help for normald: normald(Real(mu),Real(sigma),Real(x0)) Returns the probability density of the Normal law (mu is the mean and sigma the standard deviation). - See also: 1/ normal_cdf 2/ normal_icdf 3/ randvector 4/ ranm + See also: 1/ normal_cdf 2/ normal_icdf 3/ randvector 4/ ranm Ex1:normald(1) Ex2:normald(1,2,3.5) Ex3: randvector(3,normald,1,0.5) Ex4: ranm(4,3,normald,1,0.5) - + ''' return GiacMethods['normald'](self,*args) @@ -11572,11 +11572,11 @@ cdef class GiacMethods_base: Help for normald_cdf: normald_cdf(Real(mu),Real(sigma),Real(x0),[Real(y0)]) Returns the probability that a Normal random variable is less than x0 or between x0 and y0 (mu is the mean and sigma the standard deviation). - See also: 1/ UTPN 2/ normal_icdf 3/ normald + See also: 1/ UTPN 2/ normal_icdf 3/ normald Ex1:normald_cdf(1.96) Ex2:normald_cdf(1,2,2.96*sqrt(2)) Ex3:normald_cdf(1,2,1.4*sqrt(2),2.96*sqrt(2)) - + ''' return GiacMethods['normald_cdf'](self,*args) @@ -11585,10 +11585,10 @@ cdef class GiacMethods_base: Help for normald_icdf: normald_icdf(Real(mu),Real(sigma),Real(p)) Returns h such as the probability that a Normal random variable is less than h is p (mu is the mean and sigma the standard deviation and 0<=p<=1). - See also: 1/ normal_cdf 2/ normald + See also: 1/ normal_cdf 2/ normald Ex1:normald_icdf(0.95) Ex2:normald_icdf(1,2,0.95) - + ''' return GiacMethods['normald_icdf'](self,*args) @@ -11597,12 +11597,12 @@ cdef class GiacMethods_base: Help for normalize: normalize(Lst||Cplx) Returns the vector divided by its l2norm. It is also an option for plotfield. - See also: 1/ l2norm + See also: 1/ l2norm Ex1:normalize(3+4*i) Ex2:normalize([3,4]) Ex3: fieldplot(-t*y,[t,y],normalize) Ex4: fieldplot(-t*y,[t,y],normalize,xstep=0.5,ystep=0.5) - + ''' return GiacMethods['normalize'](self,*args) @@ -11611,10 +11611,10 @@ cdef class GiacMethods_base: Help for normalt: normalt(Lst,Real,[Real],Fnc,[Real]) Z-Test/normal law: arg1=[success,trial] or [mean,sample size] or data, arg2=proportion or data, arg3 optional if data=sigma, arg4 alternative '!=' or '>' or '<', arg5 optional alpha confidence level. - See also: 1/ studentt 2/ chisquaret 3/ kolmogorovt + See also: 1/ studentt 2/ chisquaret 3/ kolmogorovt Ex1:normalt([10,30],.5,.02,'!=',0.1) Ex2:normalt([0.48,50],0.5,0.1,'<') - + ''' return GiacMethods['normalt'](self,*args) @@ -11623,10 +11623,10 @@ cdef class GiacMethods_base: Help for normalvariate: normalvariate(Real(mu),Real(sigma)) Returns a random real with normal distribution N(mu,sigma). - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randpoisson 8/ randgeometric 9/ randmultinomial + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randpoisson 8/ randgeometric 9/ randmultinomial Ex1:normalvariate(0,1) Ex2:normalvariate(2,1) - + ''' return GiacMethods['normalvariate'](self,*args) @@ -11635,9 +11635,9 @@ cdef class GiacMethods_base: Help for nprimes: nprimes(Intg(n)) Counts the number of primes less than n. - See also: 1/ ithprime 2/ prevprime 3/ nextprime 4/ isprime + See also: 1/ ithprime 2/ prevprime 3/ nextprime 4/ isprime Ex1:nprimes(20) - + ''' return GiacMethods['nprimes'](self,*args) @@ -11646,10 +11646,10 @@ cdef class GiacMethods_base: Help for nrows: nrows(Mtrx) Number of rows of a matrix. - See also: 1/ ncols + See also: 1/ ncols Ex1:nrows([[1,2,3],[4,5,6]]) Ex2:nrows([[1,2],[3,4],[5,6]]) - + ''' return GiacMethods['nrows'](self,*args) @@ -11658,9 +11658,9 @@ cdef class GiacMethods_base: Help for nuage_points: nuage_points(Mtrx) Draws for k=0..nrows, the points (xk,yk) where xk=element row k column 0 and yk=element row k column j (j=1..ncols). - See also: 1/ polygonplot 2/ polygonscatterplot 3/ listplot + See also: 1/ polygonplot 2/ polygonscatterplot 3/ listplot Ex1:nuage_points([[1,2,3],[2,0,1],[-1,2,3]]) - + ''' return GiacMethods['nuage_points'](self,*args) @@ -11669,10 +11669,10 @@ cdef class GiacMethods_base: Help for nullspace: nullspace(Mtrx) Kernel of a linear map with matrix M. - See also: 1/ image 2/ rref 3/ Nullspace + See also: 1/ image 2/ rref 3/ Nullspace Ex1:nullspace([[1,2],[3,6]]) Ex2:nullspace([[1,2,3],[1,3,6],[2,5,9]]) - + ''' return GiacMethods['nullspace'](self,*args) @@ -11681,9 +11681,9 @@ cdef class GiacMethods_base: Help for number_of_edges: number_of_edges(Graph(G)) Returns the number of edges/arcs of G. - See also: 1/ edges 2/ number_of_vertices + See also: 1/ edges 2/ number_of_vertices Ex1:number_of_edges(complete_graph(5)) - + ''' return GiacMethods['number_of_edges'](self,*args) @@ -11692,10 +11692,10 @@ cdef class GiacMethods_base: Help for number_of_spanning_trees: number_of_spanning_trees(Graph(G)) Returns the number of spanning trees in undirected graph G. - See also: 1/ spanning_tree + See also: 1/ spanning_tree Ex1:number_of_spanning_trees(complete_graph(4)) Ex2:number_of_spanning_trees(graph(trail(1,2,3,4,1,3))) - + ''' return GiacMethods['number_of_spanning_trees'](self,*args) @@ -11704,9 +11704,9 @@ cdef class GiacMethods_base: Help for number_of_triangles: number_of_triangles(Graph(G)) Returns the number of 3-cliques if G is undirected resp. the number of directed cycles on 3 vertices if G is directed. - See also: 1/ is_clique 2/ maximal_clique + See also: 1/ is_clique 2/ maximal_clique Ex1:number_of_triangles(graph("tetrahedron")) - + ''' return GiacMethods['number_of_triangles'](self,*args) @@ -11715,9 +11715,9 @@ cdef class GiacMethods_base: Help for number_of_vertices: number_of_vertices(Graph(G)) Returns the number of vertices of G. - See also: 1/ graph_vertices 2/ number_of_edges + See also: 1/ graph_vertices 2/ number_of_edges Ex1:number_of_vertices(graph("petersen")) - + ''' return GiacMethods['number_of_vertices'](self,*args) @@ -11726,11 +11726,11 @@ cdef class GiacMethods_base: Help for numer: numer(Frac(a/b) or RatFrac) Returns the numerator of the simplified fraction. - See also: 1/ getNum 2/ getDenom 3/ denom 4/ f2nd + See also: 1/ getNum 2/ getDenom 3/ denom 4/ f2nd Ex1:numer(25/15) Ex2:numer((x^3-1)/(x^2-1)) Ex3:numer(1+(x^3-1)/x^2) - + ''' return GiacMethods['numer'](self,*args) @@ -11739,10 +11739,10 @@ cdef class GiacMethods_base: Help for octahedron: octahedron(Pnt(A),Pnt(B),Pnt(C)) Draws an octahedron with center A, vertex B and such that the plane ABC contains 4 vertices. - See also: 1/ icosahedron 2/ dodecahedron 3/ cube 4/ tetrahedron + See also: 1/ icosahedron 2/ dodecahedron 3/ cube 4/ tetrahedron Ex1:octahedron([0,0,0],[0,0,5],[0,5,0]) Ex2:octahedron(evalf([0,0,0],[3,2,4],[1,1,0])) - + ''' return GiacMethods['octahedron'](self,*args) @@ -11751,10 +11751,10 @@ cdef class GiacMethods_base: Help for odd: odd(Intg(n)) Returns 1 if the integer is odd, else returns 0. - See also: 1/ even + See also: 1/ even Ex1:odd(6) Ex2:odd(1251) - + ''' return GiacMethods['odd'](self,*args) @@ -11763,10 +11763,10 @@ cdef class GiacMethods_base: Help for odd_girth: odd_girth(Graph(G)) Returns the length of the shortest odd cycle in the undirected unweighted graph G. - See also: 1/ girth + See also: 1/ girth Ex1:odd_girth(graph("petersen")) Ex2:odd_girth(hypercube_graph(3)) - + ''' return GiacMethods['odd_girth'](self,*args) @@ -11775,9 +11775,9 @@ cdef class GiacMethods_base: Help for odd_graph: odd_graph(Intg(n)) Returns the odd graph of order n as Kneser graph K(2n-1,n-1), where n<=8. - See also: 1/ kneser_graph + See also: 1/ kneser_graph Ex1:odd_graph(3) - + ''' return GiacMethods['odd_graph'](self,*args) @@ -11786,7 +11786,7 @@ cdef class GiacMethods_base: Help for odeplot: odeplot(Expr,VectVar,VectInitCond) odeplot(f(t,y),[t,y],[t0,y0]) draws the solution of y'=f(t,y) and y(t0)=y0 or of the system [x'=g(t,x,y),y'=h(t,x,y)] with x(t0)=x0 and y(t0)=y0. - See also: 1/ interactive_plotode 2/ fieldplot 3/ odesolve 4/ desolve + See also: 1/ interactive_plotode 2/ fieldplot 3/ odesolve 4/ desolve Ex1:odeplot(sin(t*y),[t,y],[0,1]) Ex2:odeplot(sin(t*y),[t=-10..10,y],[0,1]) Ex3:odeplot(sin(t*y),[t=-3..3,y],[0,1],tstep=0.1,color=vert) @@ -11794,7 +11794,7 @@ cdef class GiacMethods_base: Ex5:odeplot([x-0.3*x*y, 0.3*x*y-y], [t,x,y],[0,0.3,0.7],plan) Ex6:odeplot([-y+b,-1+(x-a)^2+(y-b)^2],[t=-3..3,x,y],[0,a+1,b+0.5],plan) Ex7:odeplot(5*[-y,x],[t=0..1,x,y],[0,0.3,0.7],tstep=0.05,plan) - + ''' return GiacMethods['odeplot'](self,*args) @@ -11803,13 +11803,13 @@ cdef class GiacMethods_base: Help for odesolve: odesolve(Expr,VectVar,VectInitCond,FinalVal,[tstep=Val,curve]) odesolve(f(t,y),[t,y],[t0,y0],t1)=odesolve(t0..t1,f,y0)=y(t1) for y approx sol of y'=f(t,y) and y(t0)=y0 with y=vector for systems. - See also: 1/ plotode 2/ plotfield 3/ interactive_plotode 4/ desolve + See also: 1/ plotode 2/ plotfield 3/ interactive_plotode 4/ desolve Ex1:odesolve(sin(t*y),[t,y],[0,1],2) Ex2:odesolve(0..2,(t,y)->sin(t*y),1) Ex3:odesolve(0..pi,(t,v)->{[-v[1],v[0]]},[0,1]) Ex4:odesolve(sin(t*y),t=0..2,y,1,tstep=0.5) Ex5:odesolve(sin(t*y),t=0..2,y,1,tstep=0.5,curve) - + ''' return GiacMethods['odesolve'](self,*args) @@ -11818,13 +11818,13 @@ cdef class GiacMethods_base: Help for op: op(Op or Fnc) Returns the arguments of an operator as a sequence. - See also: 1/ sommet 2/ quote 3/ makesuite + See also: 1/ sommet 2/ quote 3/ makesuite Ex1:op(quote(gcd(45,126))) Ex2:op('gcd(45,126)') Ex3:op('1+2')[1] Ex4:op([1,2,3]) Ex5:op(set[1,2,3]) - + ''' return GiacMethods['op'](self,*args) @@ -11833,10 +11833,10 @@ cdef class GiacMethods_base: Help for open_polygon: open_polygon(LstPnt||LstCplx) Returns and draws the polygonal line where its vertices are the element of l. - See also: 1/ isopolygon 2/ quadrilateral + See also: 1/ isopolygon 2/ quadrilateral Ex1:open_polygon(i,1+i,2-i,-1,-1+i/2) Ex2:open_polygon(point(0,0,0),point(3,3,3),point(0,0,3),point(3,0,0)) - + ''' return GiacMethods['open_polygon'](self,*args) @@ -11845,11 +11845,11 @@ cdef class GiacMethods_base: Help for ord: ord(Char||LstChar) Returns the ASCII code of a character or of the first character of a string. - See also: 1/ asc 2/ char + See also: 1/ asc 2/ char Ex1:ord("A") Ex2:ord("ABC") Ex3:ord(["a","b","c"]) - + ''' return GiacMethods['ord'](self,*args) @@ -11860,7 +11860,7 @@ cdef class GiacMethods_base: Returns element order of g in (Z/nZ)^* or in a finite field. Ex1:order(3 % 7) Ex2: GF(3,5,g); order(g^2+g+1); - + ''' return GiacMethods['order'](self,*args) @@ -11869,10 +11869,10 @@ cdef class GiacMethods_base: Help for order_size: order_size(Expr) Remainder (O term) of a series expansion: limit(x^a*order_size(x),x=0)=0 if a>0. - See also: 1/ series + See also: 1/ series Ex1:order_size(x) Ex2: limit(sqrt(x)*order_size(x),x=0) - + ''' return GiacMethods['order_size'](self,*args) @@ -11881,12 +11881,12 @@ cdef class GiacMethods_base: Help for ordinate: ordinate(Pnt or Vect) Returns the ordinate of a point or a vector. - See also: 1/ abscissa 2/ affix 3/ cote 4/ coordinates + See also: 1/ abscissa 2/ affix 3/ cote 4/ coordinates Ex1:ordinate(point(1+2*i)) Ex2:ordinate(point(i)-point(1+2*i)) Ex3:ordinate(-1-i) Ex4:ordinate(point(1,2,3)) - + ''' return GiacMethods['ordinate'](self,*args) @@ -11895,11 +11895,11 @@ cdef class GiacMethods_base: Help for orthocenter: orthocenter((Pnt or Cplx),(Pnt or Cplx),(Pnt or Cplx)) Shows the orthocenter of a triangle or of the triangle made with 3 points. - See also: 1/ altitude 2/ triangle + See also: 1/ altitude 2/ triangle Ex1:orthocenter(1+i,2,i) Ex2:orthocenter(point(1+i),point(2),point(i)) Ex3:orthocenter(triangle(0,1,1+i)) - + ''' return GiacMethods['orthocenter'](self,*args) @@ -11908,10 +11908,10 @@ cdef class GiacMethods_base: Help for orthogonal: orthogonal((Pnt),(Line or Plan)) orthogonal(A,line(B,C)) draws the orthogonal plane of line BC through A and orthogonal(A,plane(B,C,D)) draws the orthogonal line of plane(B,C,D) through A. - See also: 1/ altitude 2/ perpendicular + See also: 1/ altitude 2/ perpendicular Ex1:orthogonal(point(0,0,0),line(point(1,0,0),point(0,1,0))) Ex2:orthogonal(point(0,0,0),plane(point(1,0,0),point(0,1,0),point(0,0,1))) - + ''' return GiacMethods['orthogonal'](self,*args) @@ -11920,14 +11920,14 @@ cdef class GiacMethods_base: Help for osculating_circle: osculating_circle(Curve,Point) Osculating circle at point M to the curve C. - See also: 1/ curvature 2/ evolute + See also: 1/ curvature 2/ evolute Ex1:osculating_circle(plot(x^2),point(1,1)) Ex2:osculating_circle([5*cos(t),5*sin(t)],t,0) Ex3:osculating_circle([t,t^2],t) Ex4:osculating_circle([t,t^2],t,1) Ex5:osculating_circle([3*exp(t/2)*cos(t),3*exp(t/2)*sin(t)],t) Ex6:osculating_circle([3*exp(t/2)*cos(t),3*exp(t/2)*sin(t)],t,7) - + ''' return GiacMethods['osculating_circle'](self,*args) @@ -11936,9 +11936,9 @@ cdef class GiacMethods_base: Help for p1oc2: p1oc2(Permut,Cycle) Returns the permutation product of p1 and c2. - See also: 1/ c1op2 2/ p1op2 + See also: 1/ c1op2 2/ p1op2 Ex1:p1oc2([0,2,1],[2,1,3]) - + ''' return GiacMethods['p1oc2'](self,*args) @@ -11947,9 +11947,9 @@ cdef class GiacMethods_base: Help for p1op2: p1op2(Permut,Permut) Returns the permutation product of p1 and p2. - See also: 1/ c1op2 2/ p1oc2 + See also: 1/ c1op2 2/ p1oc2 Ex1:p1op2([0,2,1],[1,0,3,2]) - + ''' return GiacMethods['p1op2'](self,*args) @@ -11961,7 +11961,7 @@ cdef class GiacMethods_base: Ex1:pa2b2(17) Ex2:pa2b2(209) Ex3:pa2b2(229) - + ''' return GiacMethods['pa2b2'](self,*args) @@ -11970,9 +11970,9 @@ cdef class GiacMethods_base: Help for pade: pade(Expr(Xpr), Var(x), (Intg(n) || Poly(N)), Intg(p)) Pade approximation P/Q=Xpr mod x^(n+1) or mod N with degree(P)3,x^20 (by default a=1) to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ bartlett_hann_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ bartlett_hann_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(poisson_window(randvector(1000,0..1),0.5)) - + ''' return GiacMethods['poisson_window'](self,*args) @@ -12932,10 +12932,10 @@ cdef class GiacMethods_base: Help for polar: polar(Crcle,Pnt or Cplxe(A)) Returns the line of the conjugated points of A with respect to the circle. - See also: 1/ pole 2/ is_conjugate + See also: 1/ pole 2/ is_conjugate Ex1:polar(circle(0,1),point(1+i)/2) Ex2:polar(circle(0,1),point(1+i)) - + ''' return GiacMethods['polar'](self,*args) @@ -12944,12 +12944,12 @@ cdef class GiacMethods_base: Help for polar_coordinates: polar_coordinates(Pnt or Cplx or LstRectCoord) Returns the list of the norm and of the argument of the affix of a point (for 2D) or of a complex number or of the list of rectangular coordinates. - See also: 1/ abscissapoint 2/ ordinate 3/ rectangular_coordinates 4/ polar_point + See also: 1/ abscissapoint 2/ ordinate 3/ rectangular_coordinates 4/ polar_point Ex1:polar_coordinates(point(1+2*i)) Ex2:polar_coordinates(-1-i) Ex3:polar_coordinates([-1,2]) Ex4:polar_coordinates(point(1+2*i)-point(-1+i)) - + ''' return GiacMethods['polar_coordinates'](self,*args) @@ -12958,10 +12958,10 @@ cdef class GiacMethods_base: Help for polar_point: polar_point(Real(r),Real(t)) Returns the point (for 2D) with the arguments r and t as polar coordinates (i.e. with r*exp(i*t) as affix). - See also: 1/ abscissa 2/ ordinate 3/ polar_coordinates 4/ rectangular_coordinates 5/ point + See also: 1/ abscissa 2/ ordinate 3/ polar_coordinates 4/ rectangular_coordinates 5/ point Ex1:polar_point(1,pi/4) Ex2:polar_point(2,-pi/3) - + ''' return GiacMethods['polar_point'](self,*args) @@ -12970,10 +12970,10 @@ cdef class GiacMethods_base: Help for polarplot: polarplot(Expr,Var,VarMin,VarMax) plotpolar(f(x),x,a,b) draws the polar curve r=f(x) for x in [a,b]. - See also: 1/ plotparam 2/ plotfunc 3/ plotpolar + See also: 1/ plotparam 2/ plotfunc 3/ plotpolar Ex1:polarplot(sin(2*x),x,0,pi) Ex2:polarplot(sin(2*x),x,0,pi,tstep=0.1) - + ''' return GiacMethods['polarplot'](self,*args) @@ -12982,10 +12982,10 @@ cdef class GiacMethods_base: Help for pole: pole(Crcle,Line) Returns the point having the line as polar with respect to the circle . - See also: 1/ polar 2/ is_conjugate + See also: 1/ polar 2/ is_conjugate Ex1:pole(circle(0,1),line(i,1)) Ex2:pole(circle(0,1),line((1+i),2)) - + ''' return GiacMethods['pole'](self,*args) @@ -12994,12 +12994,12 @@ cdef class GiacMethods_base: Help for poly2symb: poly2symb(Lst,Var) Gives the polynomial (or its value) : the first argument is the vector of coefficients and the second argument is the variable (by default x). - See also: 1/ e2r 2/ symb2poly + See also: 1/ e2r 2/ symb2poly Ex1:poly2symb([1,2,3]) Ex2:poly2symb([1,2,3],x) Ex3:poly2symb([1,2,3],-1) Ex4:poly2symb([1,2,-1],y) - + ''' return GiacMethods['poly2symb'](self,*args) @@ -13008,10 +13008,10 @@ cdef class GiacMethods_base: Help for polyEval: polyEval(Vect,Real(x0)) Evaluates at a point x0, a polynomial given by its coefficients. - See also: 1/ proot 2/ pcoeff + See also: 1/ proot 2/ pcoeff Ex1:polyEval([1,0,-2],1) Ex2:polyEval([1,2,-25,-26,120],8) - + ''' return GiacMethods['polyEval'](self,*args) @@ -13020,10 +13020,10 @@ cdef class GiacMethods_base: Help for polygon: polygon(LstPnt||LstCplx) Returns and draws the polygon where its vertices are the elements of l. - See also: 1/ isopolygon 2/ quadrilateral 3/ convexhull 4/ hexagon + See also: 1/ isopolygon 2/ quadrilateral 3/ convexhull 4/ hexagon Ex1:polygon(i,1+i,2-i,-1,-1+i/2) Ex2:polygon(point(0,0,0),point(3,3,3),point(0,0,3),point(3,0,0)) - + ''' return GiacMethods['polygon'](self,*args) @@ -13032,11 +13032,11 @@ cdef class GiacMethods_base: Help for polygone_rempli: polygone_rempli(Intg(n)) The argument is an integer <-1 which gives the number of previous turtle positions drawing a polygon and created this full polygon. - See also: 1/ + See also: 1/ Ex1: repete(4,avance 40,tourne_droite);polygone_rempli -8 Ex2: repete(3,avance 40,tourne_droite 120);polygone_rempli -6 Ex3: repete(3,avance 40,avance 40,tourne_droite 120);polygone_rempli -9 - + ''' return GiacMethods['polygone_rempli'](self,*args) @@ -13045,9 +13045,9 @@ cdef class GiacMethods_base: Help for polygonplot: polygonplot(Mtrx) Draws the polygons joining for j fixed and for k=0..nrows, the points (xk,yk) where xk=element row k column 0 and yk=element row k column j, after the xk are sorted (we obtain ncols-1 polygons). - See also: 1/ scatterplot 2/ listplot 3/ polygonscatterplot + See also: 1/ scatterplot 2/ listplot 3/ polygonscatterplot Ex1:polygonplot([[1,2,3],[2,0,1],[-1,2,3]]) - + ''' return GiacMethods['polygonplot'](self,*args) @@ -13056,9 +13056,9 @@ cdef class GiacMethods_base: Help for polygonscatterplot: polygonscatterplot(Mtrx) Draws the points (xk,yk) and the polygons joining for j fixed and for k=0..nrows, the points (xk,yk) where xk=element row k column 0 et yk=element row k column j, after the xk are sorted (we obtain ncols-1 polygons). - See also: 1/ scatterplot 2/ polygonplot 3/ listplot + See also: 1/ scatterplot 2/ polygonplot 3/ listplot Ex1:polygonscatterplot([[1,2,3],[2,0,1],[-1,2,3]]) - + ''' return GiacMethods['polygonscatterplot'](self,*args) @@ -13067,9 +13067,9 @@ cdef class GiacMethods_base: Help for polyhedron: polyhedron(SeqPnt(A,B,C...)) Draws a convex polyhedron with vertices among the arguments. - See also: 1/ cube 2/ parallelepiped + See also: 1/ cube 2/ parallelepiped Ex1:polyhedron([0,0,0],[0,5,0],[0,0,5],[1,2,6]) - + ''' return GiacMethods['polyhedron'](self,*args) @@ -13078,13 +13078,13 @@ cdef class GiacMethods_base: Help for polynom: polynom(Opt) Option of the convert or convertir command and of the taylor and series commands (list=>n-poly or series=>poly). - See also: 1/ poly2symb 2/ taylor 3/ series 4/ convert + See also: 1/ poly2symb 2/ taylor 3/ series 4/ convert Ex1: convert([[10,[3,1]],[12,[2,2]]],polynom) Ex2: convert(taylor(sin(x)),polynom) Ex3: convert(series(sin(x),x=0,6),polynom) Ex4: taylor(sin(x),x=0,5,polynom) Ex5: series(sin(x),x=0,6,,polynom) - + ''' return GiacMethods['polynom'](self,*args) @@ -13093,11 +13093,11 @@ cdef class GiacMethods_base: Help for polynomial_regression: polynomial_regression(Lst||Mtrx(A),[Lst],Intg(n)) Returns the coefficients (an,...a1,a0) of y=an*x^n+..a1x+a0 : it is the best polynomial which approx the points where the coordinates are the rows of A (or the 2 lists) (n is the 2nd argument). - See also: 1/ linear_regression 2/ power_regression + See also: 1/ linear_regression 2/ power_regression Ex1:polynomial_regression([[1.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]],3) Ex2:polynomial_regression([[0.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]],3) Ex3:polynomial_regression([0.0,2.0,3.0,4.0],[1.0,4.0,9.0,16.0],3) - + ''' return GiacMethods['polynomial_regression'](self,*args) @@ -13106,11 +13106,11 @@ cdef class GiacMethods_base: Help for polynomial_regression_plot: polynomial_regression_plot(Lst||Mtrx(A),[Lst],Intg(n)) Returns the plot of y=an*x^n+..a1x+a0 : it is the best polynomial which approx the points where the coordinates are the rows of A (or the 2 lists) (n is the 2nd argument). - See also: 1/ linear_regression_plot 2/ power_regression_plot + See also: 1/ linear_regression_plot 2/ power_regression_plot Ex1:polynomial_regression_plot([[1.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]],3) Ex2:polynomial_regression_plot([[0.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]],3) Ex3:polynomial_regression_plot([0.0,2.0,3.0,4.0],[1.0,4.0,9.0,16.0],3) - + ''' return GiacMethods['polynomial_regression_plot'](self,*args) @@ -13119,11 +13119,11 @@ cdef class GiacMethods_base: Help for position: position(NULL or LstCoord) Returns the turtle position in pixels or puts the turtle at the position given by the argument with the same direction. - See also: 1/ cap 2/ initialise + See also: 1/ cap 2/ initialise Ex1:position() Ex2:position(50,70) Ex3:position([50,70]) - + ''' return GiacMethods['position'](self,*args) @@ -13132,9 +13132,9 @@ cdef class GiacMethods_base: Help for poslbdLMQ: poslbdLMQ(Poly(P)) Returns a lower bound on the values of the positive roots of P. Akritas-Strzebonski-Vigklas' Local Max Quadratic (LMQ) method is used. - See also: 1/ posubLMQ 2/ VAS_positive 3/ realroot + See also: 1/ posubLMQ 2/ VAS_positive 3/ realroot Ex1:poslbdLMQ(x^3-7*x+7) - + ''' return GiacMethods['poslbdLMQ'](self,*args) @@ -13143,9 +13143,9 @@ cdef class GiacMethods_base: Help for posubLMQ: posubLMQ(Poly(P)) Returns an upper bound on the values of the positive roots of P. Akritas-Strzebonski-Vigklas' Local Max Quadratic (LMQ) method is used. - See also: 1/ poslbdLMQ 2/ VAS_positive 3/ realroot + See also: 1/ poslbdLMQ 2/ VAS_positive 3/ realroot Ex1:posubLMQ(x^3-7*x+7) - + ''' return GiacMethods['posubLMQ'](self,*args) @@ -13154,9 +13154,9 @@ cdef class GiacMethods_base: Help for potential: potential(Vect(V),VectVar) Returns U such that derive(U,Vector_of_variable)=V. - See also: 1/ derive 2/ vpotential + See also: 1/ derive 2/ vpotential Ex1:potential([2*x*y+3,x^2-4*z,-4*y],[x,y,z]) - + ''' return GiacMethods['potential'](self,*args) @@ -13165,9 +13165,9 @@ cdef class GiacMethods_base: Help for pow2exp: pow2exp(Expr) Converts powers to exponentials. - See also: 1/ exp2pow + See also: 1/ exp2pow Ex1:pow2exp(a^b) - + ''' return GiacMethods['pow2exp'](self,*args) @@ -13176,11 +13176,11 @@ cdef class GiacMethods_base: Help for power_regression: power_regression(Lst|Mtrx(A),[Lst]) Returns the coefficients (m,b) of y=b*x^m : it is the best monomial which approx the points where the coordinates are the rows of A (or the 2 lists). - See also: 1/ polynomial_regression 2/ linear_regressiont + See also: 1/ polynomial_regression 2/ linear_regressiont Ex1:power_regression([[1.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]]) Ex2:power_regression([[1.0,2.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]]) Ex3:power_regression([1.0,2.0,3.0,4.0],[2.0,4.0,9.0,16.0]) - + ''' return GiacMethods['power_regression'](self,*args) @@ -13189,11 +13189,11 @@ cdef class GiacMethods_base: Help for power_regression_plot: power_regression_plot(Lst||Mtrx(A),[Lst]) Returns the plot of y=b*x^m : it is the best monomial which approx the points where the coordinates are the rows of A (or the 2 lists). - See also: 1/ polynomial_regression_plot 2/ linear_regression_plot + See also: 1/ polynomial_regression_plot 2/ linear_regression_plot Ex1:power_regression_plot([[1.0,1.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]]) Ex2:power_regression_plot([[1.0,2.0],[2.0,4.0],[3.0,9.0],[4.0,16.0]]) Ex3:power_regression_plot([1.0,2.0,3.0,4.0],[2.0,4.0,9.0,16.0]) - + ''' return GiacMethods['power_regression_plot'](self,*args) @@ -13202,10 +13202,10 @@ cdef class GiacMethods_base: Help for powermod: powermod(Intg(a),Intg(n),Intg(p),[Expr(P(x))],[Var]) Computes a^n modulo p or modulo p,P(x) (fast algorithm). - See also: 1/ pow 2/ ^ + See also: 1/ pow 2/ ^ Ex1:powermod(17,452,19) Ex2:powermod(x+1,452,19,x^4+x+1,x) - + ''' return GiacMethods['powermod'](self,*args) @@ -13214,10 +13214,10 @@ cdef class GiacMethods_base: Help for powerpc: powerpc(Cercle,Pnt or Cplx) Returns the real number d^2-R^2 (d=distance between point and center, R=radius). - See also: 1/ radical_axis + See also: 1/ radical_axis Ex1:powerpc(circle(0,1+i),3+i) Ex2:powerpc(circle(0,point(1+i)),3+i) - + ''' return GiacMethods['powerpc'](self,*args) @@ -13226,10 +13226,10 @@ cdef class GiacMethods_base: Help for powexpand: powexpand(Expr) Expands the expression as a function of the exponent. - See also: 1/ + See also: 1/ Ex1:powexpand(2^(x+y)) Ex2:powexpand(3^(2*x)) - + ''' return GiacMethods['powexpand'](self,*args) @@ -13238,10 +13238,10 @@ cdef class GiacMethods_base: Help for powmod: powmod(Intg(a),Intg(n),Intg(p),[Expr(P(x))],[Var]) Computes a^n modulo p or modulo p,P(x) (fast algorithm). - See also: 1/ pow 2/ ^ + See also: 1/ pow 2/ ^ Ex1:powmod(17,452,19) Ex2:powmod(x+1,452,19,x^4+x+1,x) - + ''' return GiacMethods['powmod'](self,*args) @@ -13250,14 +13250,14 @@ cdef class GiacMethods_base: Help for prepend: prepend(Lst||Set||Str(L),Elem(n)) Adds an element to a set or at the beginning of a list or of a string (L:=prepend(L,a) or L.prepend(a)). - See also: 1/ append 2/ concat + See also: 1/ append 2/ concat Ex1:prepend([1,2],3) Ex2:prepend(set[1,2],3) Ex3: L:=[1,2];L:=prepend(L,3) - Ex4: L:=[1,2];L.prepend(L,3) + Ex4: L:=[1,2];L.prepend(L,3) Ex5: S:=set[1,2];S:=prepend(L,3) Ex6: S:=set[1,2];S.prepend(L,3) - + ''' return GiacMethods['prepend'](self,*args) @@ -13266,12 +13266,12 @@ cdef class GiacMethods_base: Help for preval: preval(Expr(F(Var)),Real(a),Real(b),[Var]) Returns F(b)-F(a). - See also: 1/ subst 2/ int + See also: 1/ subst 2/ int Ex1:preval(x^2-2,2,3) Ex2:preval(y^2-2,2,3,y) Ex3:preval(int(x),0,1) Ex4:preval(int(y,y),0,1,y) - + ''' return GiacMethods['preval'](self,*args) @@ -13280,10 +13280,10 @@ cdef class GiacMethods_base: Help for prevperm: prevperm(Intg(n)) Returns the previous permutation with the lexicographic order. - See also: 1/ nextperm 2/ is_permu + See also: 1/ nextperm 2/ is_permu Ex1:prevperm([0,1,3,2]) Ex2:prevperm([0,1,2,3]) - + ''' return GiacMethods['prevperm'](self,*args) @@ -13292,10 +13292,10 @@ cdef class GiacMethods_base: Help for prevprime: prevprime(Intg(a)) Previous prime or pseudo-prime before a given integer a. - See also: 1/ nextprime 2/ is_prime 3/ ithprime + See also: 1/ nextprime 2/ is_prime 3/ ithprime Ex1:prevprime(9856989898999) Ex2:prevprime(97160249868928888261606009) - + ''' return GiacMethods['prevprime'](self,*args) @@ -13304,10 +13304,10 @@ cdef class GiacMethods_base: Help for primpart: primpart(Poly(P),[Var]) Returns the polynomial P divided by the gcd of its coefficients. - See also: 1/ content + See also: 1/ content Ex1:primpart(2x^2+10x+6) Ex2:primpart(2t^2+10t+6,t) - + ''' return GiacMethods['primpart'](self,*args) @@ -13316,10 +13316,10 @@ cdef class GiacMethods_base: Help for printf: printf(Expr) 2d printing. - See also: 1/ print + See also: 1/ print Ex1:printf(sqrt(2)) Ex2:printf("%gen+%gen=%gen",a,b,a+b) - + ''' return GiacMethods['printf'](self,*args) @@ -13328,9 +13328,9 @@ cdef class GiacMethods_base: Help for prism: prism(LstPnt([A,B,C,D]),Pnt(A1)) Draws a prism with plane base ABCD...and with edges parallel to AA1 (the faces are parallelograms). - See also: 1/ cube 2/ polyhedron + See also: 1/ cube 2/ polyhedron Ex1:prism([[0,0,0],[5,0,0],[0,5,0],[-5,5,0]],[0,0,5]) - + ''' return GiacMethods['prism'](self,*args) @@ -13339,9 +13339,9 @@ cdef class GiacMethods_base: Help for prism_graph: prism_graph(Intg(n)) Returns the generalized Petersen graph GP(n,1). - See also: 1/ antiprism_graph 2/ web_graph + See also: 1/ antiprism_graph 2/ web_graph Ex1:prism_graph(5) - + ''' return GiacMethods['prism_graph'](self,*args) @@ -13350,7 +13350,7 @@ cdef class GiacMethods_base: Help for product: product(Expr||Lst,[Var||Lst],[Intg(a)],[Intg(b)],[Intg(p)]) Multiplies the values of the expression when the variable go from a to b with a step p (product(expression,var,begin,end,step) by default p=1) or product of the elements of a list or product element by element of 2 lists or matrices. - See also: 1/ sum + See also: 1/ sum Ex1:product(n,n,1,10,2) Ex2:product(1/n,n,1,10) Ex3:product(1/n,n,11,1) @@ -13358,7 +13358,7 @@ cdef class GiacMethods_base: Ex5:product([2,3,4,5]) Ex6:product([2,3,4],[5,6,7]) Ex7:product([[2,3,4],[5,6,7]],[[2,3,4],[5,6,7]]) - + ''' return GiacMethods['product'](self,*args) @@ -13367,11 +13367,11 @@ cdef class GiacMethods_base: Help for projection: projection(Curve,Pnt) projection(C,A) is the orthogonal projection of A on the curve C. - See also: 1/ perpendicular + See also: 1/ perpendicular Ex1: H:=projection(line(i,1-i),1+i) Ex2: K:=projection(circle(0,1),1+i) Ex3: J:=projection(circle(0,1),point(1+2*i)) - + ''' return GiacMethods['projection'](self,*args) @@ -13380,12 +13380,12 @@ cdef class GiacMethods_base: Help for proot: proot(Vect||Poly,[Intg(n)]) Returns all computed roots of a polynomial given by its coefficients (may not work if roots are not simple). - See also: 1/ pcoeff 2/ peval 3/ realroot 4/ complexroot 5/ rationalroot 6/ crationalroot + See also: 1/ pcoeff 2/ peval 3/ realroot 4/ complexroot 5/ rationalroot 6/ crationalroot Ex1:proot([1,0,-2]) Ex2:proot(x^2-2) Ex3:proot([1,2,-25,-26,120]) Ex4:proot(x^4+5x-3,30) - + ''' return GiacMethods['proot'](self,*args) @@ -13394,10 +13394,10 @@ cdef class GiacMethods_base: Help for propFrac: propFrac(Frac or RatFrac) Simplifies and writes the fraction (or rational fraction) A/B as Q+R/B with R=0 or, the (-n)th previous question if n<0 (by default n=-1 for the previous question). - See also: 1/ ans + See also: 1/ ans Ex1:quest() Ex2:quest(2) Ex3:quest(-2) - + ''' return GiacMethods['quest'](self,*args) @@ -13604,11 +13604,11 @@ cdef class GiacMethods_base: Help for quo: quo((Vect or Poly),(Vect or Poly),[Var]) Euclidean quotient of 2 polynomials. - See also: 1/ rem 2/ quorem 3/ Quo 4/ iquo + See also: 1/ rem 2/ quorem 3/ Quo 4/ iquo Ex1:quo([1,2,3,4],[-1,2]) Ex2:quo(x^3+2x^2+3x+4,-x+2) Ex3:quo(t^3+2t^2+3t+4,-t+2,t) - + ''' return GiacMethods['quo'](self,*args) @@ -13617,12 +13617,12 @@ cdef class GiacMethods_base: Help for quorem: quorem((Vect or Poly),(Vect or Poly),[Var]) Euclidean quotient and remainder of 2 polynomials. - See also: 1/ rem 2/ quo 3/ iquorem + See also: 1/ rem 2/ quo 3/ iquorem Ex1:quorem([1,2,3,4],[-1,2]) Ex2:quorem(x^3+2x^2+3x+4,-x+2) Ex3:quorem(t^3+2t^2+3t+4,-t+2,t) Ex4:quorem(t^4-1,(t+1)^2,t) - + ''' return GiacMethods['quorem'](self,*args) @@ -13631,11 +13631,11 @@ cdef class GiacMethods_base: Help for quote: quote(Expr) Returns its argument unevaluated (and also a:=quote(a) purges a). - See also: 1/ + See also: 1/ Ex1:quote(1+2) Ex2:quote(1/x+1/(x-1)) Ex3:quote((x+1)*(x-1)) - + ''' return GiacMethods['quote'](self,*args) @@ -13644,12 +13644,12 @@ cdef class GiacMethods_base: Help for r2e: r2e(Lst,Var) Gives the polynomial (or its value) : the first argument is the vector of coefficients and the second argument is the variable (by default x). - See also: 1/ e2r 2/ symb2poly + See also: 1/ e2r 2/ symb2poly Ex1:r2e([1,2,3]) Ex2:r2e([1,2,3],x) Ex3:r2e([1,2,3],-1) Ex4:r2e([1,2,-1],y) - + ''' return GiacMethods['r2e'](self,*args) @@ -13658,10 +13658,10 @@ cdef class GiacMethods_base: Help for radical_axis: radical_axis(Crcle,Crcle) Returns the line of points with same powerpc with respect to the 2 circles. - See also: 1/ powerpc + See also: 1/ powerpc Ex1:radical_axis(circle(0,1+i),circle(1,1+i)) Ex2:radical_axis(circle(0,point(1+i)),circle(1,point(1+i))) - + ''' return GiacMethods['radical_axis'](self,*args) @@ -13670,9 +13670,9 @@ cdef class GiacMethods_base: Help for radius: radius(Crcle) radius(C) gives the radius of the circle C. - See also: 1/ center 2/ circle + See also: 1/ center 2/ circle Ex1:radius(incircle(-1,1-i,i)) - + ''' return GiacMethods['radius'](self,*args) @@ -13681,9 +13681,9 @@ cdef class GiacMethods_base: Help for ramene: ramene(Str(fich_name)) Reads variables and their values from the file fich_name. - See also: 1/ write 2/ readrgb 3/ readwav 4/ csv2gen + See also: 1/ write 2/ readrgb 3/ readwav 4/ csv2gen Ex1:ramene("toto") - + ''' return GiacMethods['ramene'](self,*args) @@ -13692,7 +13692,7 @@ cdef class GiacMethods_base: Help for rand: rand(Intg(n) or Interval(p..n) or NULL,[Intg(b1) or Lst(L)],[Intg(b2)]) rand(n)=a random integer (resp rand(p,n)=a real or rand(p..n)=a real function) with uniform distribution in 0..n-1 (resp in [p;n])(rand()=rand(0,1)=a real in [0,1[) or rand(n,b1,b2)=n integers between b1 and b2 or rand(n,L)=list of n elements of L. - See also: 1/ srand 2/ randpoly 3/ ranm 4/ randvector 5/ hasard + See also: 1/ srand 2/ randpoly 3/ ranm 4/ randvector 5/ hasard Ex1:rand(4) Ex2:rand() Ex3:rand(0,2) @@ -13704,7 +13704,7 @@ cdef class GiacMethods_base: Ex9: L:=["r","r","r","b","n"];L3:=L.rand(3) Ex10: L:=["r","r","r","b","n"];a:=rand(L) Ex11: L:=["r","r","r","b","n"];a:=L.rand() - + ''' return GiacMethods['rand'](self,*args) @@ -13713,7 +13713,7 @@ cdef class GiacMethods_base: Help for randMat: randMat(Intg(n), [Intg(m)],[Interval or quote(DistribLaw)]) Returns a list of size n or an n*m matrix that contains random integers in the range -99 through 99 with uniform distribution or contains random numbers according to the law put between quotes. - See also: 1/ idn 2/ randPoly 3/ rand 4/ randvector + See also: 1/ idn 2/ randPoly 3/ rand 4/ randvector Ex1:randMat(3) Ex2:randMat(3,2) Ex3:randMat(3,2,6) @@ -13727,7 +13727,7 @@ cdef class GiacMethods_base: Ex11:randMat(3,2,1..2) Ex12:randMat(3,5,multinomial,[1/2,1/3,1/6],["R","V","B"]) Ex13: GF(2,8,g);ranm(3,3,g) - + ''' return GiacMethods['randMat'](self,*args) @@ -13736,10 +13736,10 @@ cdef class GiacMethods_base: Help for randNorm: randNorm(Real(mu),Real(sigma)) Returns a random real with normal distribution N(mu,sigma). - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randpoisson 8/ randgeometric 9/ randmultinomial + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randpoisson 8/ randgeometric 9/ randmultinomial Ex1:randNorm(0,1) Ex2:randNorm(2,1) - + ''' return GiacMethods['randNorm'](self,*args) @@ -13748,14 +13748,14 @@ cdef class GiacMethods_base: Help for randPoly: randPoly([Var(Var)],Intg(n),[law]) Returns a polynomial with variable var (or x), of degree n and where the coefficients are random integers in the range -99 through 99 with uniform distribution or according to a law. - See also: 1/ ranm 2/ randvector + See also: 1/ ranm 2/ randvector Ex1:randPoly(5) Ex2:randPoly(t,8) Ex3:randPoly(t,8,-1..1) Ex4:randPoly([x,y],[10,3]) Ex5:randPoly([x,y],[10,3],1 mod 7) Ex6: GF(2,8,g);randpoly(t,8,g);randpoly([x,y],[2,3],g) - + ''' return GiacMethods['randPoly'](self,*args) @@ -13764,10 +13764,10 @@ cdef class GiacMethods_base: Help for randbetad: randbetad(Real(a),Real(b)) Returns a random real according to the Beta distribution with parameters a>0 and b>0. - See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector + See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector Ex1:randbetad(1,2) Ex2:randbetad(1.5,4) - + ''' return GiacMethods['randbetad'](self,*args) @@ -13776,10 +13776,10 @@ cdef class GiacMethods_base: Help for randbinomial: randbinomial(Intg(n),Real(p)) Returns a random integer with binomial distribution B(n,p) i.e. the number of successes in n independant tests where for each test, the success of probability is p. - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randnorm 7/ randpoisson 8/ randgeometric 9/ randmultinomial + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randnorm 7/ randpoisson 8/ randgeometric 9/ randmultinomial Ex1:randbinomial(10,0.4) Ex2:randbinomial(100,0.8) - + ''' return GiacMethods['randbinomial'](self,*args) @@ -13788,10 +13788,10 @@ cdef class GiacMethods_base: Help for randchisquare: randchisquare(Intg(n)) Returns a random integer with chi^2 distribution, χ^2(n). - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randnorm 8/ randgeometric 9/ randmultinomial + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randnorm 8/ randgeometric 9/ randmultinomial Ex1:randchisquare(5) Ex2:randchisquare(2) - + ''' return GiacMethods['randchisquare'](self,*args) @@ -13800,10 +13800,10 @@ cdef class GiacMethods_base: Help for randexp: randexp(Real(a)) Returns a random real according to the exponential distribution with parameter a>0. - See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector + See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector Ex1:randexp(1) Ex2:randexp(2) - + ''' return GiacMethods['randexp'](self,*args) @@ -13812,10 +13812,10 @@ cdef class GiacMethods_base: Help for randfisher: randfisher(Intg(n),Intg(m)) Returns a random integer with Fisher-Snedecor distribution F(n,m). - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randnorm 8/ randgeometric 9/ randmultinomial + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randnorm 8/ randgeometric 9/ randmultinomial Ex1:randfisher(5,2) Ex2:randfisher(2,4) - + ''' return GiacMethods['randfisher'](self,*args) @@ -13824,10 +13824,10 @@ cdef class GiacMethods_base: Help for randgammad: randgammad(Real(a),Real(b)) Returns a random real according to the Gamma distribution with parameters a>0 and b>0. - See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector + See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector Ex1:randgammad(1,2) Ex2:randgammad(1.5,4) - + ''' return GiacMethods['randgammad'](self,*args) @@ -13836,9 +13836,9 @@ cdef class GiacMethods_base: Help for randgeometric: randgeometric(Real(p)) Returns a random integer following the geometric distribution with parameter p. - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randnorm 7/ randpoisson 8/ randbinomial 9/ randmultinomial + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randnorm 7/ randpoisson 8/ randbinomial 9/ randmultinomial Ex1:randgeometric(0.4) - + ''' return GiacMethods['randgeometric'](self,*args) @@ -13847,10 +13847,10 @@ cdef class GiacMethods_base: Help for randint: randint(Intg(n1),Intg(n2)) randint(n1,n2)=an integer in [n1, n2] or [n2,n1]. - See also: 1/ rand + See also: 1/ rand Ex1:randint(1,10) Ex2:randint(-1,-10) - + ''' return GiacMethods['randint'](self,*args) @@ -13859,10 +13859,10 @@ cdef class GiacMethods_base: Help for randmarkov: randmarkov(Mtrx(M) || Vctr(v),Intg(i0),[Intg(n)]) Returns a random sequence of n states (Markov chain) starting from i0, with probability transition matrix M, or returns a stochastic matrix with p recurrent loops v=[n1,..,np] and i0 transient states. - See also: 1/ markov 2/ plotproba + See also: 1/ markov 2/ plotproba Ex1:randmarkov([[0,0,1/2,0,1/2],[0,0,1,0,0],[1/4,1/4,0,1/4,1/4],[0,0,1/2,0,1/2],[0,0,0,0,1]],2,20) Ex2:randmarkov([1,2,1,3],4) - + ''' return GiacMethods['randmarkov'](self,*args) @@ -13871,7 +13871,7 @@ cdef class GiacMethods_base: Help for randmatrix: randmatrix(Intg(n), [Intg(m)],[Interval or quote(DistribLaw)]) Returns a list of size n or an n*m matrix that contains random integers in the range -99 through 99 with uniform distribution or contains random numbers according to the law put between quotes. - See also: 1/ idn 2/ randPoly 3/ rand 4/ randvector + See also: 1/ idn 2/ randPoly 3/ rand 4/ randvector Ex1:randmatrix(3) Ex2:randmatrix(3,2) Ex3:randmatrix(3,2,6) @@ -13885,7 +13885,7 @@ cdef class GiacMethods_base: Ex11:randmatrix(3,2,1..2) Ex12:randmatrix(3,5,multinomial,[1/2,1/3,1/6],["R","V","B"]) Ex13: GF(2,8,g);ranm(3,3,g) - + ''' return GiacMethods['randmatrix'](self,*args) @@ -13894,10 +13894,10 @@ cdef class GiacMethods_base: Help for randmultinomial: randmultinomial(List(P),[List(K)]) Returns a random index or list element according to a multinomial distribution probability list P. - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randnorm 7/ randpoisson 8/ randgeometric 9/ randbinomial + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randnorm 7/ randpoisson 8/ randgeometric 9/ randbinomial Ex1:randmultinomial([1/2,1/3,1/6]) Ex2:randmultinomial([1/2,1/3,1/6],["R","V","B"]) - + ''' return GiacMethods['randmultinomial'](self,*args) @@ -13906,10 +13906,10 @@ cdef class GiacMethods_base: Help for randnorm: randnorm(Real(mu),Real(sigma)) Returns a random real with normal distribution N(mu,sigma). - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randpoisson 8/ randgeometric 9/ randmultinomial + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randpoisson 8/ randgeometric 9/ randmultinomial Ex1:randnorm(0,1) Ex2:randnorm(2,1) - + ''' return GiacMethods['randnorm'](self,*args) @@ -13918,7 +13918,7 @@ cdef class GiacMethods_base: Help for random: random(Intg(n) or Interval(p..n) or NULL,[Intg(b1) or Lst(L)],[Intg(b2)]) rand(n)=a random integer (resp rand(p,n)=a real or rand(p..n)=a real function) with uniform distribution in 0..n-1 (resp in [p;n])(rand()=rand(0,1)=a real in [0,1[) or rand(n,b1,b2)=n integers between b1 and b2 or rand(n,L)=list of n elements of L. - See also: 1/ srand 2/ randpoly 3/ ranm 4/ randvector 5/ hasard + See also: 1/ srand 2/ randpoly 3/ ranm 4/ randvector 5/ hasard Ex1:random(4) Ex2:random() Ex3:random(0,2) @@ -13930,7 +13930,7 @@ cdef class GiacMethods_base: Ex9: L:=["r","r","r","b","n"];L3:=L.rand(3) Ex10: L:=["r","r","r","b","n"];a:=rand(L) Ex11: L:=["r","r","r","b","n"];a:=L.rand() - + ''' return GiacMethods['random'](self,*args) @@ -13939,10 +13939,10 @@ cdef class GiacMethods_base: Help for random_bipartite_graph: random_bipartite_graph(Intg(n)||Lst(a,b),Real(p)||Intg(m)) Returns a random undirected unweighted bipartite graph with n vertices where each possible edge is present with probability p or where m edges are created at random. When the first argument is list [a,b] of integers, two groups of vertices with sizes a and b are created. - See also: 1/ random_digraph 2/ random_graph 3/ random_planar_graph 4/ random_regular_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree + See also: 1/ random_digraph 2/ random_graph 3/ random_planar_graph 4/ random_regular_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree Ex1:random_bipartite_graph(10,0.5) Ex2:random_bipartite_graph([2,3],1.0) - + ''' return GiacMethods['random_bipartite_graph'](self,*args) @@ -13951,10 +13951,10 @@ cdef class GiacMethods_base: Help for random_digraph: random_digraph(Intg(n)||Lst(V),Real(p)||Intg(m)) Returns a random directed unweighted graph with n vertices (list V of labels may me specified) where two vertices are connected with probability p or where m edges are created at random. - See also: 1/ random_bipartite_graph 2/ random_graph 3/ random_planar_graph 4/ random_regular_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree + See also: 1/ random_bipartite_graph 2/ random_graph 3/ random_planar_graph 4/ random_regular_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree Ex1:random_digraph(8,0.5) Ex2:random_digraph(8,10) - + ''' return GiacMethods['random_digraph'](self,*args) @@ -13963,10 +13963,10 @@ cdef class GiacMethods_base: Help for random_graph: random_graph(Intg(n)||Lst(V),Real(p)||Intg(m)) Returns a random undirected unweighted graph with n vertices (list V of labels may be specified) where two vertices are connected with probability p or where m edges are created at random. - See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_planar_graph 4/ random_regular_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree + See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_planar_graph 4/ random_regular_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree Ex1:random_graph(8,0.5) Ex2:random_graph(8,10) - + ''' return GiacMethods['random_graph'](self,*args) @@ -13975,11 +13975,11 @@ cdef class GiacMethods_base: Help for random_network: random_network(Intg(a),Intg(b),[Real(p)],[opts]) Returns a random network with b grid frames of size a*a in which every edge appears with the probability p (by default 0.5). - See also: 1/ is_network 2/ maxflow + See also: 1/ is_network 2/ maxflow Ex1:random_network(3,3) Ex2:random_network(3,3,acyclic) Ex3:random_network(3,4,0.75) - + ''' return GiacMethods['random_network'](self,*args) @@ -13988,8 +13988,8 @@ cdef class GiacMethods_base: Help for random_planar_graph: random_planar_graph(Intg(n)||Lst(V),Real(p),[Intg(c)]) Returns a random planar graph with n vertices, which can also be specified as a list V of their labels, obtained by trying to remove each edge of a random triangulated graph with probability 0<=p<1 [c is connectivity level : 0 - any, 1 - connected, 2 - biconnected, 3 - triconnected (by default, c=1)]. - See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_graph 4/ random_regular_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree - + See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_graph 4/ random_regular_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree + ''' return GiacMethods['random_planar_graph'](self,*args) @@ -13998,9 +13998,9 @@ cdef class GiacMethods_base: Help for random_regular_graph: random_regular_graph(Intg(n)||Lst(V),Intg(d),[connected]) Returns a random d-regular graph with n vertices, which may be specified as list V of their labels. - See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_graph 4/ random_planar_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree + See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_graph 4/ random_planar_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree Ex1:random_regular_graph(100,80,connected) - + ''' return GiacMethods['random_regular_graph'](self,*args) @@ -14009,9 +14009,9 @@ cdef class GiacMethods_base: Help for random_sequence_graph: random_sequence_graph(Lst(L)) Returns a random undirected graph with degree sequence L. - See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_graph 4/ random_planar_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree + See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_graph 4/ random_planar_graph 5/ random_sequence_graph 6/ random_tournament 7/ random_tree Ex1:random_sequence_graph([1,3,3,2,1,2,2,2,3,3]) - + ''' return GiacMethods['random_sequence_graph'](self,*args) @@ -14020,9 +14020,9 @@ cdef class GiacMethods_base: Help for random_tournament: random_tournament(Intg(n)||Lst(V)) Returns a random tournament graph with n vertices, which may be specified as list V of their labels. - See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_graph 4/ random_planar_graph 5/ random_regular_graph 6/ random_sequence_graph 7/ random_tree + See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_graph 4/ random_planar_graph 5/ random_regular_graph 6/ random_sequence_graph 7/ random_tree Ex1:random_tournament(5) - + ''' return GiacMethods['random_tournament'](self,*args) @@ -14031,8 +14031,8 @@ cdef class GiacMethods_base: Help for random_tree: random_tree(Intg(n)||Lst(V),[Intg(d)||root[=Vrtx(v)]]) Returns a random tree graph with n vertices, which may be specified as list V of their labels [with the upper bound d (positive integer) for the degree of graph or 'root' for rooted trees]. - See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_graph 4/ random_planar_graph 5/ random_regular_graph 6/ random_sequence_graph 7/ random_tournament - + See also: 1/ random_bipartite_graph 2/ random_digraph 3/ random_graph 4/ random_planar_graph 5/ random_regular_graph 6/ random_sequence_graph 7/ random_tournament + ''' return GiacMethods['random_tree'](self,*args) @@ -14041,7 +14041,7 @@ cdef class GiacMethods_base: Help for random_variable: random_variable(Lst(W)||Mtrx(M)||Fnc(f),[params]) Returns a random variable from a probability density function f or from list of weights (discrete variable). - See also: 1/ randvector 2/ randmatrix 3/ rand + See also: 1/ randvector 2/ randmatrix 3/ rand Ex1:random_variable(fisher,2,3) Ex2:random_variable([["apple",1/3],["orange",1/4],["pear",1/5],["plum",13/60]]) Ex3:random_variable(k->1-(k/10)^2,range=-10..10) @@ -14052,7 +14052,7 @@ cdef class GiacMethods_base: Ex8:random_variable(weibull,mean=12.5,variance=1) Ex9:random_variable(uniform,mean=10,stddev=2) Ex10:random_variable(uniform,e..pi) - + ''' return GiacMethods['random_variable'](self,*args) @@ -14061,13 +14061,13 @@ cdef class GiacMethods_base: Help for randperm: randperm(Intg(n)||Lst(L)) Returns a random permutation of [0,1,2,..,n-1] or of the list L. - See also: 1/ permu2cycles 2/ is_permu 3/ permu2mat + See also: 1/ permu2cycles 2/ is_permu 3/ permu2mat Ex1:randperm(4) Ex2:randperm(7) Ex3:randperm([1,3,5,7,9]) Ex4: L:=[1,3,5,7,9];L:=randperm(L) Ex5: L:=[1,3,5,7,9];L.randperm() - + ''' return GiacMethods['randperm'](self,*args) @@ -14076,10 +14076,10 @@ cdef class GiacMethods_base: Help for randpoisson: randpoisson(Real(λ)) Returns a random integer with poisson distribution P(λ). - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randnorm 8/ randgeometric 9/ randmultinomial + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randnorm 8/ randgeometric 9/ randmultinomial Ex1:randpoisson(5.4) Ex2:randpoisson(2.8) - + ''' return GiacMethods['randpoisson'](self,*args) @@ -14088,14 +14088,14 @@ cdef class GiacMethods_base: Help for randpoly: randpoly([Var(Var)],Intg(n),[law]) Returns a polynomial with variable var (or x), of degree n and where the coefficients are random integers in the range -99 through 99 with uniform distribution or according to a law. - See also: 1/ ranm 2/ randvector + See also: 1/ ranm 2/ randvector Ex1:randpoly(5) Ex2:randpoly(t,8) Ex3:randpoly(t,8,-1..1) Ex4:randpoly([x,y],[10,3]) Ex5:randpoly([x,y],[10,3],1 mod 7) Ex6: GF(2,8,g);randpoly(t,8,g);randpoly([x,y],[2,3],g) - + ''' return GiacMethods['randpoly'](self,*args) @@ -14104,10 +14104,10 @@ cdef class GiacMethods_base: Help for randseed: randseed() srand returns an integer and initializes the sequence of random numbers. - See also: 1/ RandSeed + See also: 1/ RandSeed Ex1:randseed(12) Ex2: srand - + ''' return GiacMethods['randseed'](self,*args) @@ -14116,10 +14116,10 @@ cdef class GiacMethods_base: Help for randstudent: randstudent(Intg(n)) Returns a random integer with Student distribution S(n). - See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randnorm 8/ randgeometric 9/ randmultinomial + See also: 1/ rand 2/ randpoly 3/ ranm 4/ randvector 5/ randexp 6/ randbinomial 7/ randnorm 8/ randgeometric 9/ randmultinomial Ex1:randstudent(5) Ex2:randstudent(2) - + ''' return GiacMethods['randstudent'](self,*args) @@ -14128,7 +14128,7 @@ cdef class GiacMethods_base: Help for randvar: randvar(Lst(W)||Mtrx(M)||Fnc(f),[params]) Returns a random variable from a probability density function f or from list of weights (discrete variable). - See also: 1/ randvector 2/ randmatrix 3/ rand + See also: 1/ randvector 2/ randmatrix 3/ rand Ex1:randvar(fisher,2,3) Ex2:randvar([["apple",1/3],["orange",1/4],["pear",1/5],["plum",13/60]]) Ex3:randvar(k->1-(k/10)^2,range=-10..10) @@ -14139,7 +14139,7 @@ cdef class GiacMethods_base: Ex8:randvar(weibull,mean=12.5,variance=1) Ex9:randvar(uniform,mean=10,stddev=2) Ex10:randvar(uniform,e..pi) - + ''' return GiacMethods['randvar'](self,*args) @@ -14148,7 +14148,7 @@ cdef class GiacMethods_base: Help for randvector: randvector(Intg(n), [Intg(m)],[Interval or quote(DistribLaw)]) Returns a list of size n that contains random integers in the range -99 through 99 (or in 0..m-1) with uniform distribution or contains random numbers according to the law put between quotes. - See also: 1/ idn 2/ randPoly 3/ rand 4/ ranm + See also: 1/ idn 2/ randPoly 3/ rand 4/ ranm Ex1:randvector(3) Ex2:randvector(3,6) Ex3:randvector(3,normald,0,1) @@ -14159,7 +14159,7 @@ cdef class GiacMethods_base: Ex8:randvector(3,'rand(3)') Ex9:randvector(3,1..2) Ex10: GF(2,8,g);randvector(3,g) - + ''' return GiacMethods['randvector'](self,*args) @@ -14168,10 +14168,10 @@ cdef class GiacMethods_base: Help for randweibulld: randweibulld(Real(a),Real(b)) Returns a random real according to the Weibull distribution with parameters a>0 and b>0. - See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector + See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector Ex1:randweibulld(1,2) Ex2:randweibulld(1.5,4) - + ''' return GiacMethods['randweibulld'](self,*args) @@ -14180,10 +14180,10 @@ cdef class GiacMethods_base: Help for rank: rank(Mtrx) Returns the rank of the matrix. - See also: 1/ det 2/ image + See also: 1/ det 2/ image Ex1:rank([[1,1,2],[2,1,3],[3,1,4]]) Ex2:rank([[1,1,2],[2,1,3],[3,1,5]]) - + ''' return GiacMethods['rank'](self,*args) @@ -14192,7 +14192,7 @@ cdef class GiacMethods_base: Help for ranm: ranm(Intg(n), [Intg(m)],[Interval or quote(DistribLaw)]) Returns a list of size n or an n*m matrix that contains random integers in the range -99 through 99 with uniform distribution or contains random numbers according to the law put between quotes. - See also: 1/ idn 2/ randPoly 3/ rand 4/ randvector + See also: 1/ idn 2/ randPoly 3/ rand 4/ randvector Ex1:ranm(3) Ex2:ranm(3,2) Ex3:ranm(3,2,6) @@ -14206,7 +14206,7 @@ cdef class GiacMethods_base: Ex11:ranm(3,2,1..2) Ex12:ranm(3,5,multinomial,[1/2,1/3,1/6],["R","V","B"]) Ex13: GF(2,8,g);ranm(3,3,g) - + ''' return GiacMethods['ranm'](self,*args) @@ -14215,7 +14215,7 @@ cdef class GiacMethods_base: Help for ranv: ranv(Intg(n), [Intg(m)],[Interval or quote(DistribLaw)]) Returns a list of size n that contains random integers in the range -99 through 99 (or in 0..m-1) with uniform distribution or contains random numbers according to the law put between quotes. - See also: 1/ idn 2/ randPoly 3/ rand 4/ ranm + See also: 1/ idn 2/ randPoly 3/ rand 4/ ranm Ex1:ranv(3) Ex2:ranv(3,6) Ex3:ranv(3,normald,0,1) @@ -14226,7 +14226,7 @@ cdef class GiacMethods_base: Ex8:ranv(3,'rand(3)') Ex9:ranv(3,1..2) Ex10: GF(2,8,g);randvector(3,g) - + ''' return GiacMethods['ranv'](self,*args) @@ -14235,9 +14235,9 @@ cdef class GiacMethods_base: Help for rassembler_trigo: rassembler_trigo(Expr) Collects trigonometric expressions. - See also: 1/ texpand 2/ tlin + See also: 1/ texpand 2/ tlin Ex1:rassembler_trigo(sin(x)+cos(x)) - + ''' return GiacMethods['rassembler_trigo'](self,*args) @@ -14246,11 +14246,11 @@ cdef class GiacMethods_base: Help for rat_jordan: rat_jordan(Mtrx) Returns the list made by the transition matrix and the rational Jordan form of a matrix. - See also: 1/ egv 2/ egvl 3/ jordan 4/ companion + See also: 1/ egv 2/ egvl 3/ jordan 4/ companion Ex1:rat_jordan([[0,2],[1,0]]) Ex2:rat_jordan([[-2,-2,1],[-2,1,-2],[1,-2,-2]]) Ex3:rat_jordan([[1,1,-1,2,-1],[2,0,1,-4,-1],[0,1,1,1,1],[0,1,2,0,1],[0,0,-3,3,-1]]) - + ''' return GiacMethods['rat_jordan'](self,*args) @@ -14259,11 +14259,11 @@ cdef class GiacMethods_base: Help for rational: rational(Opt) DOM_RAT or rational is the type of a rational, as returned by the type command. It is also an option of the assume command. - See also: 1/ type 2/ assume 3/ DOM_INT 4/ DOM_FLOAT + See also: 1/ type 2/ assume 3/ DOM_INT 4/ DOM_FLOAT Ex1: assume(a,rational) Ex2: assume(a,DOM_RAT) Ex3: a:=1/2;type(a) - + ''' return GiacMethods['rational'](self,*args) @@ -14272,9 +14272,9 @@ cdef class GiacMethods_base: Help for rationalroot: rationalroot(Poly(P)) Returns the list of rational roots of P without indicating the multiplicity. - See also: 1/ proot 2/ froot 3/ complexroot 4/ realroot 5/ crationalroot + See also: 1/ proot 2/ froot 3/ complexroot 4/ realroot 5/ crationalroot Ex1:rationalroot(2*x^3-9*x^2+13*x-6) - + ''' return GiacMethods['rationalroot'](self,*args) @@ -14283,11 +14283,11 @@ cdef class GiacMethods_base: Help for ratnormal: ratnormal(Expr) Rewrites as an irreducible rational fraction. - See also: 1/ normal 2/ simplify 3/ factor 4/ expand + See also: 1/ normal 2/ simplify 3/ factor 4/ expand Ex1:ratnormal((x^2-1)/(x^3-1)) Ex2:ratnormal(c/d+b/d+a/d) Ex3:ratnormal((x^2-1)/(x^3-1)+(x-1)/(x^3-1)+1) - + ''' return GiacMethods['ratnormal'](self,*args) @@ -14296,10 +14296,10 @@ cdef class GiacMethods_base: Help for rdiv: rdiv(Expr(a),Expr(b)) Division of a by b (prefixed version of /). - See also: 1/ / + See also: 1/ / Ex1:rdiv(3,5) Ex2:rdiv(3.2,5.4) - + ''' return GiacMethods['rdiv'](self,*args) @@ -14308,11 +14308,11 @@ cdef class GiacMethods_base: Help for re: re(Cplx or LstCplx) Returns the real part of a complex number. - See also: 1/ im 2/ conj + See also: 1/ im 2/ conj Ex1:re(1+2*i) Ex2:re((1+2*i)^2) Ex3:re([1+2*i,(1+2*i)^2]) - + ''' return GiacMethods['re'](self,*args) @@ -14321,9 +14321,9 @@ cdef class GiacMethods_base: Help for read: read(Str(fich_name)) Reads variables and their values from the file fich_name. - See also: 1/ write 2/ readrgb 3/ readwav 4/ csv2gen + See also: 1/ write 2/ readrgb 3/ readwav 4/ csv2gen Ex1:read("toto") - + ''' return GiacMethods['read'](self,*args) @@ -14332,10 +14332,10 @@ cdef class GiacMethods_base: Help for readrgb: readrgb(Str(s),[Intg(w)],[Intg(h)]) Reads a picture file, using it's natural dimensions, or using specified dimensions. - See also: 1/ writergb 2/ readwav + See also: 1/ writergb 2/ readwav Ex1:readrgb("image.png") Ex2:readrgb("image.png",50,50) - + ''' return GiacMethods['readrgb'](self,*args) @@ -14344,9 +14344,9 @@ cdef class GiacMethods_base: Help for readwav: readwav(Str(s)) Reads a WAV sound file. - See also: 1/ writewav 2/ readrgb + See also: 1/ writewav 2/ readrgb Ex1:readwav("pop.wav") - + ''' return GiacMethods['readwav'](self,*args) @@ -14355,11 +14355,11 @@ cdef class GiacMethods_base: Help for real: real(Cplx or LstCplx) Returns the real part of a complex number. - See also: 1/ im 2/ conj + See also: 1/ im 2/ conj Ex1:real(1+2*i) Ex2:real((1+2*i)^2) Ex3:real([1+2*i,(1+2*i)^2]) - + ''' return GiacMethods['real'](self,*args) @@ -14368,14 +14368,14 @@ cdef class GiacMethods_base: Help for realroot: realroot([sturm],Poly(P),[Real(l)],[Cplx(a)],[Cplx(b)]) Returns the list of intervals of length <=l containing the real roots of P inside a..b with their multiplicity. By default the Vincent-Akritas-Strzebonski (VAS) method is used. realroot(sturm,P) uses Sturm's method. - See also: 1/ proot 2/ froot 3/ complexroot 4/ rationalroot 5/ crationalroot 6/ sturmab 7/ VAS + See also: 1/ proot 2/ froot 3/ complexroot 4/ rationalroot 5/ crationalroot 6/ sturmab 7/ VAS Ex1:realroot(x^3+7,0.1) Ex2:realroot(x^3-7*x+7) Ex3:realroot(sturm,x^3-7*x+7) Ex4:realroot(x^5-2*x^4+x^3+1) Ex5:realroot(x^5-2*x^4+x^3+1,0.1) Ex6:realroot(x^3+x+8,1e-5,-4,4) - + ''' return GiacMethods['realroot'](self,*args) @@ -14384,10 +14384,10 @@ cdef class GiacMethods_base: Help for reciprocation: reciprocation(Crcle,Lst(Pnt,Line)) Returns the list where the points (resp lines) are replaced with their polars (resp poles) with respect to the circle C. - See also: 1/ pole 2/ polar + See also: 1/ pole 2/ polar Ex1:reciprocation(circle(0,1),[point((1+i)/2), line(1,-1+i)]) Ex2:reciprocation(circle(0,1),[line(1+i,2),point(1+i*2)]) - + ''' return GiacMethods['reciprocation'](self,*args) @@ -14396,9 +14396,9 @@ cdef class GiacMethods_base: Help for rect: rect(Expr(x)) Returns the value of the rectangle function at x. - See also: 1/ boxcar 2/ tri 3/ Heaviside + See also: 1/ boxcar 2/ tri 3/ Heaviside Ex1:rect(x/2) - + ''' return GiacMethods['rect'](self,*args) @@ -14407,12 +14407,12 @@ cdef class GiacMethods_base: Help for rectangle: rectangle(Pnt(A)||Cplx,Pnt(B)||Cplx,Real(k)||Pnt(P)||Lst(P,k),[Var(D)],[Var(C)]) Returns and draws the rectangle ABCD, AD=k*AB; if k>0 ABCD is direct else indirect (in the plane ABP AD=AP or AD=k*AB). - See also: 1/ quadrilateral 2/ square + See also: 1/ quadrilateral 2/ square Ex1:rectangle(-i,1,2) Ex2:rectangle(-i,1,-2,D,C) Ex3:rectangle(point(0,0,0),point(3,3,3),point(0,0,3),D,C) Ex4:rectangle(point(0,0,0),point(3,3,3),2,D,C) - + ''' return GiacMethods['rectangle'](self,*args) @@ -14421,14 +14421,14 @@ cdef class GiacMethods_base: Help for rectangle_droit: rectangle_droit(Opt) Option of the plotarea command and of the area command. - See also: 1/ plotarea 2/ area + See also: 1/ plotarea 2/ area Ex1: plotarea(x^2,x=0..1,5,trapezoid) Ex2: plotarea(x^2,x=0..1,5,middle_point) Ex3: plotarea(x^2,x=0..1,5,right_rectangle) Ex4: plotarea(x^2,x=0..1,5,left_rectangle) Ex5: area(x^2,x=0..1,5,middle_point) Ex6: area(x^2,x=0..1,5,trapezoid) - + ''' return GiacMethods['rectangle_droit'](self,*args) @@ -14437,14 +14437,14 @@ cdef class GiacMethods_base: Help for rectangle_gauche: rectangle_gauche(Opt) Option of the plotarea command and of the area command. - See also: 1/ plotarea 2/ area + See also: 1/ plotarea 2/ area Ex1: plotarea(x^2,x=0..1,5,trapezoid) Ex2: plotarea(x^2,x=0..1,5,middle_point) Ex3: plotarea(x^2,x=0..1,5,right_rectangle) Ex4: plotarea(x^2,x=0..1,5,left_rectangle) Ex5: area(x^2,x=0..1,5,middle_point) Ex6: area(x^2,x=0..1,5,trapezoid) - + ''' return GiacMethods['rectangle_gauche'](self,*args) @@ -14453,11 +14453,11 @@ cdef class GiacMethods_base: Help for rectangle_plein: rectangle_plein(Real(a),[Real(b)]) Draws a full direct rectangle (resp square) with sides a,b (resp a) from the turtle position and on the left (by default b=a). - See also: 1/ triangle_plein + See also: 1/ triangle_plein Ex1: rectangle_plein 20 Ex2:rectangle_plein(20) Ex3:rectangle_plein(20,40) - + ''' return GiacMethods['rectangle_plein'](self,*args) @@ -14466,10 +14466,10 @@ cdef class GiacMethods_base: Help for rectangular_coordinates: rectangular_coordinates(LstPolCoord) Returns the list of the abscissa and of the ordinate of a point given by the list of its polar coordinates. - See also: 1/ abscissa 2/ ordinate 3/ rectangular_coordinates 4/ polar_point + See also: 1/ abscissa 2/ ordinate 3/ rectangular_coordinates 4/ polar_point Ex1:rectangular_coordinates([1,pi/4]) Ex2:rectangular_coordinates(polar_point(1,pi/4)) - + ''' return GiacMethods['rectangular_coordinates'](self,*args) @@ -14478,10 +14478,10 @@ cdef class GiacMethods_base: Help for recule: recule(NULL or Real(n)) The turtle takes n steps back (by default n=10). - See also: 1/ avance 2/ saute + See also: 1/ avance 2/ saute Ex1: recule 30 Ex2:recule(30) - + ''' return GiacMethods['recule'](self,*args) @@ -14490,10 +14490,10 @@ cdef class GiacMethods_base: Help for red: red(Opt) Option of the display command to display with color. - See also: 1/ display + See also: 1/ display Ex1: F:=display(point(2+1.5*i),red) Ex2: F:=display(point(2+1.5*i),point_point+green) - + ''' return GiacMethods['red'](self,*args) @@ -14502,12 +14502,12 @@ cdef class GiacMethods_base: Help for reduced_conic: reduced_conic(Expr,[LstVar]) Returns the origin and the matrix of a base in which the conic given by its equation is reduced, 0 or 1 (0 if the conic is degenerate) and the equation of the conic in this base and also its parametric equation. - See also: 1/ gauss 2/ conic + See also: 1/ gauss 2/ conic Ex1:reduced_conic(x^2+2*x-2*y+1) Ex2:reduced_conic(a*x^2-2*x*y+a*y^2-2*x+2*y+3,[x,y]) Ex3:reduced_conic(2*u^2+2*u*v+2*v^2+5*u+3,[u,v]) Ex4:reduced_conic((x+y)^2-2*x+1,x,y) - + ''' return GiacMethods['reduced_conic'](self,*args) @@ -14516,12 +14516,12 @@ cdef class GiacMethods_base: Help for reduced_quadric: reduced_quadric(Expr, [LstVar]) Returns the origin and the matrix of a basis in which the quadric (given by its equation) is reduced, the list of its eigenvalues, the equation of the quadric in this basis and its parametric equation. - See also: 1/ gauss 2/ quadric + See also: 1/ gauss 2/ quadric Ex1:reduced_quadric(4*x^2+y^2+z^2-4*x*y+4*x*z-2*y*z+8*x-4*y+4*z+2) Ex2:reduced_quadric(x^2+3*y^2-3*z^2-8*y*z+2*z*x-4*x*y-1,x,y,z) Ex3:reduced_quadric((u+v)*(v-w)+3*u-5*v,[u,v,w]) Ex4:reduced_quadric(7*x^2+4*y^2+4*z^2+4*x*y-4*x*z-2*y*z-4*x+5*y+4*z-18,[x,y,z]) - + ''' return GiacMethods['reduced_quadric'](self,*args) @@ -14530,10 +14530,10 @@ cdef class GiacMethods_base: Help for ref: ref(Mtrx(M)) Gaussian reduction of AX=b (M=A|(-b)). - See also: 1/ rref 2/ det + See also: 1/ rref 2/ det Ex1:ref([[3,1,-2],[3,2,2]]) Ex2:ref([[2,1,1,-1],[1,1,2,-1],[1,2,1,-4]]) - + ''' return GiacMethods['ref'](self,*args) @@ -14542,11 +14542,11 @@ cdef class GiacMethods_base: Help for reflection: reflection((Pnt(A) or Line(D)),(Pnt(C) or Curve(C))) reflection(D,C) (or reflection(A,C))=symmetry of C with the symmetry-line D (or sym-point A). - See also: 1/ rotation 2/ translation + See also: 1/ rotation 2/ translation Ex1:reflection(line(0,1+i),A) Ex2:reflection(B,A) Ex3:reflection(line(0,1+i),circle(i,1+i)) - + ''' return GiacMethods['reflection'](self,*args) @@ -14555,9 +14555,9 @@ cdef class GiacMethods_base: Help for regroup: regroup(Expr) Collects terms in an expression. - See also: 1/ simplify 2/ normal + See also: 1/ simplify 2/ normal Ex1:regroup(x+3*x+5*4/x) - + ''' return GiacMethods['regroup'](self,*args) @@ -14566,9 +14566,9 @@ cdef class GiacMethods_base: Help for relabel_vertices: relabel_vertices(Graph(G),Lst(L)) Returns a copy of G with vertex labels changed to those in the list L. - See also: 1/ graph_vertices 2/ isomorphic_copy 3/ permute_vertices + See also: 1/ graph_vertices 2/ isomorphic_copy 3/ permute_vertices Ex1:relabel_vertices(graph([a,b,c]),["first","second","third"]) - + ''' return GiacMethods['relabel_vertices'](self,*args) @@ -14577,10 +14577,10 @@ cdef class GiacMethods_base: Help for reliability_polynomial: reliability_polynomial(Graph(G),[Var(p)]) Returns the reliability polynomial [or its value at point p] of undirected graph G. If G is weighted, all weights must be positive integers and are interpreted as edge multiplicities. - See also: 1/ chromatic_polynomial 2/ flow_polynomial 3/ tutte_polynomial + See also: 1/ chromatic_polynomial 2/ flow_polynomial 3/ tutte_polynomial Ex1:reliability_polynomial(graph("petersen")) Ex2:reliability_polynomial(graph("petersen"),0.5) - + ''' return GiacMethods['reliability_polynomial'](self,*args) @@ -14589,11 +14589,11 @@ cdef class GiacMethods_base: Help for rem: rem((Vect or Poly),(Vect or Poly),[Var]) Euclidean remainder of 2 polynomials. - See also: 1/ quo 2/ quorem 3/ Rem 4/ irem + See also: 1/ quo 2/ quorem 3/ Rem 4/ irem Ex1:rem([1,2,3,4],[-1,2]) Ex2:rem(x^3+2x^2+3x+4,-x+2) Ex3:rem(t^3+2t^2+3t+4,-t+2,t) - + ''' return GiacMethods['rem'](self,*args) @@ -14602,12 +14602,12 @@ cdef class GiacMethods_base: Help for remain: remain(Intg(a),Intg(b)) Euclidean remainder of 2 integers. - See also: 1/ iquo 2/ smod 3/ rem 4/ mod + See also: 1/ iquo 2/ smod 3/ rem 4/ mod Ex1:remain(125,15) Ex2:remain(125,41) Ex3:remain(-7,3) Ex4:remain(25+12*i,5+7*i) - + ''' return GiacMethods['remain'](self,*args) @@ -14616,10 +14616,10 @@ cdef class GiacMethods_base: Help for remove: remove(FncBool(f)||a,Lst(l)) Remove the occurrences a of l or the elements a such that f(a)=true. - See also: 1/ select 2/ suppress + See also: 1/ select 2/ suppress Ex1:remove(x->x>=5,[1,2,6,7]) Ex2:remove(5,[1,2,5,6,7,5]) - + ''' return GiacMethods['remove'](self,*args) @@ -14628,10 +14628,10 @@ cdef class GiacMethods_base: Help for reorder: reorder(Expr, LstVar) Reorders the variables in E according to the order of the 2nd argument. - See also: 1/ + See also: 1/ Ex1:reorder(-2) Ex2:reorder(x^2+2*x+y^2,[y,x]) - + ''' return GiacMethods['reorder'](self,*args) @@ -14640,10 +14640,10 @@ cdef class GiacMethods_base: Help for resample: resample(Lst(clip),[Intg(s),[Intg(q)]]) Returns a copy of the input audio clip resampled to the rate s (by default 44100), optionally with quality level q (from 0 to 4, by default 2). - See also: 1/ samplerate 2/ playsnd 3/ readwav 4/ writewav + See also: 1/ samplerate 2/ playsnd 3/ readwav 4/ writewav Ex1:resample(readwav("/some/file"),48000) Ex2:resample(readwav("/some/file"),48000,3) - + ''' return GiacMethods['resample'](self,*args) @@ -14652,12 +14652,12 @@ cdef class GiacMethods_base: Help for residue: residue(Expr,Var(v),Cplx(a)) Returns the residue in a of the expression with v as variable. - See also: 1/ series + See also: 1/ series Ex1:residue(1/z,z,0) Ex2:residue(5/z,z=0) Ex3:residue(cos(z)/(z*(z-b)),z,0) Ex4:residue(c/(z*(z-b)),z=b) - + ''' return GiacMethods['residue'](self,*args) @@ -14666,12 +14666,12 @@ cdef class GiacMethods_base: Help for resoudre: resoudre(Expr,[Var]) Solves a (or a set of) polynomial equation. - See also: 1/ linsolve 2/ proot 3/ fsolve 4/ csolve 5/ nSolve + See also: 1/ linsolve 2/ proot 3/ fsolve 4/ csolve 5/ nSolve Ex1:resoudre(x^2-3=1) Ex2:resoudre(x^3-3*y,y) Ex3:resoudre([y-z=0,z-x=0,x-y=0,x-1+y+z=0],[x,y,z]) Ex4:resoudre([x^2-y^2=0,x^2-z^2=0],[x,y,z]) - + ''' return GiacMethods['resoudre'](self,*args) @@ -14680,12 +14680,12 @@ cdef class GiacMethods_base: Help for resoudre_dans_C: resoudre_dans_C(LstEq,LstVar) Returns the list of complex solutions of an equation or a matrix where the rows are ℂ-solutions of a system of polynomial equations. - See also: 1/ cZeros 2/ solve 3/ fslove + See also: 1/ cZeros 2/ solve 3/ fslove Ex1:resoudre_dans_C(x^4-1,x) Ex2:resoudre_dans_C(x^4-y^4 and x+y=2,[x,y]) Ex3:resoudre_dans_C(x^4-y^4 and x+y=0 and x^2=2*x,[x,y]) Ex4:resoudre_dans_C(u*v-u=v and v^2=u,[u,v]) - + ''' return GiacMethods['resoudre_dans_C'](self,*args) @@ -14694,17 +14694,17 @@ cdef class GiacMethods_base: Help for resoudre_systeme_lineaire: resoudre_systeme_lineaire(LstLinEq,LstVar) Linear equations system solver. - See also: 1/ solve 2/ proot 3/ simult 4/ gaussjord 5/ pivot 6/ ref 7/ conjugate_gradient + See also: 1/ solve 2/ proot 3/ simult 4/ gaussjord 5/ pivot 6/ ref 7/ conjugate_gradient Ex1:resoudre_systeme_lineaire([x+y+z=1,x-y=2,2*x-z=3],[x,y,z]) Ex2:resoudre_systeme_lineaire([m*x+y=a,x+m*y=b],[x,y]) Ex3:resoudre_systeme_lineaire([x+y-z-1,x-y+1,x-y-z-1]%2,[x,y,z]) Ex4:resoudre_systeme_lineaire([[3,4],[1,2]],[0,1]) - Ex5: p,l,u:=lu([[3,4],[1,2]]); linsolve(p,l,u,[0,1]) + Ex5: p,l,u:=lu([[3,4],[1,2]]); linsolve(p,l,u,[0,1]) Ex6:resoudre_systeme_lineaire([2*x+y+z=1,x+y+2*z=1,x+2*y+z=4],[x,y,z]) Ex7:resoudre_systeme_lineaire([[2,1,1],[1,1,2],[1,2,1]],[1,1,4]) Ex8: p,l,u:=lu([[2,1,1],[1,1,2],[1,2,1]]);linsolve(p,l,u,[1,1,4]) Ex9: a:=[[100,2],[2,100]];linsolve(evalf(a),[0,1]); - + ''' return GiacMethods['resoudre_systeme_lineaire'](self,*args) @@ -14713,10 +14713,10 @@ cdef class GiacMethods_base: Help for resultant: resultant(Poly,Poly,Var) Resultant of two polynomials. - See also: 1/ sylvester 2/ gcd + See also: 1/ sylvester 2/ gcd Ex1:resultant(x^2-1,x^3-1,x) Ex2:resultant(x^3-p*x+q,3*x^2-p,x) - + ''' return GiacMethods['resultant'](self,*args) @@ -14729,7 +14729,7 @@ cdef class GiacMethods_base: Ex2: L:=[1,2,3,4];L:=revlist(L) Ex3: L:=[1,2,3,4];L.revlist() Ex4: L:=[1,2,3,4];L.reverse() - + ''' return GiacMethods['reverse'](self,*args) @@ -14738,9 +14738,9 @@ cdef class GiacMethods_base: Help for reverse_graph: reverse_graph(Graph(G)) Returns the copy of G with the directions of all edges reversed. - See also: 1/ digraph + See also: 1/ digraph Ex1:reverse_graph(digraph(%{[1,2],[1,3],[2,3]%})) - + ''' return GiacMethods['reverse_graph'](self,*args) @@ -14749,9 +14749,9 @@ cdef class GiacMethods_base: Help for reverse_rsolve: reverse_rsolve(Vect(v)) If v=[v_0 ... v_(2n-1)], returns [b_n,...,b_0] such that b_n*v_{n+k}+...+b_0*v_k=0 for k=0..n-1. - See also: 1/ rsolve + See also: 1/ rsolve Ex1:reverse_rsolve([1,-1,3,3]) - + ''' return GiacMethods['reverse_rsolve'](self,*args) @@ -14760,9 +14760,9 @@ cdef class GiacMethods_base: Help for revert: revert(Expr) Returns the inverse expansion of a series expansion at 0. - See also: 1/ series + See also: 1/ series Ex1:revert(x+x^2+x^4) - + ''' return GiacMethods['revert'](self,*args) @@ -14771,8 +14771,8 @@ cdef class GiacMethods_base: Help for revlex: revlex(Opt) Option of the gbasis or greduce command to specify an order for monomials (complete degree then inverse lexicographic order). - See also: 1/ gbasis 2/ greduce - + See also: 1/ gbasis 2/ greduce + ''' return GiacMethods['revlex'](self,*args) @@ -14785,7 +14785,7 @@ cdef class GiacMethods_base: Ex2: L:=[1,2,3,4];L:=revlist(L) Ex3: L:=[1,2,3,4];L.revlist() Ex4: L:=[1,2,3,4];L.reverse() - + ''' return GiacMethods['revlist'](self,*args) @@ -14794,14 +14794,14 @@ cdef class GiacMethods_base: Help for rgb: rgb(Opt) Option of the display (or affichage) command to defined colors RGB. - See also: 1/ display 2/ filled + See also: 1/ display 2/ filled Ex1: redcolor:=rgb(0.99,0,0);display(square(0,2+i),filled+redcolor) Ex2: greencolor:=rgb(0,0.99,0);display(square(0,2+i),filled+greencolor) Ex3: bluecolor:=rgb(0,0,0.99);display(square(0,2+i),filled+bluecolor) Ex4: greycolor:=rgb(0.5,0.5,0.5);display(square(0,2+i),filled+greycolor) Ex5: F:=display(square(0,2+i),filled+rgb(rand(),rand(),rand())) Ex6: L:=rand(),rand(),rand();affichage(square(0,2+i),rgb(L)+rempli);legend(0.2,[L]) - + ''' return GiacMethods['rgb'](self,*args) @@ -14810,13 +14810,13 @@ cdef class GiacMethods_base: Help for rhombus: rhombus(Pnt(A)||Cplx,Pnt(B)||Cplx,Angle(a)||Pnt(P)||Lst(P,a)),[Var(C)],[Var(D)]) Returns and draws the rhombus ABCD such that the angle (AB,AD)=a (or in the plane ABP angle(AB,AD)=angle(AB,AP) or such that angle(AB,AD)=a). - See also: 1/ square 2/ quadrilateral + See also: 1/ square 2/ quadrilateral Ex1:rhombus(i,1+i,pi/4) Ex2:rhombus(i,1+i,pi/4,C,D) Ex3:rhombus(point(0,0,0),point(3,3,3),[point(0,0,3),pi/4]) Ex4:rhombus(point(0,0,0),point(3,3,3),point(0,0,3),C,D) Ex5:rhombus(point(0,0,0),point(3,3,3),[point(0,0,3),pi/4],C,D) - + ''' return GiacMethods['rhombus'](self,*args) @@ -14825,10 +14825,10 @@ cdef class GiacMethods_base: Help for rhombus_point: rhombus_point(Opt) Option of the display command for a point. - See also: 1/ display + See also: 1/ display Ex1: F:=display(point(2+1.5*i),point_point) Ex2: F:=display(point(2+1.5*i),rhombus_point) - + ''' return GiacMethods['rhombus_point'](self,*args) @@ -14837,12 +14837,12 @@ cdef class GiacMethods_base: Help for rhs: rhs(Equal(a=b) or Interval(a..b) or Str,Intg) Returns the right part of an equality, of an interval, of a list or of a string. - See also: 1/ left 2/ mid 3/ tail 4/ head + See also: 1/ left 2/ mid 3/ tail 4/ head Ex1:rhs(a=b) Ex2:rhs(x^2+1=5) Ex3:rhs(1..5) Ex4:rhs("abcdefg",3) - + ''' return GiacMethods['rhs'](self,*args) @@ -14851,9 +14851,9 @@ cdef class GiacMethods_base: Help for riemann_window: riemann_window(Lst,[Interval(n1..n2)]) Applies the Riemann windowing function to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ bartlett_hann_window 12/ triangle_window 13/ tukey_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ bartlett_hann_window 12/ triangle_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(riemann_window(randvector(1000,0..1))) - + ''' return GiacMethods['riemann_window'](self,*args) @@ -14862,12 +14862,12 @@ cdef class GiacMethods_base: Help for right: right(Equal(a=b) or Interval(a..b) or Str,Intg) Returns the right part of an equality, of an interval, of a list or of a string. - See also: 1/ left 2/ mid 3/ tail 4/ head + See also: 1/ left 2/ mid 3/ tail 4/ head Ex1:right(a=b) Ex2:right(x^2+1=5) Ex3:right(1..5) Ex4:right("abcdefg",3) - + ''' return GiacMethods['right'](self,*args) @@ -14876,14 +14876,14 @@ cdef class GiacMethods_base: Help for right_rectangle: right_rectangle(Opt) Option of the plotarea command and of the area command. - See also: 1/ plotarea 2/ area + See also: 1/ plotarea 2/ area Ex1: plotarea(x^2,x=0..1,5,trapezoid) Ex2: plotarea(x^2,x=0..1,5,middle_point) Ex3: plotarea(x^2,x=0..1,5,right_rectangle) Ex4: plotarea(x^2,x=0..1,5,left_rectangle) Ex5: area(x^2,x=0..1,5,middle_point) Ex6: area(x^2,x=0..1,5,trapezoid) - + ''' return GiacMethods['right_rectangle'](self,*args) @@ -14892,13 +14892,13 @@ cdef class GiacMethods_base: Help for right_triangle: right_triangle((Pnt(A) or Cplx),(Pnt(B) or Cplx),(Real(k) or Pnt(P) or Lst(P,k)),[Var(C)]) Draws the A_rectangular triangle ABC with AC=k*AB (or in the plane ABP AC=AP or AC=k*AB). - See also: 1/ triangle + See also: 1/ triangle Ex1:right_triangle(1,i,tan(pi/3)) Ex2:right_triangle(1,i,1/2,C) Ex3:right_triangle(point(0,0,0),point(3,3,3),point(0,0,3)) Ex4:right_triangle(point(0,0,0),point(3,3,3),[point(0,0,3),1/2],C) Ex5:right_triangle(point(0,0,0),point(3,3,3),[point(0,0,3),1/2],C) - + ''' return GiacMethods['right_triangle'](self,*args) @@ -14907,11 +14907,11 @@ cdef class GiacMethods_base: Help for risch: risch(Expr,[Var]) Returns a primitive of the expression calculated with the Risch algorithm. - See also: 1/ int + See also: 1/ int Ex1:risch(ln(x),x) Ex2:risch(ln(x)) Ex3:risch(exp(x^2),x) - + ''' return GiacMethods['risch'](self,*args) @@ -14920,9 +14920,9 @@ cdef class GiacMethods_base: Help for rm_a_z: rm_a_z(NULL) Erases all the variable name made up of only one lowercase a..z character. - See also: 1/ rm_all_vars + See also: 1/ rm_all_vars Ex1:rm_a_z() - + ''' return GiacMethods['rm_a_z'](self,*args) @@ -14931,9 +14931,9 @@ cdef class GiacMethods_base: Help for rm_all_vars: rm_all_vars(NULL) Erases all the variable names. - See also: 1/ rm_a_z + See also: 1/ rm_a_z Ex1:rm_all_vars() - + ''' return GiacMethods['rm_all_vars'](self,*args) @@ -14942,9 +14942,9 @@ cdef class GiacMethods_base: Help for rmbreakpoint: rmbreakpoint(Intg) Removes a breakpoint. - See also: 1/ breakpoint + See also: 1/ breakpoint Ex1:rmbreakpoint(1) - + ''' return GiacMethods['rmbreakpoint'](self,*args) @@ -14953,9 +14953,9 @@ cdef class GiacMethods_base: Help for rmmod: rmmod(Str(pwd)) Removes the installed dynamic libraries. - See also: 1/ lsmod 2/ insmod + See also: 1/ lsmod 2/ insmod Ex1:rmmod("/home/parisse/giac/src/libprogfr.so") - + ''' return GiacMethods['rmmod'](self,*args) @@ -14964,9 +14964,9 @@ cdef class GiacMethods_base: Help for rmwatch: rmwatch(Var) Clears a variables from the table of displayed variables in step/step. - See also: 1/ watch + See also: 1/ watch Ex1:rmwatch(a) - + ''' return GiacMethods['rmwatch'](self,*args) @@ -14975,11 +14975,11 @@ cdef class GiacMethods_base: Help for romberg: romberg(Expr(f(x)),Var(x),Real(a),Real(b)) Returns the approximate value of integrate(f(x),x,a,b) by Romberg's method. - See also: 1/ integrate 2/ gaussquad + See also: 1/ integrate 2/ gaussquad Ex1:romberg(exp(x^2),x,0,1) Ex2:romberg(x^2,x,0,1) Ex3:romberg(exp(-x^2),x,-1,1) - + ''' return GiacMethods['romberg'](self,*args) @@ -14988,12 +14988,12 @@ cdef class GiacMethods_base: Help for rombergm: rombergm(Opt) Option of the area command. - See also: 1/ area + See also: 1/ area Ex1: area(x^2,x=0..1,5,simpson) Ex2: area(x^2,x=0..1,5,rombergt) Ex3: area(x^2,x=0..1,5,rombergm) Ex4:rombergm(area(x^2,x=0..1,5,gauss15)) - + ''' return GiacMethods['rombergm'](self,*args) @@ -15002,12 +15002,12 @@ cdef class GiacMethods_base: Help for rombergt: rombergt(Opt) Option of the area command. - See also: 1/ area + See also: 1/ area Ex1: area(x^2,x=0..1,5,simpson) Ex2: area(x^2,x=0..1,5,rombergt) Ex3: area(x^2,x=0..1,5,rombergm) Ex4:rombergt(area(x^2,x=0..1,5,gauss15)) - + ''' return GiacMethods['rombergt'](self,*args) @@ -15016,12 +15016,12 @@ cdef class GiacMethods_base: Help for rond: rond(Real(r),[Real(a)],[Real(b)]) Draws a circle (resp a arc) with radius r (resp and with angle (0,a) or (a,b)), tangent at the turtle position. - See also: 1/ disque + See also: 1/ disque Ex1: rond 30 Ex2:rond(40) Ex3:rond(40,90) Ex4:rond(40,10,100) - + ''' return GiacMethods['rond'](self,*args) @@ -15030,12 +15030,12 @@ cdef class GiacMethods_base: Help for root: root(Expr(a),Expr(b)) Returns b^(1/a) (root(2,3)=sqrt(3)). - See also: 1/ + See also: 1/ Ex1:root(3,2) Ex2:root(1/3,2) Ex3:root(3,1.2) Ex4:root(3.2,1.2) - + ''' return GiacMethods['root'](self,*args) @@ -15044,11 +15044,11 @@ cdef class GiacMethods_base: Help for rootof: rootof(LstPoly(P),LstPoly(Q)) Polynomial in terms of a root of an irreducible polynomial on Q. Returns P(a) with a the greatest root of Q. - See also: 1/ + See also: 1/ Ex1: normal(1/rootof([1,0],[1,0,10,0,1])) Ex2: normal(1/rootof([1,0,0],[1,1,0,-1])) - Ex3: rootof(x^4+x+1):='j'; normal(j^5); - + Ex3: rootof(x^4+x+1):='j'; normal(j^5); + ''' return GiacMethods['rootof'](self,*args) @@ -15057,10 +15057,10 @@ cdef class GiacMethods_base: Help for roots: roots(Poly,[Var]) Returns a matrix having 2 columns and where the rows are the roots of the polynomial with their multiplicity (for 1 variable). - See also: 1/ proot 2/ cZeros + See also: 1/ proot 2/ cZeros Ex1:roots(t^3-1,t) Ex2:roots(x^5-2*x^4+x^3) - + ''' return GiacMethods['roots'](self,*args) @@ -15069,7 +15069,7 @@ cdef class GiacMethods_base: Help for rotate: rotate(Lst||Str(L),[Intg(n)]) Returns the list where the last element [or the tail beginning with the n-th element] is moved to the first element (by default n=-1);L:=rotate(L,n) or L.rotate(n). - See also: 1/ tail 2/ mid 3/ shift + See also: 1/ tail 2/ mid 3/ shift Ex1:rotate([0,1,2,3],2) Ex2:rotate([[1,2,3],[4,5,6],[7,8,9]]) Ex3:rotate([0,1,2,3,4]) @@ -15078,7 +15078,7 @@ cdef class GiacMethods_base: Ex6: L:=[0,1,2,3,4];L.rotate() Ex7: L:=[0,1,2,3];L:=rotate([0,1,2,3],2) Ex8: L:=[0,1,2,3];L.rotate(2) - + ''' return GiacMethods['rotate'](self,*args) @@ -15087,13 +15087,13 @@ cdef class GiacMethods_base: Help for rotation: rotation((Pnt(B) or Cplx or Dr3),Angle(a1),(Pnt(A) or Curve)) rotation(B,a1,A) (resp rotation(d,a1,A)) is the transformation of A by rotation with center B (resp of axis d) and angle a1. - See also: 1/ translation 2/ reflection + See also: 1/ translation 2/ reflection Ex1:rotation(point(1+i),pi/2,point(i)) Ex2:rotation(1+i,pi/3,line(i,1)) Ex3:rotation(line(x=y,y=z),pi/2,point(1,-1,2)) Ex4: r:=rotation(1+i,pi/2);r(i) Ex5: r:=rotation(line(x=y,y=z),pi/2);r(point(1,-1,2)) - + ''' return GiacMethods['rotation'](self,*args) @@ -15102,13 +15102,13 @@ cdef class GiacMethods_base: Help for round: round(Real or Cplx,[Intg(n)]) Rounds the real or complex to the nearest integer (resp the nearest decimal number) or to the nearest element of ℤ[i], (resp with n decimals). - See also: 1/ floor 2/ ceil + See also: 1/ floor 2/ ceil Ex1:round(2.5) Ex2:round(-2.4) Ex3:round(-2.5+i*2.4) Ex4:round(1.237,2) Ex5:round(sqrt(2)+i*sqrt(5),4) - + ''' return GiacMethods['round'](self,*args) @@ -15117,11 +15117,11 @@ cdef class GiacMethods_base: Help for row: row(Mtrx(A),Intg(n)||Interval(n1..n2)) Returns row n or the sequence of the rows n1..n2 of the matrix A, or optional argument of count,count_eq,count_inf,count_sup. - See also: 1/ col 2/ count 3/ count_eq 4/ count_inf 5/ count_sup + See also: 1/ col 2/ count 3/ count_eq 4/ count_inf 5/ count_sup Ex1:row([[1,2,3],[4,5,6],[7,8,9]],1) Ex2:row([[1,2,3],[4,5,6],[7,8,9]],0..1) Ex3: count_eq(3,[[1,2,3],[4,3,2],[3,2,1]],row) - + ''' return GiacMethods['row'](self,*args) @@ -15130,9 +15130,9 @@ cdef class GiacMethods_base: Help for rowAdd: rowAdd(Mtrx(A),Intg(n1),Intg(n2)) Returns the matrix obtained from A by replacing the n2-th row by the sum of the n1-th and n2-th rows. - See also: 1/ rowSwap + See also: 1/ rowSwap Ex1:rowAdd([[1,2],[3,4],[5,6]],1,2) - + ''' return GiacMethods['rowAdd'](self,*args) @@ -15141,10 +15141,10 @@ cdef class GiacMethods_base: Help for rowDim: rowDim(Mtrx) Number of rows of a matrix. - See also: 1/ ncols + See also: 1/ ncols Ex1:rowDim([[1,2,3],[4,5,6]]) Ex2:rowDim([[1,2],[3,4],[5,6]]) - + ''' return GiacMethods['rowDim'](self,*args) @@ -15153,10 +15153,10 @@ cdef class GiacMethods_base: Help for rowNorm: rowNorm(Vect or Mtrx) Returns the max of the l1_norm of the rows of a matrix: rowNorm(a_{j,k})=max_j(sum_k(|a_{j,k}|)). - See also: 1/ norm + See also: 1/ norm Ex1:rowNorm([[1,2],[3,-4]]) Ex2:rowNorm([[1,2,3,-4],[-5,3,2,1]]) - + ''' return GiacMethods['rowNorm'](self,*args) @@ -15165,9 +15165,9 @@ cdef class GiacMethods_base: Help for rowSwap: rowSwap(Mtrx(A),Intg(n1),Intg(n2)) Returns the matrix obtained from A by swapping the n1-th row and the n2-th row. - See also: 1/ rowAdd 2/ colSwap + See also: 1/ rowAdd 2/ colSwap Ex1:rowSwap([[1,2],[3,4],[5,6]],1,2) - + ''' return GiacMethods['rowSwap'](self,*args) @@ -15176,10 +15176,10 @@ cdef class GiacMethods_base: Help for rowdim: rowdim(Mtrx) Number of rows of a matrix. - See also: 1/ ncols + See also: 1/ ncols Ex1:rowdim([[1,2,3],[4,5,6]]) Ex2:rowdim([[1,2],[3,4],[5,6]]) - + ''' return GiacMethods['rowdim'](self,*args) @@ -15188,10 +15188,10 @@ cdef class GiacMethods_base: Help for rownorm: rownorm(Vect or Mtrx) Returns the max of the l1_norm of the rows of a matrix: rowNorm(a_{j,k})=max_j(sum_k(|a_{j,k}|)). - See also: 1/ norm + See also: 1/ norm Ex1:rownorm([[1,2],[3,-4]]) Ex2:rownorm([[1,2,3,-4],[-5,3,2,1]]) - + ''' return GiacMethods['rownorm'](self,*args) @@ -15200,10 +15200,10 @@ cdef class GiacMethods_base: Help for rowspace: rowspace(Mtrx(A), [Var(d)]) Returns a matrix where the rows are a basis of the vector space generated by the rows of the matrix A [d is the dimension of this space]. - See also: 1/ colspace + See also: 1/ colspace Ex1:rowspace([[1,2,3],[1,2,3],[1,2,4],[1,2,5]]) Ex2:rowspace([[1,2,3],[1,3,6],[2,5,9]],d) - + ''' return GiacMethods['rowspace'](self,*args) @@ -15212,9 +15212,9 @@ cdef class GiacMethods_base: Help for rowswap: rowswap(Mtrx(A),Intg(n1),Intg(n2)) Returns the matrix obtained from A by swapping the n1-th row and the n2-th row. - See also: 1/ rowAdd 2/ colSwap + See also: 1/ rowAdd 2/ colSwap Ex1:rowswap([[1,2],[3,4],[5,6]],1,2) - + ''' return GiacMethods['rowswap'](self,*args) @@ -15223,12 +15223,12 @@ cdef class GiacMethods_base: Help for rref: rref(Mtrx(M),[Intg(k)]||Opt) Row reduction to echelon form of AX=b (M=A|(-b)) [Reduction on columns 0..k-1]. - See also: 1/ ker 2/ image 3/ det 4/ Rref 5/ pivot 6/ ref 7/ keep_pivot + See also: 1/ ker 2/ image 3/ det 4/ Rref 5/ pivot 6/ ref 7/ keep_pivot Ex1:rref([[3,1,-2],[3,2,2]]) Ex2:rref([[2,1,1,-1],[1,1,2,-1],[1,2,1,-4]]) Ex3:rref([[2,1,1,-1],[1,1,2,-1],[1,2,1,-4]],2) Ex4:rref([[1,1,0,0,-a1],[0,1,1,0,-a2],[0,0,1,1,-a3],[1,0,0,1,-a4]],keep_pivot) - + ''' return GiacMethods['rref'](self,*args) @@ -15237,13 +15237,13 @@ cdef class GiacMethods_base: Help for rsolve: rsolve((Expr or LstExpr),(Var or LstVar),(InitVal or LstInitVal)) Gives the value of a recurrent sequence or of a system of recurrent sequences. - See also: 1/ seqsolve 2/ plotseq 3/ tableseq 4/ reverse_rsolve + See also: 1/ seqsolve 2/ plotseq 3/ tableseq 4/ reverse_rsolve Ex1:rsolve(u(n+1)=2*u(n)+n,u(n),u(0)=1) Ex2:rsolve(u(n+1)=2*u(n)+n,u(n),u(1)^2=1) Ex3:rsolve(u(n+1)=(u(n)-1)/(u(n)-2),u(n),u(0)=4) Ex4:rsolve(u(n+2)=u(n)+2*u(n+1)+n+1,u(n),[u(0)=0,u(1)=1]) Ex5:rsolve([u(n+1)=3*v(n)+u(n),v(n+1)=v(n)+u(n)],[u(n),v(n)],[u(0)=1,v(0)=2]) - + ''' return GiacMethods['rsolve'](self,*args) @@ -15252,10 +15252,10 @@ cdef class GiacMethods_base: Help for same: same(Expr,Expr) Equality test. - See also: 1/ + See also: 1/ Ex1:same(a,b) Ex2:same((2-1)^2,2^2-2*2+1) - + ''' return GiacMethods['same'](self,*args) @@ -15264,14 +15264,14 @@ cdef class GiacMethods_base: Help for sample: sample(Lst(L),Intg(n)) sample(L,n)= rand(n,L)=list of the n extracted elements of L without replacement. - See also: 1/ rand + See also: 1/ rand Ex1:sample([1,2,3,4,5,6],6) Ex2:sample([1,2,3,4,5,6],3) Ex3:sample(["r","r","r","b","n"],3) Ex4: L:=[1,2,3,4,5,6];L:=sample(L,3) Ex5: L:=[1,2,3,4,5,6];L.sample(3) - Ex6: - + Ex6: + ''' return GiacMethods['sample'](self,*args) @@ -15280,9 +15280,9 @@ cdef class GiacMethods_base: Help for samplerate: samplerate(Lst(clip)) Returns the sampling rate of an audio clip, in Hertz. - See also: 1/ bit_depth 2/ channels 3/ channel_data 4/ duration + See also: 1/ bit_depth 2/ channels 3/ channel_data 4/ duration Ex1:samplerate(readwav("/some/file")) - + ''' return GiacMethods['samplerate'](self,*args) @@ -15291,13 +15291,13 @@ cdef class GiacMethods_base: Help for sans_factoriser: sans_factoriser(Opt.) Option of the plotimplicit command. - See also: 1/ plotimplicit + See also: 1/ plotimplicit Ex1: plotimplicit(x^2+y^2-1,x,y,unfactored) Ex2: plotimplicit(x^2+y^2-1,[x,y],unfactored) Ex3: plotimplicit(x^2+y^2+z^2-1,x,y,z,xstep=0.2,ystep=0.2,zstep=0.2,unfactored) Ex4: plotimplicit(x^2+y^2+z^2-1,[x,y,z],xstep=0.2,ystep=0.2,zstep=0.2,unfactored) Ex5: plotimplicit(x^2+y^2+z^2-1,x=0..1,y=0..1,z=0..1,xstep=0.2,ystep=0.2,zstep=0.2,unfactored) - + ''' return GiacMethods['sans_factoriser'](self,*args) @@ -15306,10 +15306,10 @@ cdef class GiacMethods_base: Help for saute: saute(NULL or Real(n)) The turtle takes n steps forward without traces (by default n=10). - See also: 1/ avance 2/ recule + See also: 1/ avance 2/ recule Ex1: saute 30 Ex2:saute(30) - + ''' return GiacMethods['saute'](self,*args) @@ -15318,11 +15318,11 @@ cdef class GiacMethods_base: Help for scalarProduct: scalarProduct(Vect(v1),Vect(v2)) Scalar product. - See also: 1/ * 2/ cross 3/ .* 4/ hadamard + See also: 1/ * 2/ cross 3/ .* 4/ hadamard Ex1:scalarProduct([1,2],[3,4]) Ex2:scalarProduct([3,2,4],[3,2,4]) Ex3:scalarProduct([[1,2],[3,4]],[[3,2],[4,5]]) - + ''' return GiacMethods['scalarProduct'](self,*args) @@ -15331,11 +15331,11 @@ cdef class GiacMethods_base: Help for scalar_product: scalar_product(Vect(v1),Vect(v2)) Scalar product. - See also: 1/ * 2/ cross 3/ .* 4/ hadamard + See also: 1/ * 2/ cross 3/ .* 4/ hadamard Ex1:scalar_product([1,2],[3,4]) Ex2:scalar_product([3,2,4],[3,2,4]) Ex3:scalar_product([[1,2],[3,4]],[[3,2],[4,5]]) - + ''' return GiacMethods['scalar_product'](self,*args) @@ -15344,9 +15344,9 @@ cdef class GiacMethods_base: Help for scatterplot: scatterplot(Mtrx) Draws for k=0..nrows, the points (xk,yk) where xk=element row k column 0 and yk=element row k column j (j=1..ncols). - See also: 1/ polygonplot 2/ polygonscatterplot 3/ listplot + See also: 1/ polygonplot 2/ polygonscatterplot 3/ listplot Ex1:scatterplot([[1,2,3],[2,0,1],[-1,2,3]]) - + ''' return GiacMethods['scatterplot'](self,*args) @@ -15355,10 +15355,10 @@ cdef class GiacMethods_base: Help for schur: schur(Mtrx(A)) Matrix reduction to Hessenberg form. Returns [P,B] such that B=inv(P)*A*P:SCHUR(A)=hessenberg(A,-1). - See also: 1/ hessenberg + See also: 1/ hessenberg Ex1:schur([[1,2,3],[4,5,6],[7,8,1]]) Ex2:schur([[1,2,3,4],[4,5,6,7],[7,8,9,0],[0,1,2,3]]) - + ''' return GiacMethods['schur'](self,*args) @@ -15367,9 +15367,9 @@ cdef class GiacMethods_base: Help for sec: sec(Expr) Secant: sec(x)=1/cos(x). - See also: 1/ cos 2/ asec + See also: 1/ cos 2/ asec Ex1:sec(pi/3) - + ''' return GiacMethods['sec'](self,*args) @@ -15378,14 +15378,14 @@ cdef class GiacMethods_base: Help for secant_solver: secant_solver(Opt) Argument for fsolve giving the method for solving a numerical equation. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve(cos(x)=x,x,0..1,bisection_solver) Ex2: fsolve(cos(x)=x,x,0..1,brent_solver) Ex3: fsolve(cos(x)=x,x,0..1,falsepos_solver) Ex4: fsolve(cos(x)=x,x,0,newton_solver) Ex5: fsolve(cos(x)=x,x,0,secant_solver) Ex6: fsolve(cos(x)=x,x,0,steffenson_solver) - + ''' return GiacMethods['secant_solver'](self,*args) @@ -15394,7 +15394,7 @@ cdef class GiacMethods_base: Help for segment: segment((Pnt or Cplx or Lst([xM,yM])),(Pnt or Cplx or Lst([xN,yN]),[Var],[Var] or Opt) segment(A,B) draws the segment AB and segment([xM,yM],[xN,yN]) draws the vector as origin [xM,yM], of coordinates [xN,yN] (i.e draws segment(M,point(M+N)) or Option of the arc command. - See also: 1/ line 2/ arc + See also: 1/ line 2/ arc Ex1:segment(i,1+i) Ex2:segment(point(i),point(1+i)) Ex3:segment(point(i),point(1+i),A,B) @@ -15402,7 +15402,7 @@ cdef class GiacMethods_base: Ex5:segment([-1,0],point([-1,0]+[2,1])) Ex6: arc(i,1,pi/4,segment) Ex7: affichage( arc(i,1,pi/4,segment),1+rempli) - + ''' return GiacMethods['segment'](self,*args) @@ -15411,9 +15411,9 @@ cdef class GiacMethods_base: Help for seidel_spectrum: seidel_spectrum(Graph(G)) Returns the Seidel spectrum of G as a list of lists with two elements, each containing an eigenvalue and its multiplicity. - See also: 1/ graph_spectrum + See also: 1/ graph_spectrum Ex1:seidel_spectrum(graph("clebsch")) - + ''' return GiacMethods['seidel_spectrum'](self,*args) @@ -15422,9 +15422,9 @@ cdef class GiacMethods_base: Help for seidel_switch: seidel_switch(Graph(G),Lst(V)) Returns a copy of G in which the edges between vertices in list V and vertices not in V are inverted (replaced with a set of edges from V to other vertices which are not present in G). - See also: 1/ neighbors 2/ graph_complement + See also: 1/ neighbors 2/ graph_complement Ex1:seidel_switch(cycle_graph(5),[1,2]) - + ''' return GiacMethods['seidel_switch'](self,*args) @@ -15433,10 +15433,10 @@ cdef class GiacMethods_base: Help for select: select(FncBool(f),Lst(l)) Selects the elements e of l such that f(e)=true. - See also: 1/ remove 2/ range + See also: 1/ remove 2/ range Ex1:select(x->x>=5,[1,2,6,7]) Ex2:select(x->isprime(x),range(20)).^2 - + ''' return GiacMethods['select'](self,*args) @@ -15445,9 +15445,9 @@ cdef class GiacMethods_base: Help for semi_augment: semi_augment(Mtrx(A),Mtrx(B)) Returns a matrix made with A and B, with n1+n2 rows and p columns if dim(A)=[n1,p] and dim(B)=[n2,p]. - See also: 1/ augment + See also: 1/ augment Ex1:semi_augment([[68,-21],[56,59],[1,2]],[[68,-21],[56,59]]) - + ''' return GiacMethods['semi_augment'](self,*args) @@ -15455,8 +15455,8 @@ cdef class GiacMethods_base: r'''From Giac's documentation: Help for seq: seq(Expr(Xpr),Var(Var)=Int(a..b),[Real(p)]||Expr(Xpr),Var(Var),Real(a),Real(b),[Real(p)]) - Returns the sequence (2 or 3 arg) or the list (4 or 5 arg) obtained when var goes from a to b (step p) in Xpr (or the Xpr is repeated n times or returns the sequence of reals from a to b (step p)). And also seq(expression,variable,list) is equivalent to map(list,unapply(expression,variable)) - See also: 1/ $ 2/ makelist 3/ range 4/ map 5/ unapply + Returns the sequence (2 or 3 arg) or the list (4 or 5 arg) obtained when var goes from a to b (step p) in Xpr (or the Xpr is repeated n times or returns the sequence of reals from a to b (step p)). And also seq(expression,variable,list) is equivalent to map(list,unapply(expression,variable)) + See also: 1/ $ 2/ makelist 3/ range 4/ map 5/ unapply Ex1:seq(0.3,4) Ex2:seq(t,4) Ex3:seq(0,0) @@ -15466,9 +15466,9 @@ cdef class GiacMethods_base: Ex7:seq(2^k,k,0,8) Ex8:seq(2^k,k,0,8,2) Ex9:seq(x^3,x,[1,2,3]) - Ex10: [seq(0.3..2,0.2)] + Ex10: [seq(0.3..2,0.2)] Ex11: a:=(1,2,3);eval(seq(a,4)) - + ''' return GiacMethods['seq'](self,*args) @@ -15477,11 +15477,11 @@ cdef class GiacMethods_base: Help for seqplot: seqplot(Expr(f(Var)),Var=[a,xm,xM],Intg(p)) For seeing the pth terms of the sequence u(0)=a,u(n)=f(u(n-1)). - See also: 1/ seqsolve 2/ rsolve + See also: 1/ seqsolve 2/ rsolve Ex1:seqplot(sqrt(2+x),6,5) Ex2:seqplot(sqrt(2+t),t=6,5) Ex3:seqplot(sqrt(2+x),x=[6,1,7],5,affichage=epaisseur_ligne_2) - + ''' return GiacMethods['seqplot'](self,*args) @@ -15490,14 +15490,14 @@ cdef class GiacMethods_base: Help for seqsolve: seqsolve((Expr or LstExpr),(Var or LstVar),(InitVal or LstInitVal)) Gives the value of a recurrent sequence (u_{n+1}=f(u_n) or u_{n+k}=f(u_n,u_{n+1}...u_{n+k-1})) or of a system of recurrent sequences. - See also: 1/ rsolve 2/ plotseq 3/ tableseq + See also: 1/ rsolve 2/ plotseq 3/ tableseq Ex1:seqsolve(2x+n,[x,n],1) Ex2:seqsolve(2x+n*3^n,[x,n],1) Ex3:seqsolve(x+y,[x,y,n],[1,1]) Ex4:seqsolve(x+2*y+n+1,[x,y,n],[0,1]) Ex5:seqsolve([x+2*y,n+1+x],[x,y,n],[0,1]) Ex6:seqsolve([x+2*y+n+1,x],[x,y,n],[0,1]) - + ''' return GiacMethods['seqsolve'](self,*args) @@ -15506,9 +15506,9 @@ cdef class GiacMethods_base: Help for sequence_graph: sequence_graph(Lst(L)) Returns an undirected graph with the degree sequence equal to the list L. - See also: 1/ degree_sequence 2/ is_graphic_sequence + See also: 1/ degree_sequence 2/ is_graphic_sequence Ex1:sequence_graph(degree_sequence(sequence_graph([3,2,4,2,3,4,5,7]))) - + ''' return GiacMethods['sequence_graph'](self,*args) @@ -15517,13 +15517,13 @@ cdef class GiacMethods_base: Help for series: series(Expr,Equal(var=limit_point),[Order],[Dir(1,0,-1)]) Series expansion at finite or infinite points. - See also: 1/ limit 2/ taylor 3/ pad 4/ polynom 5/ truncate + See also: 1/ limit 2/ taylor 3/ pad 4/ polynom 5/ truncate Ex1:series(sin(x)/x,x=0) Ex2:series(sin(x),x=0,6,polynom) Ex3:series(ln(x+x^2)-ln(x),x=0,1) Ex4:series((x^4+x+2)/(x^2+1),x=0,5) Ex5: series("h",8); ln(1+h); - Ex6:series(1/(1+x+y),[x,y],[0,0],5) + Ex6:series(1/(1+x+y),[x,y],[0,0],5) Ex7:series(sin(x*y),[x,y],[1,pi/2],3) Ex8:series(sin((1+h*t)*(pi/2+k*t)),t=0,3,polynom)(t=1) Ex9:series(y^2/x^3,[x,y],[1,-1],3) @@ -15531,7 +15531,7 @@ cdef class GiacMethods_base: Ex11:series(subst(sin(x+y)+cos(y*x),[x,y],h*[x,y]),h=0,6,polynom) Ex12:series(subst(sin(x+y)+cos(y*x),[x,y],h*[x,y]),h=0,6,polynom)(h=1) Ex13: truncate(series(sin(x),x=0,6),6) - + ''' return GiacMethods['series'](self,*args) @@ -15540,9 +15540,9 @@ cdef class GiacMethods_base: Help for set_edge_attribute: set_edge_attribute(Graph(G),Edge(e),Seq(tag1=value1,tag2=value2,..)) Stores the attributes to edge e and returns the modified copy of G. - See also: 1/ discard_edge_attribute 2/ get_edge_attribute 3/ list_edge_attributes + See also: 1/ discard_edge_attribute 2/ get_edge_attribute 3/ list_edge_attributes Ex1:set_edge_attribute(cycle_graph(3),[1,2],"cost"=12.4) - + ''' return GiacMethods['set_edge_attribute'](self,*args) @@ -15551,9 +15551,9 @@ cdef class GiacMethods_base: Help for set_edge_weight: set_edge_weight(Graph(G),Edge(e),Real(w)) Sets the weight of the edge e in the weighted graph G to w and returns the modified copy of G. - See also: 1/ is_weighted 2/ get_edge_weight 3/ make_weighted 4/ weight_matrix + See also: 1/ is_weighted 2/ get_edge_weight 3/ make_weighted 4/ weight_matrix Ex1:set_edge_weight(graph(%{[1,2],[2,3]%}),[1,2],5) - + ''' return GiacMethods['set_edge_weight'](self,*args) @@ -15562,9 +15562,9 @@ cdef class GiacMethods_base: Help for set_graph_attribute: set_graph_attribute(Graph(G),Seq(tag1=value1,tag2=value2,..)) Stores the attributes where each tag is a string, and returns the modified copy of G. - See also: 1/ discard_graph_attribute 2/ get_graph_attribute 3/ list_graph_attributes + See also: 1/ discard_graph_attribute 2/ get_graph_attribute 3/ list_graph_attributes Ex1:set_graph_attribute(cycle_graph(3),"name"="cycle graph") - + ''' return GiacMethods['set_graph_attribute'](self,*args) @@ -15573,9 +15573,9 @@ cdef class GiacMethods_base: Help for set_pixel: set_pixel(Intg(x),Intg(y),Intg(col)) Pixel on and adds to the list of pixels. Run show_pixels() to display - See also: 1/ clear 2/ show_pixels 3/ draw_line 4/ draw_rectangle 5/ draw_polygon + See also: 1/ clear 2/ show_pixels 3/ draw_line 4/ draw_rectangle 5/ draw_polygon Ex1: clear(); set_pixel(4); draw_pixel(1,2,red); show_pixels(); - + ''' return GiacMethods['set_pixel'](self,*args) @@ -15584,9 +15584,9 @@ cdef class GiacMethods_base: Help for set_vertex_attribute: set_vertex_attribute(Graph(G),Vrtx(v),Seq(tag1=value1,tag2=value2,..)) Stores the attributes to vertex v and returns the modified copy of G. - See also: 1/ discard_vertex_attribute 2/ get_vertex_attribute 3/ list_vertex_attributes + See also: 1/ discard_vertex_attribute 2/ get_vertex_attribute 3/ list_vertex_attributes Ex1:set_vertex_attribute(cycle_graph(3),1,"supply"=27) - + ''' return GiacMethods['set_vertex_attribute'](self,*args) @@ -15595,9 +15595,9 @@ cdef class GiacMethods_base: Help for set_vertex_positions: set_vertex_positions(Graph(G),Lst(vp)) Sets the coordinates, given in the list vp, to the vertices of G and returns the modified copy of G. - See also: 1/ draw_graph + See also: 1/ draw_graph Ex1: G:=graph([1,2,3,4,5,6],%{[1,2],[1,4],[4,5],[2,5],[2,3],[3,6],[5,6]%}); G:=set_vertex_positions(G,[[0,0],[0.5,0],[1,0],[0,0.5],[0.5,0.5],[1,0.5]]) - + ''' return GiacMethods['set_vertex_positions'](self,*args) @@ -15606,13 +15606,13 @@ cdef class GiacMethods_base: Help for shift: shift(Lst,[Intg(n)]) Returns the list where the last element [or the tail beginning with the n-th element] is moved to the first element and then completed with 0s (by default n=-1);L:=shift(L,2) o L.shift(2). - See also: 1/ rotate 2/ tail + See also: 1/ rotate 2/ tail Ex1:shift([0,1,2,3],2) Ex2:shift([0,1,2,3]) Ex3:shift([0,1,2,3,4]) Ex4: L:=[0,1,2,3];L:=shift(L,2) Ex5: L:=[0,1,2,3];L.shift(2) - + ''' return GiacMethods['shift'](self,*args) @@ -15621,14 +15621,14 @@ cdef class GiacMethods_base: Help for shift_phase: shift_phase(Expr) shift_phase returns the expressions where the phase of the evaluated trigonometric expressions is increased by pi/2. - See also: 1/ series + See also: 1/ series Ex1:shift_phase(sin(x)) Ex2:shift_phase('sin(x+pi/2)') Ex3:shift_phase(x+sin(x)) Ex4:shift_phase(x+sin(x)) Ex5:shift_phase(cos(t)) Ex6:shift_phase(tan(u)) - + ''' return GiacMethods['shift_phase'](self,*args) @@ -15637,9 +15637,9 @@ cdef class GiacMethods_base: Help for shortest_path: shortest_path(Graph(G),Vrtx(s),Vrtx(t)||Lst(T)) Returns the shortest path from vertex s to vertex t in G. If such path does not exist, returns an empty list. If vector T of vertices from G is given, the list of shortest paths from s to each t int T is returned. - See also: 1/ dijkstra 2/ vertex_distance + See also: 1/ dijkstra 2/ vertex_distance Ex1:shortest_path(cycle_graph(6),1,5) - + ''' return GiacMethods['shortest_path'](self,*args) @@ -15648,9 +15648,9 @@ cdef class GiacMethods_base: Help for show_pixels: show_pixels(NULL) Displays the list of pixels. - See also: 1/ set_pixel 2/ clear + See also: 1/ set_pixel 2/ clear Ex1:show_pixels() - + ''' return GiacMethods['show_pixels'](self,*args) @@ -15659,13 +15659,13 @@ cdef class GiacMethods_base: Help for shuffle: shuffle(Intg(n)||Lst(L)) Returns a random permutation of [0,1,2,..,n-1] or of the list L. - See also: 1/ permu2cycles 2/ is_permu 3/ permu2mat + See also: 1/ permu2cycles 2/ is_permu 3/ permu2mat Ex1:shuffle(4) Ex2:shuffle(7) Ex3:shuffle([1,3,5,7,9]) Ex4: L:=[1,3,5,7,9];L:=randperm(L) Ex5: L:=[1,3,5,7,9];L.randperm() - + ''' return GiacMethods['shuffle'](self,*args) @@ -15674,13 +15674,13 @@ cdef class GiacMethods_base: Help for sierpinski_graph: sierpinski_graph(Intg(n),Intg(k),[triangle]) Returns Sierpiński (triangle) graph S(n,k) (resp. ST(n,k)). - See also: 1/ graph + See also: 1/ graph Ex1:sierpinski_graph(2,4) Ex2:sierpinski_graph(4,3) Ex3:sierpinski_graph(3,4) Ex4:sierpinski_graph(3,2) Ex5:sierpinski_graph(3,3,at_triangle) - + ''' return GiacMethods['sierpinski_graph'](self,*args) @@ -15689,10 +15689,10 @@ cdef class GiacMethods_base: Help for sign: sign(Expr) Returns the sign (-1,0,+1) of its argument. - See also: 1/ abs + See also: 1/ abs Ex1:sign(-4) Ex2:sign(4-5) - + ''' return GiacMethods['sign'](self,*args) @@ -15701,9 +15701,9 @@ cdef class GiacMethods_base: Help for signature: signature(Permut) Returns the signature of a permutation. - See also: 1/ permu2cycles 2/ is_permu + See also: 1/ permu2cycles 2/ is_permu Ex1:signature([1,0,3,4,2]) - + ''' return GiacMethods['signature'](self,*args) @@ -15712,10 +15712,10 @@ cdef class GiacMethods_base: Help for signe: signe(Str(s)) Writes the string s with the font 20 at the point [10,10]. - See also: 1/ ecris + See also: 1/ ecris Ex1:signe("Thomas") Ex2:signe(Thomas) - + ''' return GiacMethods['signe'](self,*args) @@ -15724,12 +15724,12 @@ cdef class GiacMethods_base: Help for similarity: similarity(Pnt or Dr3,Real,Angle,Pnt) similarity(B,k,a1,A)=transformation of A in the similarity (center B or axis d, coeff k,angle a1) (or also homothety(B,k*exp(i*a1),A)). - See also: 1/ homothety + See also: 1/ homothety Ex1:similarity(1+i,2,pi/3,i) Ex2:similarity(line(x=y,y=z),2,pi/3,point(-1,2,1)) Ex3: s:=similarity(1+i,2,pi/3);s(i) Ex4: s:=similarity(line(x=y,y=z),2,pi/3),s(point(-1,2,1)) - + ''' return GiacMethods['similarity'](self,*args) @@ -15738,10 +15738,10 @@ cdef class GiacMethods_base: Help for simp2: simp2(Intg(A) or Poly(A),Intg(B) or Poly(B)) Returns the list [A/gcd(A,B),B/gcd(A,B)]. - See also: 1/ gcd + See also: 1/ gcd Ex1:simp2(12,18) Ex2:simp2(x^3-1,x^2-1) - + ''' return GiacMethods['simp2'](self,*args) @@ -15755,7 +15755,7 @@ cdef class GiacMethods_base: Ex3:simplex_reduce([[-3,2],[1,1]],[3,4],[1,2]) Ex4:simplex_reduce([[-3,2,1,0,3],[1,1,0,1,4],[-1,-2,0,0,0]]) Ex5:simplex_reduce([[2,1,1,1,0,0,2],[1,2,3,0,1,0,5],[2,2,1,0,0,1,6],[-3,-1,-3,1,-1,2,0]]) - + ''' return GiacMethods['simplex_reduce'](self,*args) @@ -15764,11 +15764,11 @@ cdef class GiacMethods_base: Help for simplifier: simplifier(Expr) Simplifies an expression. - See also: 1/ normal + See also: 1/ normal Ex1:simplifier(4*atan(1/5)-atan(1/239)) Ex2:simplifier(texpand((sin(3*x)+sin(7*x))/sin(5*x))) Ex3:simplifier(texpand((cos(3*x)+cos(7*x))/cos(5*x))) - + ''' return GiacMethods['simplifier'](self,*args) @@ -15777,11 +15777,11 @@ cdef class GiacMethods_base: Help for simplify: simplify(Expr) Simplifies an expression. - See also: 1/ normal + See also: 1/ normal Ex1:simplify(4*atan(1/5)-atan(1/239)) Ex2:simplify(texpand((sin(3*x)+sin(7*x))/sin(5*x))) Ex3:simplify(texpand((cos(3*x)+cos(7*x))/cos(5*x))) - + ''' return GiacMethods['simplify'](self,*args) @@ -15790,12 +15790,12 @@ cdef class GiacMethods_base: Help for simpson: simpson(Opt) Option of the area command. - See also: 1/ area + See also: 1/ area Ex1: area(x^2,x=0..1,5,simpson) Ex2: area(x^2,x=0..1,5,rombergt) Ex3: area(x^2,x=0..1,5,rombergm) Ex4:simpson(area(x^2,x=0..1,5,gauss15)) - + ''' return GiacMethods['simpson'](self,*args) @@ -15804,10 +15804,10 @@ cdef class GiacMethods_base: Help for simult: simult(Mtrx(A),Mtrx(B)) Returns the matrix where the column of index k is solution of A*X=column of index k of B (=B[0..nr-1,k..k] with nr=number of rows of B). - See also: 1/ rref 2/ linsolve + See also: 1/ rref 2/ linsolve Ex1:simult([[3,1],[3,2]],[[-2],[2]]) Ex2:simult([[3,1],[3,2]],[[-2,1],[2,-1]]) - + ''' return GiacMethods['simult'](self,*args) @@ -15816,10 +15816,10 @@ cdef class GiacMethods_base: Help for sin: sin(Expr or Opt) Sine or option of the convert or convertir command (id trigsin). - See also: 1/ asin 2/ convert 3/ trigsin + See also: 1/ asin 2/ convert 3/ trigsin Ex1:sin(0) Ex2: convert(cos(x)^4+sin(x)^2,sin) - + ''' return GiacMethods['sin'](self,*args) @@ -15828,9 +15828,9 @@ cdef class GiacMethods_base: Help for sin2costan: sin2costan(Expr) Replaces sin(x) by cos(x)*tan(x) in the argument. - See also: 1/ tan2sincos 2/ cos2sintan 3/ tan2sincos2 4/ tan2cossin2 + See also: 1/ tan2sincos 2/ cos2sintan 3/ tan2sincos2 4/ tan2cossin2 Ex1:sin2costan(sin(x)) - + ''' return GiacMethods['sin2costan'](self,*args) @@ -15839,9 +15839,9 @@ cdef class GiacMethods_base: Help for sinc: sinc(Expr(x)) Returns the value of the cardinal sine function at x. - See also: 1/ sin + See also: 1/ sin Ex1:sinc(pi*x) - + ''' return GiacMethods['sinc'](self,*args) @@ -15850,11 +15850,11 @@ cdef class GiacMethods_base: Help for sincos: sincos(Expr or Opt) Transforms the complex exponential into sine and cosine (id exp2trig) or option of the convert or convertir command (id sincos). - See also: 1/ trig2trig 2/ trig2exp 3/ atrig2ln 4/ convert + See also: 1/ trig2trig 2/ trig2exp 3/ atrig2ln 4/ convert Ex1:sincos(exp(i*x)) Ex2:sincos(exp(-i*x)) Ex3: convert(exp(i*x),sincos) - + ''' return GiacMethods['sincos'](self,*args) @@ -15863,7 +15863,7 @@ cdef class GiacMethods_base: Help for single_inter: single_inter(Curve,Curve,[Pnt(A)||LstPnt(L)]) Gives one of the points of intersection of 2 curves or surfaces (or the intersection near A or not in L). - See also: 1/ intersect 2/ head + See also: 1/ intersect 2/ head Ex1:single_inter(line(i,1-i),line(0,1)) Ex2:single_inter(line(i,1-i),circle(0,1)) Ex3:single_inter(line(i,1+2*i),circle(0,1),[point(i)]) @@ -15871,7 +15871,7 @@ cdef class GiacMethods_base: Ex5:single_inter(circle(1,sqrt(2)),circle(0,1)) Ex6:single_inter(plane(x=y),plane(y=z)) Ex7:single_inter(line(x=y+1,y=2*z),plane(y=z)) - + ''' return GiacMethods['single_inter'](self,*args) @@ -15880,9 +15880,9 @@ cdef class GiacMethods_base: Help for sinh: sinh(Expr) Hyperbolic sine. - See also: 1/ asinh + See also: 1/ asinh Ex1:sinh(0) - + ''' return GiacMethods['sinh'](self,*args) @@ -15891,9 +15891,9 @@ cdef class GiacMethods_base: Help for sizes: sizes(Lst or Str or Seq) Returns the list of sizes of a list of lists. - See also: 1/ size 2/ dim + See also: 1/ size 2/ dim Ex1:sizes([[1,2,3],[1,2],[1]]) - + ''' return GiacMethods['sizes'](self,*args) @@ -15902,7 +15902,7 @@ cdef class GiacMethods_base: Help for slope: slope(Line||Pnt||Cplx,[Pnt||Cplx]) Returns the slope of the line defined in the argument or is an attribute of line. - See also: 1/ line 2/ tangent 3/ LinTan 4/ slopeatraw 5/ slopeat + See also: 1/ line 2/ tangent 3/ LinTan 4/ slopeatraw 5/ slopeat Ex1:slope(line(1,2i)) Ex2:slope(segment(1,2i)) Ex3:slope(1,2i) @@ -15911,7 +15911,7 @@ cdef class GiacMethods_base: Ex6:slope(tangent(plotfunc(sin(x)),pi/4)) Ex7:slope(LineTan(sin(x),pi/4)) Ex8: line(point(1,2),slope=-1) - + ''' return GiacMethods['slope'](self,*args) @@ -15920,11 +15920,11 @@ cdef class GiacMethods_base: Help for slopeat: slopeat(Line, Pnt||Cplx(z0)) slopeat(d,z0) displays at the point(z0), with a legend, the value of the slope of the line or segment d. - See also: 1/ slope 2/ slopeatraw + See also: 1/ slope 2/ slopeatraw Ex1: A:=point(0);B:=point(1+i);slopeat(droite(A,B),(1+i)/2) Ex2: s:=segment(1-i,i);slopeat(s,point(0.4)) Ex3: t:=tangent(plotfunc(sin(x)),pi/4);slopeat(t,0) - + ''' return GiacMethods['slopeat'](self,*args) @@ -15933,12 +15933,12 @@ cdef class GiacMethods_base: Help for slopeatraw: slopeatraw(Line, Pnt||Cplx(z0)) slopeatraw(d,z0) displays at point(z0), the value of the slope of the line or segment d. - See also: 1/ slope 2/ slopeat + See also: 1/ slope 2/ slopeat Ex1: A:=point(0);B:=point(1+i);slopeatraw(droite(A,B),(1+i)/2) Ex2: s:=segment(1-i,i);slopeatraw(s,point(0.4)) Ex3:slopeatraw(tangent(plotfunc(sin(x)),pi/4),0) Ex4:slopeatraw((LineTan sin(x),pi/4),i) - + ''' return GiacMethods['slopeatraw'](self,*args) @@ -15947,10 +15947,10 @@ cdef class GiacMethods_base: Help for smith: smith(Mtrx(A)) Smith normal form of a matrix with polynomial coefficients : returns U,D,V such that U and V are invertible, D is diagonal, and U*A*V=D. - See also: 1/ hermite 2/ ismith 3/ ihermite + See also: 1/ hermite 2/ ismith 3/ ihermite Ex1: n:=10; A:=ranm(n,n) % 17; U,D,V:=smith(x*idn(n)-A);normal(U*(x*idn(n)-A)*V-D); diag(D); Ex2: GF(3,5,g); n:=3; A:=ranm(n,n,g); U,D,V:=smith(x*idn(n)-A);normal(U*(x*idn(n)-A)*V-D); diag(D); - + ''' return GiacMethods['smith'](self,*args) @@ -15959,11 +15959,11 @@ cdef class GiacMethods_base: Help for smod: smod(Intg,Intg) Returns the Euclidean symmetric remainder of two integers. - See also: 1/ irem 2/ iquo 3/ mod 4/ fracmod + See also: 1/ irem 2/ iquo 3/ mod 4/ fracmod Ex1:smod(8,3) Ex2:smod(10,4) Ex3:smod(11,7) - + ''' return GiacMethods['smod'](self,*args) @@ -15972,12 +15972,12 @@ cdef class GiacMethods_base: Help for snedecor: snedecor(Intg(n),Intg(m),Real(x0)) Returns the probability density of the Fisher-Snedecor law (n and m are the numbers of degrees of freedom). - See also: 1/ fisher_cdf 2/ fisher_icdf 3/ randvector 4/ ranm + See also: 1/ fisher_cdf 2/ fisher_icdf 3/ randvector 4/ ranm Ex1:snedecor(4,10,2.1) Ex2:snedecor(4,4,2.1) Ex3: randvector(5,fisher,4,6) Ex4: ranm(2,3,fisher,4,6) - + ''' return GiacMethods['snedecor'](self,*args) @@ -15986,10 +15986,10 @@ cdef class GiacMethods_base: Help for snedecor_cdf: snedecor_cdf(Intg(n),Intg(m),Real(x0)) Returns the probability that a Fisher-Snedecor random variable is less than x0 (n and m are the numbers of degrees of freedom). - See also: 1/ UTPF 2/ fisher_icdf 3/ fisherd + See also: 1/ UTPF 2/ fisher_icdf 3/ fisherd Ex1:snedecor_cdf(4,4,2.1) Ex2:snedecor_cdf(4,10,3.5) - + ''' return GiacMethods['snedecor_cdf'](self,*args) @@ -15998,10 +15998,10 @@ cdef class GiacMethods_base: Help for snedecor_icdf: snedecor_icdf(Intg(n),Intg(m),Real(p)) Returns h such as the probability that a Fisher-Snedecor random variable is less than h is p (n and m are the numbers of degrees of freedom and 0<=p<=1). - See also: 1/ fisher_cdf 2/ fisherd + See also: 1/ fisher_cdf 2/ fisherd Ex1:snedecor_icdf(4,10,0.95) Ex2:snedecor_icdf(4,10,0.05) - + ''' return GiacMethods['snedecor_icdf'](self,*args) @@ -16010,12 +16010,12 @@ cdef class GiacMethods_base: Help for snedecord: snedecord(Intg(n),Intg(m),Real(x0)) Returns the probability density of the Fisher-Snedecor law (n and m are the numbers of degrees of freedom). - See also: 1/ fisher_cdf 2/ fisher_icdf 3/ randvector 4/ ranm + See also: 1/ fisher_cdf 2/ fisher_icdf 3/ randvector 4/ ranm Ex1:snedecord(4,10,2.1) Ex2:snedecord(4,4,2.1) Ex3: randvector(5,fisher,4,6) Ex4: ranm(2,3,fisher,4,6) - + ''' return GiacMethods['snedecord'](self,*args) @@ -16024,10 +16024,10 @@ cdef class GiacMethods_base: Help for snedecord_cdf: snedecord_cdf(Intg(n),Intg(m),Real(x0)) Returns the probability that a Fisher-Snedecor random variable is less than x0 (n and m are the numbers of degrees of freedom). - See also: 1/ UTPF 2/ fisher_icdf 3/ fisherd + See also: 1/ UTPF 2/ fisher_icdf 3/ fisherd Ex1:snedecord_cdf(4,4,2.1) Ex2:snedecord_cdf(4,10,3.5) - + ''' return GiacMethods['snedecord_cdf'](self,*args) @@ -16036,10 +16036,10 @@ cdef class GiacMethods_base: Help for snedecord_icdf: snedecord_icdf(Intg(n),Intg(m),Real(p)) Returns h such as the probability that a Fisher-Snedecor random variable is less than h is p (n and m are the numbers of degrees of freedom and 0<=p<=1). - See also: 1/ fisher_cdf 2/ fisherd + See also: 1/ fisher_cdf 2/ fisherd Ex1:snedecord_icdf(4,10,0.95) Ex2:snedecord_icdf(4,10,0.05) - + ''' return GiacMethods['snedecord_icdf'](self,*args) @@ -16048,10 +16048,10 @@ cdef class GiacMethods_base: Help for solid_line: solid_line(Opt) Option of the display command for a line. - See also: 1/ display + See also: 1/ display Ex1: display(line(y=x),green+dash_line+line_width_2) Ex2: d:=display(line(2+i,1),cap_round_line) - + ''' return GiacMethods['solid_line'](self,*args) @@ -16060,12 +16060,12 @@ cdef class GiacMethods_base: Help for solve: solve(Expr,[Var]) Solves a (or a set of) polynomial equation. - See also: 1/ linsolve 2/ proot 3/ fsolve 4/ csolve 5/ nSolve + See also: 1/ linsolve 2/ proot 3/ fsolve 4/ csolve 5/ nSolve Ex1:solve(x^2-3=1) Ex2:solve(x^3-3*y,y) Ex3:solve([y-z=0,z-x=0,x-y=0,x-1+y+z=0],[x,y,z]) Ex4:solve([x^2-y^2=0,x^2-z^2=0],[x,y,z]) - + ''' return GiacMethods['solve'](self,*args) @@ -16074,7 +16074,7 @@ cdef class GiacMethods_base: Help for somme: somme(Expr,Var,VarMin(a),VarMax(b),[VarStep(p)]) Discrete sum (with 2 or 4 arguments return then sum from a to b if a<=b or of the opposite of the sum from b+1 to a-1 if a>b+1 or 0 if a=b+1) or the discrete primitive or sum of the elements of a list or a sequence. - See also: 1/ + + See also: 1/ + Ex1:somme(1/n^2,n,1,17) Ex2:somme(1/n^2,n=1..17) Ex3:somme(1/n^2,n,17,1) @@ -16085,7 +16085,7 @@ cdef class GiacMethods_base: Ex8:somme([[1,2,3,4,5,6,7,8,9],[1,2,3,4,5,6,7,8,9]]) Ex9:somme(1/(x*(x+1)),x) Ex10:somme(cos(n*x),n) - + ''' return GiacMethods['somme'](self,*args) @@ -16094,10 +16094,10 @@ cdef class GiacMethods_base: Help for sommet: sommet(Op or Fnct) Returns the top of an operator. - See also: 1/ feuille 2/ quote + See also: 1/ feuille 2/ quote Ex1:sommet(quote(gcd(45,123))) Ex2:sommet('gcd(45,123)') - + ''' return GiacMethods['sommet'](self,*args) @@ -16106,13 +16106,13 @@ cdef class GiacMethods_base: Help for sort: sort(LstReal or Seq [Fnc]) Returns the sorted list (or sequence) with increasing order according to the second argument which defines a weak strict ordering or sorts and collects equal terms in sums and products. - See also: 1/ SortA 2/ SortD + See also: 1/ SortA 2/ SortD Ex1:sort([3,2,2,4,1,0]) Ex2:sort(3,2.1,2,4,1,0) Ex3:sort([3,4,2],(x,y)->x>y) Ex4:sort([[1,2],[2,3],[4,3]],(x,y)->when(x[1]==y[1],x[0]>y[0],x[1]>y[1])) Ex5:sort(y*x*2+x*y) - + ''' return GiacMethods['sort'](self,*args) @@ -16121,11 +16121,11 @@ cdef class GiacMethods_base: Help for sorta: sorta(LstReal||Seq×||Mtrx) Sorts the list in increasing order or sorts the columns of the matrix so the first row is in increasing order. - See also: 1/ SortA 2/ sortd 3/ sort + See also: 1/ SortA 2/ sortd 3/ sort Ex1:sorta(3,4,2) Ex2:sorta([3,4,2]) Ex3:sorta([[3,4,2],[6,4,5]]) - + ''' return GiacMethods['sorta'](self,*args) @@ -16134,11 +16134,11 @@ cdef class GiacMethods_base: Help for sortd: sortd(LstReal||Seq||Mtrx) Sorts the list in decreasing order or sorts the columns of the matrix so the first row is in decreasing order. - See also: 1/ SortD 2/ sorta 3/ sort + See also: 1/ SortD 2/ sorta 3/ sort Ex1:sortd(3,4,2) Ex2:sortd([3,4,2]) Ex3:sortd([[3,4,2],[6,4,5]]) - + ''' return GiacMethods['sortd'](self,*args) @@ -16147,13 +16147,13 @@ cdef class GiacMethods_base: Help for sorted: sorted(LstReal or Seq [Fnc]) Returns the sorted list (or sequence) with increasing order according to the second argument which defines a weak strict ordering or sorts and collects equal terms in sums and products. - See also: 1/ SortA 2/ SortD + See also: 1/ SortA 2/ SortD Ex1:sorted([3,2,2,4,1,0]) Ex2:sorted(3,2.1,2,4,1,0) Ex3:sorted([3,4,2],(x,y)->x>y) Ex4:sorted([[1,2],[2,3],[4,3]],(x,y)->when(x[1]==y[1],x[0]>y[0],x[1]>y[1])) Ex5:sorted(y*x*2+x*y) - + ''' return GiacMethods['sorted'](self,*args) @@ -16162,10 +16162,10 @@ cdef class GiacMethods_base: Help for soundsec: soundsec(Intg(n),[Intg(N)]) Generates a vector coding n seconds of time/N (default N=44100). - See also: 1/ readwav 2/ writewav 3/ playsnd + See also: 1/ readwav 2/ writewav 3/ playsnd Ex1:soundsec(1) Ex2:soundsec(1,22100) - + ''' return GiacMethods['soundsec'](self,*args) @@ -16174,10 +16174,10 @@ cdef class GiacMethods_base: Help for spanning_tree: spanning_tree(Graph(G),[Vrtx(r)]) Returns a spanning tree of undirected graph G [with the vertex r as the root node]. - See also: 1/ number_of_spanning_trees 2/ minimal_spanning_tree + See also: 1/ number_of_spanning_trees 2/ minimal_spanning_tree Ex1:spanning_tree(graph("petersen")) Ex2:spanning_tree(graph("petersen"),5) - + ''' return GiacMethods['spanning_tree'](self,*args) @@ -16186,10 +16186,10 @@ cdef class GiacMethods_base: Help for sphere: sphere((Pnt or Vect),(Pnt or Real)) sphere(A,B) (resp sphere(A,r)) draws the sphere with diameter AB (resp center A and radius r) in 3D space. - See also: 1/ circle + See also: 1/ circle Ex1:sphere([0,0,0],[2,2,2]) Ex2:sphere([1,1,1],1) - + ''' return GiacMethods['sphere'](self,*args) @@ -16198,9 +16198,9 @@ cdef class GiacMethods_base: Help for spline: spline(Lst(lx),Lst(ly),Var(x),Intg(d)) Natural spline through the points given by the lx and ly lists, variable x, degree d. - See also: 1/ lagrange + See also: 1/ lagrange Ex1:spline([0,1,2],[1,3,0],x,3) - + ''' return GiacMethods['spline'](self,*args) @@ -16209,10 +16209,10 @@ cdef class GiacMethods_base: Help for split: split(Expr(Xpr),Lst(var1,var2)) Splits the two variables var1,var2 of the expression Xpr (without denominator) or returns [0]. - See also: 1/ factor + See also: 1/ factor Ex1:split(x^3*y^2-y^2+x^3-1,[x,y]) Ex2:split(x^3*y^2-y^2+x^3+1,[x,y]) - + ''' return GiacMethods['split'](self,*args) @@ -16221,8 +16221,8 @@ cdef class GiacMethods_base: Help for spring: spring(Opt) Option for the draw_graph command. - See also: 1/ planar 2/ tree 3/ draw_graph - + See also: 1/ planar 2/ tree 3/ draw_graph + ''' return GiacMethods['spring'](self,*args) @@ -16231,10 +16231,10 @@ cdef class GiacMethods_base: Help for sq: sq(Seq) Is the name of the function (ℝ^n -> ℝ)=sum of the squares of the arguments. - See also: 1/ sqrt + See also: 1/ sqrt Ex1:sq(5) Ex2:sq(1,2,3) - + ''' return GiacMethods['sq'](self,*args) @@ -16243,10 +16243,10 @@ cdef class GiacMethods_base: Help for sqrfree: sqrfree(Expr) Factorization of the its argument gathering the terms with the same exponent. - See also: 1/ factor + See also: 1/ factor Ex1:sqrfree(x^4-2*x^2+1) Ex2:sqrfree((x-2)^7*(x+2)^7*(x^4-2*x^2+1)) - + ''' return GiacMethods['sqrfree'](self,*args) @@ -16255,10 +16255,10 @@ cdef class GiacMethods_base: Help for sqrt: sqrt(Expr) Square root. - See also: 1/ surd 2/ ^ + See also: 1/ surd 2/ ^ Ex1:sqrt(50) Ex2:sqrt(x^2) - + ''' return GiacMethods['sqrt'](self,*args) @@ -16267,12 +16267,12 @@ cdef class GiacMethods_base: Help for square: square((Pnt(A) or Cplx),(Pnt(B) or Cplx),[Pnt(P),Var(C),Var(D)]) Returns and draws the square of side AB (ABCD is direct) (in the plane ABP). - See also: 1/ rhombus 2/ quadrilateral + See also: 1/ rhombus 2/ quadrilateral Ex1:square(i,1+i) Ex2:square(i,1+i,C,D) Ex3:square(point(0,0,0),point(3,3,3),point(0,0,3)) Ex4:square(point(0,0,0),point(3,3,3),point(0,0,3),C,D) - + ''' return GiacMethods['square'](self,*args) @@ -16281,10 +16281,10 @@ cdef class GiacMethods_base: Help for square_point: square_point(Opt) Option of the display command for a point. - See also: 1/ display + See also: 1/ display Ex1: F:=display(point(2+1.5*i),point_point) Ex2: F:=display(point(2+1.5*i),rhombus_point) - + ''' return GiacMethods['square_point'](self,*args) @@ -16293,10 +16293,10 @@ cdef class GiacMethods_base: Help for srand: srand() srand returns an integer and initializes the sequence of random numbers. - See also: 1/ RandSeed + See also: 1/ RandSeed Ex1:srand(12) Ex2: srand - + ''' return GiacMethods['srand'](self,*args) @@ -16305,9 +16305,9 @@ cdef class GiacMethods_base: Help for sst: sst(NULL) Steps 1 instruction. - See also: 1/ + See also: 1/ Ex1:sst() - + ''' return GiacMethods['sst'](self,*args) @@ -16316,9 +16316,9 @@ cdef class GiacMethods_base: Help for sst_in: sst_in(NULL) Enters into a function in step-by-step mode. - See also: 1/ + See also: 1/ Ex1:sst_in() - + ''' return GiacMethods['sst_in'](self,*args) @@ -16327,9 +16327,9 @@ cdef class GiacMethods_base: Help for st_ordering: st_ordering(Graph(G),Vrtx(s),Vrtx(t)) Returns ST numbering for the biconnected graph G with source s and sink (target) t. - See also: 1/ is_biconnected + See also: 1/ is_biconnected Ex1:st_ordering(graph("petersen"),1,2) - + ''' return GiacMethods['st_ordering'](self,*args) @@ -16338,9 +16338,9 @@ cdef class GiacMethods_base: Help for star_graph: star_graph(Intg(n)) Returns the complete bipartite graph complete_graph(1,n). - See also: 1/ complete_graph 2/ wheel_graph + See also: 1/ complete_graph 2/ wheel_graph Ex1:star_graph(5) - + ''' return GiacMethods['star_graph'](self,*args) @@ -16349,10 +16349,10 @@ cdef class GiacMethods_base: Help for star_point: star_point(Opt) Option of the display command for a point. - See also: 1/ display + See also: 1/ display Ex1: F:=display(point(2+1.5*i),point_point) Ex2: F:=display(point(2+1.5*i),rhombus_point) - + ''' return GiacMethods['star_point'](self,*args) @@ -16361,11 +16361,11 @@ cdef class GiacMethods_base: Help for stdDev: stdDev(Lst||Mtrx,[Lst]) Returns an unbiased estimate of the population standard deviation of the sample (first argument) with an optional list of weight as second argument. - See also: 1/ mean 2/ stddev + See also: 1/ mean 2/ stddev Ex1:stdDev([1,2,3]) Ex2:stdDev([1,2,3],[1,2,1]) Ex3:stdDev([[1,2,3],[5,6,7]]) - + ''' return GiacMethods['stdDev'](self,*args) @@ -16374,11 +16374,11 @@ cdef class GiacMethods_base: Help for stddev: stddev(Lst||Mtrx,[Lst]) Returns the standard deviation of the elements of its argument with an optional second argument as weight or the list of standard deviations of the columns of a matrix. - See also: 1/ mean 2/ variance 3/ stddevp + See also: 1/ mean 2/ variance 3/ stddevp Ex1:stddev([1,2,3]) Ex2:stddev([1,2,3],[1,2,1]) Ex3:stddev([[1,2,3],[5,6,7]]) - + ''' return GiacMethods['stddev'](self,*args) @@ -16387,11 +16387,11 @@ cdef class GiacMethods_base: Help for stddevp: stddevp(Lst||Mtrx,[Lst]) Returns an unbiased estimate of the population standard deviation of the sample (first argument) with an optional list of weight as second argument. - See also: 1/ mean 2/ stddev + See also: 1/ mean 2/ stddev Ex1:stddevp([1,2,3]) Ex2:stddevp([1,2,3],[1,2,1]) Ex3:stddevp([[1,2,3],[5,6,7]]) - + ''' return GiacMethods['stddevp'](self,*args) @@ -16400,14 +16400,14 @@ cdef class GiacMethods_base: Help for steffenson_solver: steffenson_solver(Opt) Argument for fsolve giving the method for solving a numerical equation. - See also: 1/ fsolve + See also: 1/ fsolve Ex1: fsolve(cos(x)=x,x,0..1,bisection_solver) Ex2: fsolve(cos(x)=x,x,0..1,brent_solver) Ex3: fsolve(cos(x)=x,x,0..1,falsepos_solver) Ex4: fsolve(cos(x)=x,x,0,newton_solver) Ex5: fsolve(cos(x)=x,x,0,secant_solver) Ex6: fsolve(cos(x)=x,x,0,steffenson_solver) - + ''' return GiacMethods['steffenson_solver'](self,*args) @@ -16416,9 +16416,9 @@ cdef class GiacMethods_base: Help for stereo2mono: stereo2mono(Lst(clip)) Returns an audio clip with all channels in the input clip downmixed to a single one. - See also: 1/ channel_data 2/ mean 3/ createwav + See also: 1/ channel_data 2/ mean 3/ createwav Ex1:stereo2mono(readwav("/some/file")) - + ''' return GiacMethods['stereo2mono'](self,*args) @@ -16427,12 +16427,12 @@ cdef class GiacMethods_base: Help for str: str(Expr or Opt) Returns the evaluated expression as a string or is an option of the convert or convertir command (id string). - See also: 1/ expr 2/ format 3/ convert + See also: 1/ expr 2/ format 3/ convert Ex1:str(1.23) Ex2:str(a:=12) Ex3:str(quote(a:=12)) Ex4: convert(quote(a:=12),string) - + ''' return GiacMethods['str'](self,*args) @@ -16441,9 +16441,9 @@ cdef class GiacMethods_base: Help for strongly_connected_components: strongly_connected_components(Graph(G)) Returns the list of strongly connected components in digraph G. - See also: 1/ connected_components 2/ is_connected 3/ is_strongly_connected + See also: 1/ connected_components 2/ is_connected 3/ is_strongly_connected Ex1:strongly_connected_components(digraph([1,2,3],%{[1,2],[1,3],[2,3],[3,2]%})) - + ''' return GiacMethods['strongly_connected_components'](self,*args) @@ -16452,10 +16452,10 @@ cdef class GiacMethods_base: Help for student: student(Intg(n),Real(x0)) Returns the probability density of the Student law (n is the number of degrees of freedom). - See also: 1/ student_cdf 2/ student_icdf + See also: 1/ student_cdf 2/ student_icdf Ex1:student(3,5.2) Ex2:student(1,5.2) - + ''' return GiacMethods['student'](self,*args) @@ -16464,10 +16464,10 @@ cdef class GiacMethods_base: Help for student_cdf: student_cdf(Intg(n),Real(x0)) Returns the probability that a Student random variable is less than x0 (n is the number of degrees of freedom). - See also: 1/ UTPT 2/ student_icdf 3/ studentd + See also: 1/ UTPT 2/ student_icdf 3/ studentd Ex1:student_cdf(3,2.35) Ex2:student_cdf(3,-3.2) - + ''' return GiacMethods['student_cdf'](self,*args) @@ -16476,10 +16476,10 @@ cdef class GiacMethods_base: Help for student_icdf: student_icdf(Intg(n),Real(p)) Returns h such as the probability that a Student random variable is less than h is p (n is the number of degrees of freedom and 0<=p<=1). - See also: 1/ student_cdf 2/ studentd + See also: 1/ student_cdf 2/ studentd Ex1:student_icdf(3,0.95) Ex2:student_icdf(3,0.05) - + ''' return GiacMethods['student_icdf'](self,*args) @@ -16488,10 +16488,10 @@ cdef class GiacMethods_base: Help for studentd: studentd(Intg(n),Real(x0)) Returns the probability density of the Student law (n is the number of degrees of freedom). - See also: 1/ student_cdf 2/ student_icdf + See also: 1/ student_cdf 2/ student_icdf Ex1:studentd(3,5.2) Ex2:studentd(1,5.2) - + ''' return GiacMethods['studentd'](self,*args) @@ -16500,10 +16500,10 @@ cdef class GiacMethods_base: Help for studentt: studentt(Lst,Real,[Real],Fnc,[Real]) T-Test/Student law: arg1=[success,trial] or [mean,sample size] or data, arg2=proportion or data, arg3 optional if data=sigma, arg4 alternative '!=' or '>' or '<', arg5 optional alpha confidence level. - See also: 1/ normalt 2/ chisquaret 3/ kolmogorovt + See also: 1/ normalt 2/ chisquaret 3/ kolmogorovt Ex1:studentt([10,20],.5,.02,'!=',0.1) Ex2:studentt([0.48,20],0.5,0.1,'<') - + ''' return GiacMethods['studentt'](self,*args) @@ -16512,13 +16512,13 @@ cdef class GiacMethods_base: Help for sturm: sturm(Poly,[Var],[Cplx(a)],[Cplx(b)]) Sturm sequence corresponding to a polynomial or number of sign changes of this polynomial in ]a;b]. - See also: 1/ sturmseq 2/ sturmab + See also: 1/ sturmseq 2/ sturmab Ex1:sturm(x^3-1,x) Ex2:sturm(x^5-x^3,x) Ex3:sturm((x^5-x^3)/(x+2),x) Ex4:sturm(x^5-x^3,x,-2,5) Ex5:sturm(x^3-1,x,-2-i,5+3i) - + ''' return GiacMethods['sturm'](self,*args) @@ -16527,10 +16527,10 @@ cdef class GiacMethods_base: Help for sturmab: sturmab(Poly,Var,Cplx(a),Cplx(b)) Number of sign changes of a polynomial in ]a;b] or of complex roots in a..b if a or b is non-real. - See also: 1/ sturm 2/ sturmseq 3/ realroot + See also: 1/ sturm 2/ sturmseq 3/ realroot Ex1:sturmab(x^3-1,x,-2,5) Ex2:sturmab(x^3-1,x,-2-i,5+3i) - + ''' return GiacMethods['sturmab'](self,*args) @@ -16539,11 +16539,11 @@ cdef class GiacMethods_base: Help for sturmseq: sturmseq(Poly,[Var]) Sturm sequence corresponding to a polynomial or to a rational fraction. - See also: 1/ sturm 2/ sturmab + See also: 1/ sturm 2/ sturmab Ex1:sturmseq(x^3-1,x) Ex2:sturmseq(x^5-x^3,x) Ex3:sturmseq((x^5-x^3)/(x+2),x) - + ''' return GiacMethods['sturmseq'](self,*args) @@ -16552,10 +16552,10 @@ cdef class GiacMethods_base: Help for style: style(Opt) Local option (Maple compatibility) of a graphic command to plot a line with dots with style=point. - See also: 1/ line_width + See also: 1/ line_width Ex1: segment(0,point(1,1),style=point) Ex2: line(y=x,style=point,display=green+line_width_2) - + ''' return GiacMethods['style'](self,*args) @@ -16564,9 +16564,9 @@ cdef class GiacMethods_base: Help for subMat: subMat(Mtrx(A),Intg(n1),Intg(n2),Intg(n3),Intg(n4).) Extracts a sub matrix with first element=A[n1,n2] and last element=A[n3,n4]. - See also: 1/ mid + See also: 1/ mid Ex1:subMat([[1,2],[3,4],[5,6]],1,0,2,1) - + ''' return GiacMethods['subMat'](self,*args) @@ -16575,9 +16575,9 @@ cdef class GiacMethods_base: Help for subdivide_edges: subdivide_edges(Graph(G),Lst(E),[Intg(r)]) Inserts r (by default 1) new vertices to each edge/arc in G contained in the list E (which may be a single edge/arc) and returns the modified copy of G. New vertices are labelled with smallest available integers. - See also: 1/ edges + See also: 1/ edges Ex1:subdivide_edges(complete_graph(2,3),[[1,3],[1,4]],2) - + ''' return GiacMethods['subdivide_edges'](self,*args) @@ -16586,9 +16586,9 @@ cdef class GiacMethods_base: Help for subgraph: subgraph(Graph(G),Lst(E)) Returns the subgraph of G defined by the edges in list E. - See also: 1/ induced_subgraph 2/ highlight_subgraph + See also: 1/ induced_subgraph 2/ highlight_subgraph Ex1:subgraph(complete_graph(5),[[1,2],[2,3],[3,4],[4,1]]) - + ''' return GiacMethods['subgraph'](self,*args) @@ -16597,11 +16597,11 @@ cdef class GiacMethods_base: Help for subs: subs(Expr or Var=value,Var=value or Expr) Equivalent of subst except in maple_mode where the arguments are switched over, in maple_mode choose the second example. - See also: 1/ subst 2/ maple_mode 3/ algsubs 4/ () + See also: 1/ subst 2/ maple_mode 3/ algsubs 4/ () Ex1:subs(1/(4+x^2),x=2) Ex2:subs(x=2,1/(4+x^2)) Ex3: f:=1/(4+x^2);f(x=2) - + ''' return GiacMethods['subs'](self,*args) @@ -16614,7 +16614,7 @@ cdef class GiacMethods_base: Ex2:subsop([[1,2],[3,4]],[1,1]=5) Ex3:subsop([[1,2],[3,4]],1=[10,8]) Ex4:subsop([0,1,2,3],'1=NULL') - + ''' return GiacMethods['subsop'](self,*args) @@ -16623,7 +16623,7 @@ cdef class GiacMethods_base: Help for subst: subst(Expr,Var(v)=value(a)) Substitutes a value for a variable in an expression. - See also: 1/ eval 2/ algsubs 3/ subs 4/ () + See also: 1/ eval 2/ algsubs 3/ subs 4/ () Ex1:subst(1/(4+x^2),x=2) Ex2:subst(1/(x^2+y^2),x=2,y=3) Ex3:subst(1/(x^2+y^2+z^2),[x=2,y=3,z=1]) @@ -16631,7 +16631,7 @@ cdef class GiacMethods_base: Ex5:subst('integrate(sin(x^2)*x,x)',x=sqrt(t)) Ex6:subst('sum(x^(n+1)/((n+p+1)*(n+1)),n,0,inf)',n=k-1) Ex7: f:=1/(x^2+y^2;f(x=2,y=3) - + ''' return GiacMethods['subst'](self,*args) @@ -16640,7 +16640,7 @@ cdef class GiacMethods_base: Help for substituer: substituer(Expr,Var(v)=value(a)) Substitutes a value for a variable in an expression. - See also: 1/ eval 2/ algsubs 3/ subs 4/ () + See also: 1/ eval 2/ algsubs 3/ subs 4/ () Ex1:substituer(1/(4+x^2),x=2) Ex2:substituer(1/(x^2+y^2),x=2,y=3) Ex3:substituer(1/(x^2+y^2+z^2),[x=2,y=3,z=1]) @@ -16648,7 +16648,7 @@ cdef class GiacMethods_base: Ex5:substituer('integrate(sin(x^2)*x,x)',x=sqrt(t)) Ex6:substituer('sum(x^(n+1)/((n+p+1)*(n+1)),n,0,inf)',n=k-1) Ex7: f:=1/(x^2+y^2;f(x=2,y=3) - + ''' return GiacMethods['substituer'](self,*args) @@ -16657,12 +16657,12 @@ cdef class GiacMethods_base: Help for subtype: subtype(Expr) Returns 1 for a sequence,2 for a set, 10 for a polynomial and 0 otherwise. - See also: 1/ DOM_LIST 2/ type + See also: 1/ DOM_LIST 2/ type Ex1:subtype(1,2,3) Ex2:subtype(set[1,2,3]) Ex3:subtype(poly1[1,2,3]) Ex4:subtype([1,2,3]) - + ''' return GiacMethods['subtype'](self,*args) @@ -16671,7 +16671,7 @@ cdef class GiacMethods_base: Help for sum: sum(Expr,Var,VarMin(a),VarMax(b),[VarStep(p)]) Discrete sum (with 2 or 4 arguments return then sum from a to b if a<=b or of the opposite of the sum from b+1 to a-1 if a>b+1 or 0 if a=b+1) or the discrete primitive or sum of the elements of a list or a sequence. - See also: 1/ + + See also: 1/ + Ex1:sum(1/n^2,n,1,17) Ex2:sum(1/n^2,n=1..17) Ex3:sum(1/n^2,n,17,1) @@ -16682,7 +16682,7 @@ cdef class GiacMethods_base: Ex8:sum([[1,2,3,4,5,6,7,8,9],[1,2,3,4,5,6,7,8,9]]) Ex9:sum(1/(x*(x+1)),x) Ex10:sum(cos(n*x),n) - + ''' return GiacMethods['sum'](self,*args) @@ -16691,11 +16691,11 @@ cdef class GiacMethods_base: Help for sum_riemann: sum_riemann(Expr(Xpr),Lst(var1,var2)) Returns an equivalent when var1=+infinity of the sum of Xpr(var1,var2) for var2 from 1 to var1 when the sum is a Riemann sum. - See also: 1/ + See also: 1/ Ex1:sum_riemann(1/(n+k),[n,k]) Ex2:sum_riemann(n/(n^2+k),[n,k]) Ex3:sum_riemann(n/(n^2+k^2),[n,k]) - + ''' return GiacMethods['sum_riemann'](self,*args) @@ -16704,12 +16704,12 @@ cdef class GiacMethods_base: Help for suppress: suppress(Vect(L)||Str(l),Intg(n)) Returns L without the element of index n; L:=suppress(L,n) or L.suppress(n). - See also: 1/ tail 2/ mid 3/ remove 4/ insert + See also: 1/ tail 2/ mid 3/ remove 4/ insert Ex1:suppress([0,1,2,3],2) Ex2:suppress("0123",2) Ex3: L:=[0,1,2,3];L:=suppress(L,2) Ex4: L:=[0,1,2,3];L.suppress(2) - + ''' return GiacMethods['suppress'](self,*args) @@ -16718,10 +16718,10 @@ cdef class GiacMethods_base: Help for surd: surd(Expr,Intg(n)) Power 1/n. - See also: 1/ sqrt 2/ ^ + See also: 1/ sqrt 2/ ^ Ex1:surd(8,3) Ex2:surd(-8,3) - + ''' return GiacMethods['surd'](self,*args) @@ -16731,7 +16731,7 @@ cdef class GiacMethods_base: svd(Mtrx(A)) For a square numerical real matrix A, returns U orthogonal, S vector of singular values, Q orthogonal such that A=U*diag(S)*tran(Q). Ex1:svd([[1,2],[3,4]]) - + ''' return GiacMethods['svd'](self,*args) @@ -16740,9 +16740,9 @@ cdef class GiacMethods_base: Help for swapcol: swapcol(Mtrx(A),Intg(n1),Intg(n2)) Returns the matrix obtained from A by swapping the n1-th column and the n2-th column. - See also: 1/ rowSwap + See also: 1/ rowSwap Ex1:swapcol([[1,2],[3,4],[5,6]],0,1) - + ''' return GiacMethods['swapcol'](self,*args) @@ -16751,9 +16751,9 @@ cdef class GiacMethods_base: Help for swaprow: swaprow(Mtrx(A),Intg(n1),Intg(n2)) Returns the matrix obtained from A by swapping the n1-th row and the n2-th row. - See also: 1/ rowAdd 2/ colSwap + See also: 1/ rowAdd 2/ colSwap Ex1:swaprow([[1,2],[3,4],[5,6]],1,2) - + ''' return GiacMethods['swaprow'](self,*args) @@ -16762,11 +16762,11 @@ cdef class GiacMethods_base: Help for switch_axes: switch_axes([Intg(0 or 1)]) switch_axes() puts or erases the axes of the graphic-screen. - See also: 1/ gl_showaxes 2/ axes + See also: 1/ gl_showaxes 2/ axes Ex1:switch_axes() Ex2:switch_axes(0) Ex3:switch_axes(1) - + ''' return GiacMethods['switch_axes'](self,*args) @@ -16775,10 +16775,10 @@ cdef class GiacMethods_base: Help for sylvester: sylvester(Poly,Poly,Var) Sylvester matrix of two polynomials. - See also: 1/ resultant + See also: 1/ resultant Ex1:sylvester(x^2-1,x^3-1,x) Ex2:sylvester(x^3-p*x+q,3*x^2-p,x) - + ''' return GiacMethods['sylvester'](self,*args) @@ -16787,14 +16787,14 @@ cdef class GiacMethods_base: Help for symb2poly: symb2poly(Expr, LstVar or [Var]) Returns the coefficients of a polynomial with respect to the 2nd argument or if the second argument is a list the internal format of the polynomial. - See also: 1/ poly2symb 2/ r2e + See also: 1/ poly2symb 2/ r2e Ex1:symb2poly(x*3+2.1) Ex2:symb2poly(3*x*y+2*y+1,y) Ex3:symb2poly(3*x*y+2*y+1,x,y) Ex4:symb2poly(3*x*y+2*y+1,[x,y]) Ex5:symb2poly(-x^4+x*3*y+2+y^2*z,[x,y,z]) Ex6:symb2poly(-x^4+x*3*y+2+y^2*z,[x,y,z]) - + ''' return GiacMethods['symb2poly'](self,*args) @@ -16803,12 +16803,12 @@ cdef class GiacMethods_base: Help for symbol: symbol(Opt) DOM_SYMBOLIC or symbol is the type of a symbolic variable, as returned by the type command. It is also an option of the assume command. - See also: 1/ type 2/ assume 3/ DOM_INT 4/ DOM_FLOAT + See also: 1/ type 2/ assume 3/ DOM_INT 4/ DOM_FLOAT Ex1: assume(a,symbol) Ex2: assume(a,DOM_SYMBOLIC) Ex3: a:=sqrt(2);type(a) Ex4: type(2x+1) - + ''' return GiacMethods['symbol'](self,*args) @@ -16817,9 +16817,9 @@ cdef class GiacMethods_base: Help for syst2mat: syst2mat(LstLinEq,LstVar) Returns the matrix M=A|(-b) associate to the system Y=AX+b. - See also: 1/ linsolve 2/ rref + See also: 1/ linsolve 2/ rref Ex1:syst2mat([x-y=1,x+2*y],[x,y]) - + ''' return GiacMethods['syst2mat'](self,*args) @@ -16828,9 +16828,9 @@ cdef class GiacMethods_base: Help for tCollect: tCollect(Expr) Collects trigonometric expressions. - See also: 1/ texpand 2/ tlin + See also: 1/ texpand 2/ tlin Ex1:tCollect(sin(x)+cos(x)) - + ''' return GiacMethods['tCollect'](self,*args) @@ -16839,11 +16839,11 @@ cdef class GiacMethods_base: Help for tExpand: tExpand(Expr) Expands transcendental expressions. - See also: 1/ tcollect 2/ tlin 3/ lin 4/ trigexpand + See also: 1/ tcollect 2/ tlin 3/ lin 4/ trigexpand Ex1:tExpand(sin(2*x)+exp(x+y)) Ex2:tExpand(cos(x+y)) Ex3:tExpand(cos(3*x)) - + ''' return GiacMethods['tExpand'](self,*args) @@ -16852,11 +16852,11 @@ cdef class GiacMethods_base: Help for table: table(SeqEqual(index=value)) Defines an array where the indices are strings or real numbers or defines a table with a matrix. - See also: 1/ matrix 2/ convert 3/ array + See also: 1/ matrix 2/ convert 3/ array Ex1:table(3=-10,"a"=10,"b"=20,"c"=30,"d"=40) - Ex2: A:=[[0,1],[2,3]];table(A) + Ex2: A:=[[0,1],[2,3]];table(A) Ex3: B:=table([1,2]=12,[2,5]=25);matrix(B) - + ''' return GiacMethods['table'](self,*args) @@ -16865,10 +16865,10 @@ cdef class GiacMethods_base: Help for tablefunc: tablefunc(Expr,Var) Table of values of a function : you must be in a spreadsheet. - See also: 1/ tabvar 2/ tableseq + See also: 1/ tabvar 2/ tableseq Ex1:tablefunc(sin(x),x) Ex2:tablefunc(x^2-x-2,x) - + ''' return GiacMethods['tablefunc'](self,*args) @@ -16877,10 +16877,10 @@ cdef class GiacMethods_base: Help for tableseq: tableseq(Expr,(Var or LstVar),(InitVal or LstInitVal)) Table of values of a sequence (in a spreadsheet.) - See also: 1/ tablefunc + See also: 1/ tablefunc Ex1:tableseq(cos(x),x,0.0) Ex2:tableseq(x+y,[x,y],[1,1]) - + ''' return GiacMethods['tableseq'](self,*args) @@ -16889,11 +16889,11 @@ cdef class GiacMethods_base: Help for tabsign: tabsign(Expr,Var) Table of signs of a function. - See also: 1/ tablefunc 2/ tabvar + See also: 1/ tablefunc 2/ tabvar Ex1:tabsign(x^2-x,x) Ex2:tabsign(x^2,x,-3,5) Ex3:tabsign(sin(x),x) - + ''' return GiacMethods['tabsign'](self,*args) @@ -16902,13 +16902,13 @@ cdef class GiacMethods_base: Help for tabvar: tabvar(Expr,Var) Table of variations of a function with its graph on DispG. - See also: 1/ tablefunc 2/ tabsign + See also: 1/ tablefunc 2/ tabsign Ex1:tabvar(sin(x),x) Ex2:tabvar(1/ln(x^2-1),x,diff=1) Ex3:tabvar(x^2+x+1,x) Ex4:tabvar(x^2,x,-3,5) Ex5:tabvar([sin(2t),cos(3t)]) - + ''' return GiacMethods['tabvar'](self,*args) @@ -16917,11 +16917,11 @@ cdef class GiacMethods_base: Help for tail: tail(Lst or Seq or Str) Returns the list (or sequence or string) without its first element. - See also: 1/ head 2/ mid 3/ left 4/ right 5/ back + See also: 1/ head 2/ mid 3/ left 4/ right 5/ back Ex1:tail([3,2,4,1,0]) Ex2:tail(3,2,4,1,0) Ex3:tail("bonjour") - + ''' return GiacMethods['tail'](self,*args) @@ -16930,11 +16930,11 @@ cdef class GiacMethods_base: Help for tan: tan(Expr) Tangent or option of the convert or convertir command (id halftan). - See also: 1/ atan or Opt 2/ convert 3/ halftan + See also: 1/ atan or Opt 2/ convert 3/ halftan Ex1:tan(0) Ex2:tan(pi/4) Ex3: convert(tan(x),tan) - + ''' return GiacMethods['tan'](self,*args) @@ -16943,9 +16943,9 @@ cdef class GiacMethods_base: Help for tan2cossin2: tan2cossin2(Expr) Replaces tan(x) by (1-cos(2*x))/sin(2*x) in the argument. - See also: 1/ tan2sincos2 2/ tan2sincos 3/ sin2costan 4/ cos2sintan + See also: 1/ tan2sincos2 2/ tan2sincos 3/ sin2costan 4/ cos2sintan Ex1:tan2cossin2(tan(x)) - + ''' return GiacMethods['tan2cossin2'](self,*args) @@ -16954,9 +16954,9 @@ cdef class GiacMethods_base: Help for tan2sincos: tan2sincos(Expr) Replaces tan(x) by sin(x)/cos(x) in the argument. - See also: 1/ sin2costan 2/ cos2sintan 3/ tan2sincos2 4/ tan2cossin2 + See also: 1/ sin2costan 2/ cos2sintan 3/ tan2sincos2 4/ tan2cossin2 Ex1:tan2sincos(tan(x)) - + ''' return GiacMethods['tan2sincos'](self,*args) @@ -16965,9 +16965,9 @@ cdef class GiacMethods_base: Help for tan2sincos2: tan2sincos2(Expr) Replaces tan(x) by sin(2*x)/(1+cos(2*x)) in the argument. - See also: 1/ tan2cossin2 2/ tan2sincos 3/ sin2costan 4/ cos2sintan + See also: 1/ tan2cossin2 2/ tan2sincos 3/ sin2costan 4/ cos2sintan Ex1:tan2sincos2(tan(x)) - + ''' return GiacMethods['tan2sincos2'](self,*args) @@ -16976,7 +16976,7 @@ cdef class GiacMethods_base: Help for tangent: tangent(Curve(C),Pnt(A)) tangent(C,A) draws the tangents (line or plane) to C through A. - See also: 1/ LineTan 2/ droite_tangente + See also: 1/ LineTan 2/ droite_tangente Ex1:tangent(circle(i,1+i),A) Ex2:tangent(plotfunc(sin(x)),3*pi/4) Ex3:tangent(plotfunc(sin(x)),point(3*pi/4+i*sqrt(2)/2)) @@ -16985,7 +16985,7 @@ cdef class GiacMethods_base: Ex6:tangent(plotparam(3*exp(t/2)*exp(i*t),t),7) Ex7:tangent(plotpolar(3*exp(t/2),t),7) Ex8: equation(tangente([2*cos(t),2*sin(t),3*t],t)) - + ''' return GiacMethods['tangent'](self,*args) @@ -16994,7 +16994,7 @@ cdef class GiacMethods_base: Help for tangente: tangente(Curve(C),Pnt(A)) tangent(C,A) draws the tangents (line or plane) to C through A. - See also: 1/ LineTan 2/ droite_tangente + See also: 1/ LineTan 2/ droite_tangente Ex1:tangente(circle(i,1+i),A) Ex2:tangente(plotfunc(sin(x)),3*pi/4) Ex3:tangente(plotfunc(sin(x)),point(3*pi/4+i*sqrt(2)/2)) @@ -17003,7 +17003,7 @@ cdef class GiacMethods_base: Ex6:tangente(plotparam(3*exp(t/2)*exp(i*t),t),7) Ex7:tangente(plotpolar(3*exp(t/2),t),7) Ex8: equation(tangente([2*cos(t),2*sin(t),3*t],t)) - + ''' return GiacMethods['tangente'](self,*args) @@ -17012,10 +17012,10 @@ cdef class GiacMethods_base: Help for tanh: tanh(Expr) Hyperbolic tangent. - See also: 1/ atanh 2/ hyp2exp + See also: 1/ atanh 2/ hyp2exp Ex1:tanh(0) Ex2:tanh(hyp2exp(tanh(1))) - + ''' return GiacMethods['tanh'](self,*args) @@ -17024,11 +17024,11 @@ cdef class GiacMethods_base: Help for taux_accroissement: taux_accroissement(Expr,Var,Val1,(Val1+Var or Val2)) Returns the rate of change of an expression when the variable goes from Val1 to Val2 (by default Var=x). - See also: 1/ diff 2/ limit + See also: 1/ diff 2/ limit Ex1:taux_accroissement(x^2,1,1+h) Ex2:taux_accroissement(x^2,1,2) Ex3:taux_accroissement(a^2,a,1,1+h) - + ''' return GiacMethods['taux_accroissement'](self,*args) @@ -17037,7 +17037,7 @@ cdef class GiacMethods_base: Help for taylor: taylor(Expr,[Var=limit_point],[Order]) Series expansion at finite or infinite points (by default x=0, and relative order=5). - See also: 1/ series 2/ limit 3/ pade 4/ polynom + See also: 1/ series 2/ limit 3/ pade 4/ polynom Ex1:taylor(sin(x)/x,x,0) Ex2:taylor(sin(x),x=0,5,polynom) Ex3:taylor(ln(y+y^2)-ln(y),y) @@ -17045,10 +17045,10 @@ cdef class GiacMethods_base: Ex5:taylor(ln(x+x^2)-ln(x),x=0,2) Ex6:taylor(ln(x+x^2)-ln(x),x=1,2) Ex7:taylor((x^4+x+2)/(x^2+1),x,5) - Ex8:taylor(sin(t*x+t*y)+cos(t*x*t*y),t=0,6,polynom)(h=1) + Ex8:taylor(sin(t*x+t*y)+cos(t*x*t*y),t=0,6,polynom)(h=1) Ex9:taylor(sin((1+h*t)*(pi/2+k*t)),t=0,3,polynom)(t=1) Ex10:taylor((-1+k*t)^2/(1+h*t)^3,t=0,3,polynom)(t=1) - + ''' return GiacMethods['taylor'](self,*args) @@ -17057,9 +17057,9 @@ cdef class GiacMethods_base: Help for tchebyshev1: tchebyshev1(Intg(n)) Returns the n-th Tchebyshev polynomial of first kind. - See also: 1/ tchebyshev2 2/ hermite + See also: 1/ tchebyshev2 2/ hermite Ex1:tchebyshev1(3) - + ''' return GiacMethods['tchebyshev1'](self,*args) @@ -17068,9 +17068,9 @@ cdef class GiacMethods_base: Help for tchebyshev2: tchebyshev2(Intg(n)) Returns the nt-h Tchebyshev polynomial of second kind. - See also: 1/ tchebyshev1 2/ hermite + See also: 1/ tchebyshev1 2/ hermite Ex1:tchebyshev2(3) - + ''' return GiacMethods['tchebyshev2'](self,*args) @@ -17079,10 +17079,10 @@ cdef class GiacMethods_base: Help for tcoeff: tcoeff(Poly||Lst) Returns the coefficient of the term of lowest degree of a polynomial (t=trailing). - See also: 1/ lcoeff + See also: 1/ lcoeff Ex1:tcoeff(-2*x^3+x^2+7*x) Ex2:tcoeff([-2,1,7,0]) - + ''' return GiacMethods['tcoeff'](self,*args) @@ -17091,9 +17091,9 @@ cdef class GiacMethods_base: Help for tcollect: tcollect(Expr) Collects trigonometric expressions. - See also: 1/ texpand 2/ tlin + See also: 1/ texpand 2/ tlin Ex1:tcollect(sin(x)+cos(x)) - + ''' return GiacMethods['tcollect'](self,*args) @@ -17102,8 +17102,8 @@ cdef class GiacMethods_base: Help for tdeg: tdeg(Opt) Option of the gbasis or greduce command to specify an order for monomials (complete degree then lexicographic order). - See also: 1/ gbasis 2/ greduce - + See also: 1/ gbasis 2/ greduce + ''' return GiacMethods['tdeg'](self,*args) @@ -17112,9 +17112,9 @@ cdef class GiacMethods_base: Help for tensor_product: tensor_product(Seq(G1,G2,..)) Returns the tensor product of the input graphs G1, G2, ... with vertices labelled as "u:v:..." where u, v, ... are vertices from G1, G2, ..., respectively. - See also: 1/ cartesian_product + See also: 1/ cartesian_product Ex1:tensor_product(graph(trail(1,2,3,4,5,2)),star_graph(3)) - + ''' return GiacMethods['tensor_product'](self,*args) @@ -17123,10 +17123,10 @@ cdef class GiacMethods_base: Help for tetrahedron: tetrahedron(Pnt(A),Pnt(B),Pnt(C),[Pnt(D)]) Draws the regular direct pyramid ABCD with vertices A,B and a face in the plane (A,B,C) when there is 3 arguments and the pyramid ABCD when there are 4 arguments. - See also: 1/ cube 2/ cylinder 3/ icosahedron 4/ dodecahedron 5/ octahedron + See also: 1/ cube 2/ cylinder 3/ icosahedron 4/ dodecahedron 5/ octahedron Ex1:tetrahedron([0,0,0],[3,0,0],[0,1,0]) Ex2:tetrahedron([0,0,0],[3,0,0],[0,3,0],[0,0,4]) - + ''' return GiacMethods['tetrahedron'](self,*args) @@ -17135,11 +17135,11 @@ cdef class GiacMethods_base: Help for texpand: texpand(Expr) Expands transcendental expressions. - See also: 1/ tcollect 2/ tlin 3/ lin 4/ trigexpand + See also: 1/ tcollect 2/ tlin 3/ lin 4/ trigexpand Ex1:texpand(sin(2*x)+exp(x+y)) Ex2:texpand(cos(x+y)) Ex3:texpand(cos(3*x)) - + ''' return GiacMethods['texpand'](self,*args) @@ -17148,10 +17148,10 @@ cdef class GiacMethods_base: Help for thickness: thickness(Opt) Option (Maple compatibility) of a graphic command to define the thickness of lines. - See also: 1/ line_width + See also: 1/ line_width Ex1: segment(0,point(1,1),thickness=5) Ex2: segment(0,point(1,1),epaisseur=5) - + ''' return GiacMethods['thickness'](self,*args) @@ -17160,10 +17160,10 @@ cdef class GiacMethods_base: Help for threshold: threshold(Lst,Real(bound)[=Expr(repl)] or Lst[Real(lower)[=Expr(rl)],Real(upper)[=Expr(ru)]],[Fnc(compare)],[abs[=true or false]]) Performs thresholding operations on a list of real or complex numbers. - See also: 1/ max 2/ min + See also: 1/ max 2/ min Ex1:threshold([1,3,2,4,5,4,3,2,3,1],3,'>=') Ex2:threshold([-10,-5,0,5,10],7=a,abs=true) - + ''' return GiacMethods['threshold'](self,*args) @@ -17172,10 +17172,10 @@ cdef class GiacMethods_base: Help for throw: throw(Str) Generates the display of an error in a program. - See also: 1/ try 2/ catch + See also: 1/ try 2/ catch Ex1:throw("Argument should be integer") Ex2:throw("je provoque une erreur") - + ''' return GiacMethods['throw'](self,*args) @@ -17184,10 +17184,10 @@ cdef class GiacMethods_base: Help for title: title(Opt) Global option of a graphic command to put a title in a graphic. - See also: 1/ line_width + See also: 1/ line_width Ex1: title="segment";segment(0,point(1,1),epaisseur=5) Ex2: titre="segment";segment(0,point(1,1),epaisseur=5) - + ''' return GiacMethods['title'](self,*args) @@ -17196,10 +17196,10 @@ cdef class GiacMethods_base: Help for titre: titre(Opt) Global option of a graphic command to put a title in a graphic. - See also: 1/ line_width + See also: 1/ line_width Ex1: title="segment";segment(0,point(1,1),epaisseur=5) Ex2: titre="segment";segment(0,point(1,1),epaisseur=5) - + ''' return GiacMethods['titre'](self,*args) @@ -17208,10 +17208,10 @@ cdef class GiacMethods_base: Help for tlin: tlin(ExprTrig) Trigonometric linearization. - See also: 1/ texpand 2/ lin + See also: 1/ texpand 2/ lin Ex1:tlin(sin(x)^3) Ex2:tlin(cos(x)*cos(y)) - + ''' return GiacMethods['tlin'](self,*args) @@ -17220,10 +17220,10 @@ cdef class GiacMethods_base: Help for tonnetz: tonnetz(Intg(a),Intg(b),Intg(c),[Intg(d)]) Returns the graph corresponding to the [a,b,c] resp. [a,b,c,d] tone network (tonnetz) used in neo-Riemannian music theory. - See also: 1/ is_regular 2/ clique_stats + See also: 1/ is_regular 2/ clique_stats Ex1:tonnetz(3,4,5) Ex2:tonnetz(2,3,3,4) - + ''' return GiacMethods['tonnetz'](self,*args) @@ -17232,9 +17232,9 @@ cdef class GiacMethods_base: Help for topologic_sort: topologic_sort(Graph(G)) Returns the list of vertices sorted according to the topological ordering in the directed acyclic graph G. - See also: 1/ digraph 2/ is_acyclic + See also: 1/ digraph 2/ is_acyclic Ex1:topologic_sort(digraph(%{[c,a],[c,b],[c,d],[a,d],[b,d],[a,b]%})) - + ''' return GiacMethods['topologic_sort'](self,*args) @@ -17243,9 +17243,9 @@ cdef class GiacMethods_base: Help for topological_sort: topological_sort(Graph(G)) Returns the list of vertices sorted according to the topological ordering in the directed acyclic graph G. - See also: 1/ digraph 2/ is_acyclic + See also: 1/ digraph 2/ is_acyclic Ex1:topological_sort(digraph(%{[c,a],[c,b],[c,d],[a,d],[b,d],[a,b]%})) - + ''' return GiacMethods['topological_sort'](self,*args) @@ -17254,9 +17254,9 @@ cdef class GiacMethods_base: Help for torus_grid_graph: torus_grid_graph(Intg(m),Intg(n)) Returns a torus grid graph on m*n vertices, where m,n>=3. - See also: 1/ grid_graph + See also: 1/ grid_graph Ex1:torus_grid_graph(6,12) - + ''' return GiacMethods['torus_grid_graph'](self,*args) @@ -17265,9 +17265,9 @@ cdef class GiacMethods_base: Help for total_degree: total_degree(Poly(P),Lst(Vars)) Total degree of the polynomial P with respect to the second argument. - See also: 1/ valuation 2/ size 3/ degree + See also: 1/ valuation 2/ size 3/ degree Ex1:total_degree(x^3*y+x*y,[x,y]) - + ''' return GiacMethods['total_degree'](self,*args) @@ -17276,10 +17276,10 @@ cdef class GiacMethods_base: Help for tourne_droite: tourne_droite(NULL or Real(n)) The turtle turns right by n degrees (by default n=90). - See also: 1/ tourne_gauche 2/ pas_de_cote + See also: 1/ tourne_gauche 2/ pas_de_cote Ex1: tourne_droite 60 Ex2:tourne_droite(60) - + ''' return GiacMethods['tourne_droite'](self,*args) @@ -17288,10 +17288,10 @@ cdef class GiacMethods_base: Help for tourne_gauche: tourne_gauche(NULL or Real(n)) The turtle turns left by n degrees (by defaults n=90). - See also: 1/ tourne_droite + See also: 1/ tourne_droite Ex1: tourne_gauche 60 Ex2:tourne_gauche(60) - + ''' return GiacMethods['tourne_gauche'](self,*args) @@ -17304,7 +17304,7 @@ cdef class GiacMethods_base: Ex2:tpsolve([7,10,8,8,9,6],[9,6,12,8,10],[[36,40,32,43,29],[28,27,29,40,38],[34,35,41,29,31],[41,42,35,27,36],[25,28,40,34,38],[31,30,43,38,40]]) Ex3:tpsolve([95,70,165,165],[195,150,30,45,75],[[15,M,45,M,0],[12,40,M,M,0],[0,15,25,25,0],[M,0,M,12,0]]) Ex4:tpsolve([1,1,1,1],[1,1,1,1],[[10,12,9,11],[5,10,7,8],[12,14,13,11],[8,15,11,9]]) - + ''' return GiacMethods['tpsolve'](self,*args) @@ -17313,12 +17313,12 @@ cdef class GiacMethods_base: Help for trace: trace(Mtrx or GeoObj) Returns the trace of a square matrix or draws the trace of a geometric object when the parameter changes (see Trace in Menu button of a geometric level and write only one instruction on each line). - See also: 1/ det 2/ lieu + See also: 1/ det 2/ lieu Ex1:trace([[1,2,3],[1,3,6],[2,5,7]]) Ex2:trace([[1+i,2,3],[1,3,6],[2,5,9-i]]) Ex3: assume(a=[0.7,-5,5,0.1]);trace(point(a-i*a)) Ex4: assume(a=[0.7,-5,5,0.1]);trace(inter_unique(droite(y=a*x+a),droite(y=2*a*x+1))) - + ''' return GiacMethods['trace'](self,*args) @@ -17327,9 +17327,9 @@ cdef class GiacMethods_base: Help for trail: trail(Seq(V)) Returns a trail of vertices from V (inert command). - See also: 1/ graph 2/ digraph + See also: 1/ graph 2/ digraph Ex1:trail(1,2,3,4,1) - + ''' return GiacMethods['trail'](self,*args) @@ -17338,10 +17338,10 @@ cdef class GiacMethods_base: Help for trail2edges: trail2edges(Trail(T)) Converts a trail T to the list of its edges. - See also: 1/ subgraph 2/ trail + See also: 1/ subgraph 2/ trail Ex1:trail2edges(trail(1,2,3,4,1,3)) Ex2:trail2edges([1,2,3,4,1,3]) - + ''' return GiacMethods['trail2edges'](self,*args) @@ -17350,10 +17350,10 @@ cdef class GiacMethods_base: Help for trames: trames(Opt) Option of animate and animate3d commands to give the number of pictures. - See also: 1/ animate 2/ animate3d + See also: 1/ animate 2/ animate3d Ex1: animate(sin(x*t),x=-pi..pi,t=-3..3,frames=30) Ex2: animate3d(x^2+t*y^2,[x=-2..2,y=-2..2],t=-3..3,frames=10) - + ''' return GiacMethods['trames'](self,*args) @@ -17362,11 +17362,11 @@ cdef class GiacMethods_base: Help for tran: tran(Mtrx) Transposes a matrix (without conjugation). - See also: 1/ conj 2/ trn + See also: 1/ conj 2/ trn Ex1:tran([[1,2,3],[1,3,6],[2,5,7]]) Ex2:tran([[1+i,2,3],[1,3,6],[2,5,9-i]]) Ex3:tran(conj([[1+i,2,3],[1,3,6],[2,5,9-i]])) - + ''' return GiacMethods['tran'](self,*args) @@ -17375,9 +17375,9 @@ cdef class GiacMethods_base: Help for transitive_closure: transitive_closure(Graph(G),[weighted[=true||false]]) Returns the [weighted, by default false] transitive closure of G. - See also: 1/ allpairs_distance 2/ is_connected 3/ shortest_path 4/ vertex_distance + See also: 1/ allpairs_distance 2/ is_connected 3/ shortest_path 4/ vertex_distance Ex1:transitive_closure(digraph([1,2,3,4,5,6],%{[1,2],[2,3],[2,4],[4,5],[3,5]%}),weighted) - + ''' return GiacMethods['transitive_closure'](self,*args) @@ -17386,12 +17386,12 @@ cdef class GiacMethods_base: Help for translation: translation(Vect, Pnt(C)) translation(B-A,C) (resp translation([a,b,c],C)) is the translation of C in the translation of vector AB (resp [a,b,c]). - See also: 1/ rotation 2/ reflection + See also: 1/ rotation 2/ reflection Ex1:translation(1+i,i) Ex2:translation([1,1,1],point([1,2,3])) Ex3: t:=translation(1+i);t(i) Ex4: t:=translation([1,1,1]);t(point([1,2,3])) - + ''' return GiacMethods['translation'](self,*args) @@ -17400,11 +17400,11 @@ cdef class GiacMethods_base: Help for transpose: transpose(Mtrx) Transposes a matrix (without conjugation). - See also: 1/ conj 2/ trn + See also: 1/ conj 2/ trn Ex1:transpose([[1,2,3],[1,3,6],[2,5,7]]) Ex2:transpose([[1+i,2,3],[1,3,6],[2,5,9-i]]) Ex3:transpose(conj([[1+i,2,3],[1,3,6],[2,5,9-i]])) - + ''' return GiacMethods['transpose'](self,*args) @@ -17413,14 +17413,14 @@ cdef class GiacMethods_base: Help for trapeze: trapeze(Opt) Option of the plotarea command and of the area command. - See also: 1/ plotarea 2/ area + See also: 1/ plotarea 2/ area Ex1: plotarea(x^2,x=0..1,5,trapezoid) Ex2: plotarea(x^2,x=0..1,5,middle_point) Ex3: plotarea(x^2,x=0..1,5,right_rectangle) Ex4: plotarea(x^2,x=0..1,5,left_rectangle) Ex5: area(x^2,x=0..1,5,middle_point) Ex6: area(x^2,x=0..1,5,trapezoid) - + ''' return GiacMethods['trapeze'](self,*args) @@ -17429,14 +17429,14 @@ cdef class GiacMethods_base: Help for trapezoid: trapezoid(Opt) Option of the plotarea command and of the area command. - See also: 1/ plotarea 2/ area + See also: 1/ plotarea 2/ area Ex1: plotarea(x^2,x=0..1,5,trapezoid) Ex2: plotarea(x^2,x=0..1,5,middle_point) Ex3: plotarea(x^2,x=0..1,5,right_rectangle) Ex4: plotarea(x^2,x=0..1,5,left_rectangle) Ex5: area(x^2,x=0..1,5,middle_point) Ex6: area(x^2,x=0..1,5,trapezoid) - + ''' return GiacMethods['trapezoid'](self,*args) @@ -17445,13 +17445,13 @@ cdef class GiacMethods_base: Help for traveling_salesman: traveling_salesman(Graph(G),[Mtrx(M)],[opts]) Returns a Hamiltonian cycle in an unweighted graph G or solves traveling salesman problem if G is weighted (matrix M can be used for edge weights), returning a sequence containing the minimal cost and the corresponding Hamiltonian cycle. - See also: 1/ is_hamiltonian + See also: 1/ is_hamiltonian Ex1:traveling_salesman(hypercube_graph(5)) Ex2:traveling_salesman(digraph(%{[[1,2],1],[[1,3],2],[[2,3],2],[[2,4],3],[[3,2],3],[[3,4],2],[[4,1],1]%})) Ex3: M:=randmatrix(4,4,99); traveling_salesman(graph("tetrahedron"),M) Ex4: G:=set_vertex_positions(complete_graph(42),[randvector(2,1000)$(k=1..42)]); traveling_salesman(G,vertex_distance) Ex5: G:=set_vertex_positions(complete_graph(120),[randvector(2,1000)$(k=1..120)]); c,T:=traveling_salesman(G,vertex_distance,approx) - + ''' return GiacMethods['traveling_salesman'](self,*args) @@ -17460,8 +17460,8 @@ cdef class GiacMethods_base: Help for tree: tree(Opt) Option for the draw_graph command. - See also: 1/ planar 2/ spring 3/ draw_graph - + See also: 1/ planar 2/ spring 3/ draw_graph + ''' return GiacMethods['tree'](self,*args) @@ -17470,9 +17470,9 @@ cdef class GiacMethods_base: Help for tree_height: tree_height(Graph(T),Vrtx(r)) Returns the height of the tree graph T with r as the root node. - See also: 1/ is_tree 2/ random_tree + See also: 1/ is_tree 2/ random_tree Ex1:tree_height(graph(%{[1,2],[2,3],[2,4],[4,5]%}),1) - + ''' return GiacMethods['tree_height'](self,*args) @@ -17481,9 +17481,9 @@ cdef class GiacMethods_base: Help for tri: tri(Expr(x)) Returns the value of the triangle function at x. - See also: 1/ rect 2/ Heaviside + See also: 1/ rect 2/ Heaviside Ex1:tri(x-1) - + ''' return GiacMethods['tri'](self,*args) @@ -17492,11 +17492,11 @@ cdef class GiacMethods_base: Help for triangle: triangle((Pnt or Cplx),(Pnt or Cplx),(Pnt or Cplx)) triangle(A,B,C) draws the triangle ABC. - See also: 1/ equilateral_triangle 2/ isosceles_triangle 3/ right_triangle + See also: 1/ equilateral_triangle 2/ isosceles_triangle 3/ right_triangle Ex1:triangle(point(1+i),1,0) Ex2:triangle(0,1,1+i) Ex3:triangle(point(0,0,0),point(3,3,3),point(0,3,3)) - + ''' return GiacMethods['triangle'](self,*args) @@ -17509,7 +17509,7 @@ cdef class GiacMethods_base: Ex2:triangle_paper(1,pi/3,sqrt(3)/2,x=-1..4,y=-2..2) Ex3:triangle_paper(papier_triangule(1,pi/3,sqrt(3)/2,x=-2..6,y=-4*sqrt(3)..4*sqrt(3))) Ex4:triangle_paper(0.5,3*pi/4,0.5) - + ''' return GiacMethods['triangle_paper'](self,*args) @@ -17518,12 +17518,12 @@ cdef class GiacMethods_base: Help for triangle_plein: triangle_plein(Real(a),[Real(b)],[Real(t)]) Draws a full direct triangle with sides a,b and with angle t, from the turtle position (by default t=90 or (b=a and t=60)). - See also: 1/ rectangle_plein + See also: 1/ rectangle_plein Ex1: triangle_plein 30 Ex2:triangle_plein(30) Ex3:triangle_plein(30,40) Ex4:triangle_plein(30,40,60) - + ''' return GiacMethods['triangle_plein'](self,*args) @@ -17532,10 +17532,10 @@ cdef class GiacMethods_base: Help for triangle_point: triangle_point(Opt) Option of the display command for a point. - See also: 1/ display + See also: 1/ display Ex1: F:=display(point(2+1.5*i),point_point) Ex2: F:=display(point(2+1.5*i),rhombus_point) - + ''' return GiacMethods['triangle_point'](self,*args) @@ -17544,9 +17544,9 @@ cdef class GiacMethods_base: Help for triangle_window: triangle_window(Lst,[Intg(d)],[Interval(n1..n2)]) Applies the triangular windowing function with parameter d in {-1,0,1} (by default L=0) to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ bartlett_hann_window 13/ tukey_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ bartlett_hann_window 13/ tukey_window 14/ welch_window Ex1: scatterplot(triangle_window(randvector(1000,0..1),1)) - + ''' return GiacMethods['triangle_window'](self,*args) @@ -17555,9 +17555,9 @@ cdef class GiacMethods_base: Help for trig2exp: trig2exp(Expr) Replaces in the argument the trigonometric functions by complex exponentials without linearisation. - See also: 1/ exp2trig 2/ atrig2ln + See also: 1/ exp2trig 2/ atrig2ln Ex1:trig2exp(sin(x)) - + ''' return GiacMethods['trig2exp'](self,*args) @@ -17566,9 +17566,9 @@ cdef class GiacMethods_base: Help for trigcos: trigcos(Expr) Simplifies the argument with the formulas sin(x)^2+cos(x)^2=1 and tan(x)=sin(x)/cos(x) privileging cosine. - See also: 1/ trigsin 2/ trigtan + See also: 1/ trigsin 2/ trigtan Ex1:trigcos(sin(x)^4+sin(x)^2) - + ''' return GiacMethods['trigcos'](self,*args) @@ -17577,9 +17577,9 @@ cdef class GiacMethods_base: Help for trigexpand: trigexpand(Expr) Expands trigonometric functions. - See also: 1/ texpand 2/ lnexpand 3/ expexpand + See also: 1/ texpand 2/ lnexpand 3/ expexpand Ex1:trigexpand(sin(3*x)) - + ''' return GiacMethods['trigexpand'](self,*args) @@ -17588,10 +17588,10 @@ cdef class GiacMethods_base: Help for triginterp: triginterp(List,Var=xmin..xmax) Returns a trigonometric polynomial interpolation (with respect to variable x) of the points with ordinate given in list y and the abscissa equally spaced between a and b. - See also: 1/ lagrange 2/ thiele + See also: 1/ lagrange 2/ thiele Ex1:triginterp([11,10,17,24,32,26,23,19],x=0..21) Ex2:triginterp([11,10,17,24,32,26,23,19],0,21,x) - + ''' return GiacMethods['triginterp'](self,*args) @@ -17600,9 +17600,9 @@ cdef class GiacMethods_base: Help for trigsimplify: trigsimplify(Expr) Simplifies a trigonometric expression. - See also: 1/ simplify + See also: 1/ simplify Ex1:trigsimplify(3*sin(x)-4*sin(x)^3) - + ''' return GiacMethods['trigsimplify'](self,*args) @@ -17611,9 +17611,9 @@ cdef class GiacMethods_base: Help for trigsin: trigsin(Expr) Simplifies the argument with the formulas sin(x)^2+cos(x)^2=1 and tan(x)=sin(x)/cos(x) privileging sine. - See also: 1/ trigcos 2/ trigtan + See also: 1/ trigcos 2/ trigtan Ex1:trigsin(cos(x)^4+sin(x)^2) - + ''' return GiacMethods['trigsin'](self,*args) @@ -17622,9 +17622,9 @@ cdef class GiacMethods_base: Help for trigtan: trigtan(Expr) Simplifies the argument with the formulas sin(x)^2+cos(x)^2=1 and tan(x)=sin(x)/cos(x) privileging tangent. - See also: 1/ trigsin 2/ trigcos + See also: 1/ trigsin 2/ trigcos Ex1:trigtan(cos(x)^4+sin(x)^2) - + ''' return GiacMethods['trigtan'](self,*args) @@ -17633,9 +17633,9 @@ cdef class GiacMethods_base: Help for trn: trn(Mtrx) Returns the adjoint matrix of A =tran(conj(A)). - See also: 1/ tran 2/ conj + See also: 1/ tran 2/ conj Ex1:trn([[1,2+i],[3,4]]) - + ''' return GiacMethods['trn'](self,*args) @@ -17644,9 +17644,9 @@ cdef class GiacMethods_base: Help for true: true() Boolean equal to true or 1. - See also: 1/ false + See also: 1/ false Ex1: a:=true - + ''' return GiacMethods['true'](self,*args) @@ -17655,13 +17655,13 @@ cdef class GiacMethods_base: Help for trunc: trunc(Real||LstReal,Int(n)) Truncates value to n decimal places (by default n=0). Accepts complex numbers.(type=DOM_COMPLEX or DOM_FLOAT). - See also: 1/ fPart 2/ floor 3/ iPart + See also: 1/ fPart 2/ floor 3/ iPart Ex1:trunc(4.3) Ex2:trunc(sqrt(2),3) Ex3:trunc([4.3333,sqrt(2)]) Ex4:trunc([4.3333,sqrt(2)],2) Ex5:trunc(sqrt(2)+i*sqrt(5),4) - + ''' return GiacMethods['trunc'](self,*args) @@ -17670,9 +17670,9 @@ cdef class GiacMethods_base: Help for truncate: truncate(Poly(P),Intg(n)) Truncates the polynomial P at order n. - See also: 1/ series + See also: 1/ series Ex1:truncate((x^2+x)^2,3) - + ''' return GiacMethods['truncate'](self,*args) @@ -17681,9 +17681,9 @@ cdef class GiacMethods_base: Help for truncate_graph: truncate_graph(Graph(G)) Returns the graph obtained by truncating the biconnected planar graph G. - See also: 1/ is_biconnected 2/ is_planar 3/ plane_dual + See also: 1/ is_biconnected 2/ is_planar 3/ plane_dual Ex1:truncate_graph(graph("tetrahedron")) - + ''' return GiacMethods['truncate_graph'](self,*args) @@ -17692,9 +17692,9 @@ cdef class GiacMethods_base: Help for tsimplify: tsimplify(Expr) Lowers the number of non rational variables. - See also: 1/ simplify + See also: 1/ simplify Ex1:tsimplify(exp(2*x)+exp(x)) - + ''' return GiacMethods['tsimplify'](self,*args) @@ -17703,9 +17703,9 @@ cdef class GiacMethods_base: Help for tuer: tuer(NULL) Stop step-by-step execution of a program (with debug). - See also: 1/ + See also: 1/ Ex1:tuer() - + ''' return GiacMethods['tuer'](self,*args) @@ -17714,9 +17714,9 @@ cdef class GiacMethods_base: Help for tukey_window: tukey_window(Lst,[Real(a)],[Interval(n1..n2)]) Applies the Tukey windowing function with parameter a in [0,1] (by default a=0.5) to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ bartlett_hann_window 14/ welch_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ bartlett_hann_window 14/ welch_window Ex1: scatterplot(tukey_window(randvector(1000,0..1),0.4)) - + ''' return GiacMethods['tukey_window'](self,*args) @@ -17725,10 +17725,10 @@ cdef class GiacMethods_base: Help for tutte_polynomial: tutte_polynomial(Graph(G),[Var(x),Var(y)]) Returns the Tutte polynomial [or its value at point (x,y)] of undirected graph G. If G is weighted, all weights must be positive integers and are interpreted as edge multiplicities. - See also: 1/ chromatic_polynomial 2/ flow_polynomial 3/ reliability_polynomial 4/ delete_edge 5/ contract_edge + See also: 1/ chromatic_polynomial 2/ flow_polynomial 3/ reliability_polynomial 4/ delete_edge 5/ contract_edge Ex1:tutte_polynomial(graph("tetrahedron")) Ex2:tutte_polynomial(graph("tetrahedron"),1,1) - + ''' return GiacMethods['tutte_polynomial'](self,*args) @@ -17737,9 +17737,9 @@ cdef class GiacMethods_base: Help for two_edge_connected_components: two_edge_connected_components(Graph(G)) Returns the list of two-edge-connected components of undirected graph G, each of them represented by the list of its vertices. - See also: 1/ is_two_edge_connected 2/ connected_components + See also: 1/ is_two_edge_connected 2/ connected_components Ex1:two_edge_connected_components(graph(trail(1,2,3,4,5,3,1),trail(5,6,7,8,6))) - + ''' return GiacMethods['two_edge_connected_components'](self,*args) @@ -17748,9 +17748,9 @@ cdef class GiacMethods_base: Help for ufactor: ufactor(Unit,Unit) Factors a unit in a unit object. - See also: 1/ convert 2/ mksa 3/ usimplify + See also: 1/ convert 2/ mksa 3/ usimplify Ex1:ufactor(100_C,1_A) - + ''' return GiacMethods['ufactor'](self,*args) @@ -17759,10 +17759,10 @@ cdef class GiacMethods_base: Help for ugamma: ugamma(Real(a),Real(x),[1]) Calculates ugamma function at a point (a,x):if a and x>=0 ugamma(a,x)=int(e^{-t}*t^{a-1},t=x..inf),(ugamma(a,x)+igamma(a,x)=Gamma(a)). - See also: 1/ Psi 2/ Beta 3/ Gamma 4/ igamma + See also: 1/ Psi 2/ Beta 3/ Gamma 4/ igamma Ex1:ugamma(5.0,2.0) Ex2:ugamma(-5.1,2.1) - + ''' return GiacMethods['ugamma'](self,*args) @@ -17771,10 +17771,10 @@ cdef class GiacMethods_base: Help for unapply: unapply(Expr,Var) Returns a function defined by an expression. - See also: 1/ apply + See also: 1/ apply Ex1:unapply(2*x^2,x) Ex2: f(x):=x*exp(x);g:=unapply(diff(f(x),x),x) - + ''' return GiacMethods['unapply'](self,*args) @@ -17783,10 +17783,10 @@ cdef class GiacMethods_base: Help for unarchive: unarchive(Str(namefich),Seq(Var)) Reads the value of a variable or of a list of variables which are in the file given as argument (file created with archive). - See also: 1/ archive 2/ Archive 3/ Unarchiv + See also: 1/ archive 2/ Archive 3/ Unarchiv Ex1:unarchive("toto") Ex2:unarchive("aa.txt") - + ''' return GiacMethods['unarchive'](self,*args) @@ -17795,9 +17795,9 @@ cdef class GiacMethods_base: Help for underlying_graph: underlying_graph(Graph(G)) Returns the graph obtained by stripping directions and weights from arcs (pairs of arcs connecting the same vertices are merged to a single edge). - See also: 1/ is_directed 2/ is_weighted 3/ make_directed 4/ make_weighted + See also: 1/ is_directed 2/ is_weighted 3/ make_directed 4/ make_weighted Ex1:underlying_graph(digraph(trail(1,2,3,4,1))) - + ''' return GiacMethods['underlying_graph'](self,*args) @@ -17806,13 +17806,13 @@ cdef class GiacMethods_base: Help for unfactored: unfactored(Opt.) Option of the plotimplicit command. - See also: 1/ plotimplicit + See also: 1/ plotimplicit Ex1: plotimplicit(x^2+y^2-1,x,y,unfactored) Ex2: plotimplicit(x^2+y^2-1,[x,y],unfactored) Ex3: plotimplicit(x^2+y^2+z^2-1,x,y,z,xstep=0.2,ystep=0.2,zstep=0.2,unfactored) Ex4: plotimplicit(x^2+y^2+z^2-1,[x,y,z],xstep=0.2,ystep=0.2,zstep=0.2,unfactored) Ex5: plotimplicit(x^2+y^2+z^2-1,x=0..1,y=0..1,z=0..1,xstep=0.2,ystep=0.2,zstep=0.2,unfactored) - + ''' return GiacMethods['unfactored'](self,*args) @@ -17821,12 +17821,12 @@ cdef class GiacMethods_base: Help for uniform: uniform(Real(a),Real(b),Real(x)) Returns the probability density at x of the uniform law on [a,b]. - See also: 1/ uniform_cdf 2/ uniform_icdf 3/ randvector 4/ ranm + See also: 1/ uniform_cdf 2/ uniform_icdf 3/ randvector 4/ ranm Ex1:uniform(2,5,4) Ex2:uniform(1.2,3.5,3) Ex3: randvector(3,uniform,1.2,3.5) Ex4: ranm(4,3,uniform,1.2,3.5) - + ''' return GiacMethods['uniform'](self,*args) @@ -17835,10 +17835,10 @@ cdef class GiacMethods_base: Help for uniform_cdf: uniform_cdf(Real(a),Real(b),Real(x0),[Real(y0)]) Returns the probability that a uniform random variable on [a,b] is less than x0 (or between x0 and y0). - See also: 1/ uniformd 2/ uniform_icdf + See also: 1/ uniformd 2/ uniform_icdf Ex1:uniform_cdf(3.2,5.7,4.4) Ex2:uniform_cdf(3.2,5.7,4.4,5.4) - + ''' return GiacMethods['uniform_cdf'](self,*args) @@ -17847,10 +17847,10 @@ cdef class GiacMethods_base: Help for uniform_icdf: uniform_icdf(Real(a),Real(b),Real(p)) Returns h such that the probability that a uniform random variable on [a,b] is less than h is p (0<=p<=1). - See also: 1/ uniform_cdf 2/ uniformd + See also: 1/ uniform_cdf 2/ uniformd Ex1:uniform_icdf(4.2,10.3,0.95) Ex2:uniform_icdf(3.2,5.7,0.48) - + ''' return GiacMethods['uniform_icdf'](self,*args) @@ -17859,12 +17859,12 @@ cdef class GiacMethods_base: Help for uniformd: uniformd(Real(a),Real(b),Real(x)) Returns the probability density at x of the uniform law on [a,b]. - See also: 1/ uniform_cdf 2/ uniform_icdf 3/ randvector 4/ ranm + See also: 1/ uniform_cdf 2/ uniform_icdf 3/ randvector 4/ ranm Ex1:uniformd(2,5,4) Ex2:uniformd(1.2,3.5,3) Ex3: randvector(3,uniform,1.2,3.5) Ex4: ranm(4,3,uniform,1.2,3.5) - + ''' return GiacMethods['uniformd'](self,*args) @@ -17873,10 +17873,10 @@ cdef class GiacMethods_base: Help for uniformd_cdf: uniformd_cdf(Real(a),Real(b),Real(x0),[Real(y0)]) Returns the probability that a uniform random variable on [a,b] is less than x0 (or between x0 and y0). - See also: 1/ uniformd 2/ uniform_icdf + See also: 1/ uniformd 2/ uniform_icdf Ex1:uniformd_cdf(3.2,5.7,4.4) Ex2:uniformd_cdf(3.2,5.7,4.4,5.4) - + ''' return GiacMethods['uniformd_cdf'](self,*args) @@ -17885,10 +17885,10 @@ cdef class GiacMethods_base: Help for uniformd_icdf: uniformd_icdf(Real(a),Real(b),Real(p)) Returns h such that the probability that a uniform random variable on [a,b] is less than h is p (0<=p<=1). - See also: 1/ uniform_cdf 2/ uniformd + See also: 1/ uniform_cdf 2/ uniformd Ex1:uniformd_icdf(4.2,10.3,0.95) Ex2:uniformd_icdf(3.2,5.7,0.48) - + ''' return GiacMethods['uniformd_icdf'](self,*args) @@ -17897,12 +17897,12 @@ cdef class GiacMethods_base: Help for unitV: unitV(Lst||Cplx) Returns the vector divided by its l2norm. It is also an option for plotfield. - See also: 1/ l2norm + See also: 1/ l2norm Ex1:unitV(3+4*i) Ex2:unitV([3,4]) Ex3: fieldplot(-t*y,[t,y],normalize) Ex4: fieldplot(-t*y,[t,y],normalize,xstep=0.5,ystep=0.5) - + ''' return GiacMethods['unitV'](self,*args) @@ -17911,9 +17911,9 @@ cdef class GiacMethods_base: Help for unquote: unquote(Expr) Evaluates a quoted expression (for example purge(c);a:=c;unquote(a):=3; put 3 in the variables a and c). - See also: 1/ quote + See also: 1/ quote Ex1:unquote(a) - + ''' return GiacMethods['unquote'](self,*args) @@ -17922,10 +17922,10 @@ cdef class GiacMethods_base: Help for upper: upper(Mtrx||Strng) Returns the upper triangular matrix (over the diagonal, included) or writes a string in uppercase. - See also: 1/ diag 2/ lower + See also: 1/ diag 2/ lower Ex1:upper([[1,2,3],[4,5,6],[7,8,9]]) Ex2:upper("hello") - + ''' return GiacMethods['upper'](self,*args) @@ -17934,10 +17934,10 @@ cdef class GiacMethods_base: Help for user_operator: user_operator(Str(R),Fnc(f),Opt(Binary||Unary||Delete)) Defines a binary operator and returns 0 (failure) or 1(success). - See also: 1/ + See also: 1/ Ex1:user_operator("R",(x,y)->x*y+x+y,Binary) Ex2:user_operator("R",(x,y)->x*y+x+y,Delete) - + ''' return GiacMethods['user_operator'](self,*args) @@ -17946,9 +17946,9 @@ cdef class GiacMethods_base: Help for usimplify: usimplify(Unit) Simplifies a unit in a unit object. - See also: 1/ convert 2/ mksa 3/ ufactor + See also: 1/ convert 2/ mksa 3/ ufactor Ex1:usimplify(100_(W*s)) - + ''' return GiacMethods['usimplify'](self,*args) @@ -17957,12 +17957,12 @@ cdef class GiacMethods_base: Help for valuation: valuation(Poly(P)) Returns the valuation (degree of the term of lowest degree) of the polynomial P. - See also: 1/ degree 2/ tcoeff + See also: 1/ degree 2/ tcoeff Ex1:valuation(x^4+x^3) Ex2:valuation([1,1,0,0,0]) Ex3:valuation(x^5+3*x^2) Ex4:valuation([5,0,0,3,0,0]) - + ''' return GiacMethods['valuation'](self,*args) @@ -17971,9 +17971,9 @@ cdef class GiacMethods_base: Help for vandermonde: vandermonde(Vect(V)) Returns the Vandermonde matrix=[V^0,V^1,..]. - See also: 1/ det + See also: 1/ det Ex1:vandermonde([1,2,a]) - + ''' return GiacMethods['vandermonde'](self,*args) @@ -17982,10 +17982,10 @@ cdef class GiacMethods_base: Help for variables_are_files: variables_are_files(:=Intg(0 or 1)) Pseudo-variable to specify if you want to save the variables as file "nameofthevariable.cas". - See also: 1/ cas_setup + See also: 1/ cas_setup Ex1: variables_are_files:=1 Ex2: variables_are_files:=0 - + ''' return GiacMethods['variables_are_files'](self,*args) @@ -17994,11 +17994,11 @@ cdef class GiacMethods_base: Help for variance: variance(Lst||Mtrx,[Lst]) Returns the variance of a list with the second argument as weights or the list of variances of the columns of a matrix. - See also: 1/ stddev 2/ mean + See also: 1/ stddev 2/ mean Ex1:variance([3,4,2]) Ex2:variance([1,2,3],[1,2,1]) Ex3:variance([[1,2,3],[5,6,7]]) - + ''' return GiacMethods['variance'](self,*args) @@ -18007,9 +18007,9 @@ cdef class GiacMethods_base: Help for version: version(NULL) Returns the giac version number; for example, you are using : giac 0.4.0 - See also: 1/ + See also: 1/ Ex1:version() - + ''' return GiacMethods['version'](self,*args) @@ -18018,11 +18018,11 @@ cdef class GiacMethods_base: Help for vertex_connectivity: vertex_connectivity(Graph(G)) Returns the largest integer k such that undirected connected graph G remains connected when fewer than k vertices are removed. - See also: 1/ edge_connectivity 2/ is_connected + See also: 1/ edge_connectivity 2/ is_connected Ex1:vertex_connectivity(graph("petersen")) Ex2:vertex_connectivity(graph("clebsch")) Ex3:vertex_connectivity(complete_graph(5)) - + ''' return GiacMethods['vertex_connectivity'](self,*args) @@ -18031,9 +18031,9 @@ cdef class GiacMethods_base: Help for vertex_degree: vertex_degree(Graph(G),Vrtx(v)) Returns the degree of the vertex v in G (i.e. the number of edges incident to v). - See also: 1/ degree_sequence 2/ is_regular 3/ maximum_degree 4/ minimum_degree 5/ vertex_in_degree 6/ vertex_out_degree + See also: 1/ degree_sequence 2/ is_regular 3/ maximum_degree 4/ minimum_degree 5/ vertex_in_degree 6/ vertex_out_degree Ex1:vertex_degree(digraph(trail(1,2,3,4,2)),2) - + ''' return GiacMethods['vertex_degree'](self,*args) @@ -18042,10 +18042,10 @@ cdef class GiacMethods_base: Help for vertex_distance: vertex_distance(Graph(G),Vrtx(s),Vrtx(t)||Lst(T)) Returns the number of edges in the shortest path from vertex s to vertex t in G. If such path does not exist, returns +infinity. For vector T of vertices from G returns the list of distances from s to each vertex t in T. - See also: 1/ allpairs_distance 2/ graph_diameter 3/ dijkstra 4/ shortest_path + See also: 1/ allpairs_distance 2/ graph_diameter 3/ dijkstra 4/ shortest_path Ex1:vertex_distance(graph("petersen"),1,4) Ex2:vertex_distance(graph("petersen"),1,[2,4]) - + ''' return GiacMethods['vertex_distance'](self,*args) @@ -18054,9 +18054,9 @@ cdef class GiacMethods_base: Help for vertex_in_degree: vertex_in_degree(Graph(G),Vrtx(v)) Returns the number of arcs in G entering the vertex v. - See also: 1/ degree_sequence 2/ is_regular 3/ maximum_degree 4/ minimum_degree 5/ vertex_degree 6/ vertex_out_degree + See also: 1/ degree_sequence 2/ is_regular 3/ maximum_degree 4/ minimum_degree 5/ vertex_degree 6/ vertex_out_degree Ex1:vertex_in_degree(digraph(trail(1,2,3,4,2)),2) - + ''' return GiacMethods['vertex_in_degree'](self,*args) @@ -18065,9 +18065,9 @@ cdef class GiacMethods_base: Help for vertex_out_degree: vertex_out_degree(Graph(G),Vrtx(v)) Returns the number of arcs in G emanating from the vertex v. - See also: 1/ degree_sequence 2/ is_regular 3/ maximum_degree 4/ minimum_degree 5/ vertex_degree 6/ vertex_in_degree + See also: 1/ degree_sequence 2/ is_regular 3/ maximum_degree 4/ minimum_degree 5/ vertex_degree 6/ vertex_in_degree Ex1:vertex_out_degree(digraph(trail(1,2,3,4,2)),2) - + ''' return GiacMethods['vertex_out_degree'](self,*args) @@ -18076,11 +18076,11 @@ cdef class GiacMethods_base: Help for vertices: vertices(Polygon or Polyedr(P)) Returns the list of the vertices of the polygon or polyhedron P. - See also: 1/ isosceles_triangle 2/ polyhedron + See also: 1/ isosceles_triangle 2/ polyhedron Ex1:vertices(isosceles_triangle(0,1,pi/4)) Ex2:vertices(polyhedron([0,0,0],[0,5,0],[0,0,5],[1,2,6])) Ex3:vertices(isosceles_triangle(0,1,pi/4))[2] - + ''' return GiacMethods['vertices'](self,*args) @@ -18089,11 +18089,11 @@ cdef class GiacMethods_base: Help for vertices_abc: vertices_abc(Polygon or Polyedr(P)) Returns the list of the vertices of the polygon or polyhedron P. - See also: 1/ isosceles_triangle 2/ polyhedron + See also: 1/ isosceles_triangle 2/ polyhedron Ex1:vertices_abc(isosceles_triangle(0,1,pi/4)) Ex2:vertices_abc(polyhedron([0,0,0],[0,5,0],[0,0,5],[1,2,6])) Ex3:vertices_abc(isosceles_triangle(0,1,pi/4))[2] - + ''' return GiacMethods['vertices_abc'](self,*args) @@ -18102,11 +18102,11 @@ cdef class GiacMethods_base: Help for vertices_abca: vertices_abca(Polygon or Polyedr(P)) Returns the closed list [A,B,...A] of the vertices of the polygon or polyhedron P. - See also: 1/ isosceles_triangle 2/ polyhedron + See also: 1/ isosceles_triangle 2/ polyhedron Ex1:vertices_abca(isosceles_triangle(0,1,pi/4)) Ex2:vertices_abca(polyhedron([0,0,0],[0,5,0],[0,0,5],[1,2,6])) Ex3:vertices_abca(isosceles_triangle(0,1,pi/4))[2] - + ''' return GiacMethods['vertices_abca'](self,*args) @@ -18115,9 +18115,9 @@ cdef class GiacMethods_base: Help for vpotential: vpotential(Vect(V),LstVar) Returns U such that curl(U)=V. - See also: 1/ curl 2/ potential + See also: 1/ curl 2/ potential Ex1:vpotential([2*x*y+3,x^2-4*z,-2*y*z],[x,y,z]) - + ''' return GiacMethods['vpotential'](self,*args) @@ -18126,9 +18126,9 @@ cdef class GiacMethods_base: Help for web_graph: web_graph(Intg(a),Intg(b)) Returns a web graph on a*b vertices, where a>=3 and b>=2. - See also: 1/ prism_graph 2/ wheel_graph + See also: 1/ prism_graph 2/ wheel_graph Ex1:web_graph(5,3) - + ''' return GiacMethods['web_graph'](self,*args) @@ -18137,11 +18137,11 @@ cdef class GiacMethods_base: Help for weibull: weibull(Real(k),Real(lambda),Real(theta),Real(x)) Returns the density of probability at x of the Weibull law with parameters k, lambda, theta (by default theta=0). - See also: 1/ weibull_cdf 2/ weibull_icdf + See also: 1/ weibull_cdf 2/ weibull_icdf Ex1:weibull(2.1,1.2,1.3) Ex2:weibull(2.1,1.2,0.0,1.3) Ex3:weibull(2.1,1.2,0.5,1.8) - + ''' return GiacMethods['weibull'](self,*args) @@ -18150,13 +18150,13 @@ cdef class GiacMethods_base: Help for weibull_cdf: weibull_cdf(Real(k),Real(lambda),Real(theta),Real(x0)) Returns the probability that a Weibull random variable of parameters k, lambda, theta is less than x0. - See also: 1/ weibulld 2/ weibull_icdf + See also: 1/ weibulld 2/ weibull_icdf Ex1:weibull_cdf(2.1,1.2,1.9) Ex2:weibull_cdf(2.1,1.2,0.0,1.9) Ex3:weibull_cdf(2.2,1.5,0.4,1.9) Ex4:weibull_cdf(2.2,1.5,0.4,1.2) Ex5:weibull_cdf(2.2,1.5,0.4,1.2,1.9) - + ''' return GiacMethods['weibull_cdf'](self,*args) @@ -18165,10 +18165,10 @@ cdef class GiacMethods_base: Help for weibull_icdf: weibull_icdf(Real(k),Real(lambda),Real(theta),Real(p)) Returns h such that the probability that a Weibull random variable of parameters k, lambda, theta is less than h is p (0<=p<=1). - See also: 1/ weibull_cdf 2/ weibull + See also: 1/ weibull_cdf 2/ weibull Ex1:weibull_icdf(4.2,1.3,0.0,0.95) Ex2:weibull_icdf(2.2,1.5,0.4,0.632) - + ''' return GiacMethods['weibull_icdf'](self,*args) @@ -18177,11 +18177,11 @@ cdef class GiacMethods_base: Help for weibulld: weibulld(Real(k),Real(lambda),Real(theta),Real(x)) Returns the density of probability at x of the Weibull law with parameters k, lambda, theta (by default theta=0). - See also: 1/ weibull_cdf 2/ weibull_icdf + See also: 1/ weibull_cdf 2/ weibull_icdf Ex1:weibulld(2.1,1.2,1.3) Ex2:weibulld(2.1,1.2,0.0,1.3) Ex3:weibulld(2.1,1.2,0.5,1.8) - + ''' return GiacMethods['weibulld'](self,*args) @@ -18190,13 +18190,13 @@ cdef class GiacMethods_base: Help for weibulld_cdf: weibulld_cdf(Real(k),Real(lambda),Real(theta),Real(x0)) Returns the probability that a Weibull random variable of parameters k, lambda, theta is less than x0. - See also: 1/ weibulld 2/ weibull_icdf + See also: 1/ weibulld 2/ weibull_icdf Ex1:weibulld_cdf(2.1,1.2,1.9) Ex2:weibulld_cdf(2.1,1.2,0.0,1.9) Ex3:weibulld_cdf(2.2,1.5,0.4,1.9) Ex4:weibulld_cdf(2.2,1.5,0.4,1.2) Ex5:weibulld_cdf(2.2,1.5,0.4,1.2,1.9) - + ''' return GiacMethods['weibulld_cdf'](self,*args) @@ -18205,10 +18205,10 @@ cdef class GiacMethods_base: Help for weibulld_icdf: weibulld_icdf(Real(k),Real(lambda),Real(theta),Real(p)) Returns h such that the probability that a Weibull random variable of parameters k, lambda, theta is less than h is p (0<=p<=1). - See also: 1/ weibull_cdf 2/ weibull + See also: 1/ weibull_cdf 2/ weibull Ex1:weibulld_icdf(4.2,1.3,0.0,0.95) Ex2:weibulld_icdf(2.2,1.5,0.4,0.632) - + ''' return GiacMethods['weibulld_icdf'](self,*args) @@ -18217,10 +18217,10 @@ cdef class GiacMethods_base: Help for weibullvariate: weibullvariate(Real(a),Real(b)) Returns a random real according to the Weibull distribution with parameters a>0 and b>0. - See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector + See also: 1/ rand 2/ randpoly 3/ randnorm 4/ randvector Ex1:weibullvariate(1,2) Ex2:weibullvariate(1.5,4) - + ''' return GiacMethods['weibullvariate'](self,*args) @@ -18229,9 +18229,9 @@ cdef class GiacMethods_base: Help for weight_matrix: weight_matrix(Graph(G)) Returns the weight matrix of G. - See also: 1/ set_edge_weight 2/ get_edge_weights 3/ is_weighted 4/ make_weighted 5/ assign_edge_weights + See also: 1/ set_edge_weight 2/ get_edge_weights 3/ is_weighted 4/ make_weighted 5/ assign_edge_weights Ex1:weight_matrix(graph(%{[[1,2],2],[[2,3],1]%}) - + ''' return GiacMethods['weight_matrix'](self,*args) @@ -18240,8 +18240,8 @@ cdef class GiacMethods_base: Help for weighted: weighted(Opt) Option for graph and digraph commands. - See also: 1/ directed 2/ graph 3/ digraph - + See also: 1/ directed 2/ graph 3/ digraph + ''' return GiacMethods['weighted'](self,*args) @@ -18250,8 +18250,8 @@ cdef class GiacMethods_base: Help for weights: weights(Opt) Option for the edges command. - See also: 1/ edges - + See also: 1/ edges + ''' return GiacMethods['weights'](self,*args) @@ -18260,9 +18260,9 @@ cdef class GiacMethods_base: Help for welch_window: welch_window(Lst,[Interval(n1..n2)]) Applies the Welch windowing function to the given signal u (or to the elements with indices between n1 and n2) and returns the result in a new list. - See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ bartlett_hann_window + See also: 1/ blackman_harris_window 2/ blackman_window 3/ bohman_window 4/ cosine_window 5/ gaussian_window 6/ hamming_window 7/ hann_poisson_window 8/ hann_window 9/ parzen_window 10/ poisson_window 11/ riemann_window 12/ triangle_window 13/ tukey_window 14/ bartlett_hann_window Ex1: scatterplot(welch_window(randvector(1000,0..1))) - + ''' return GiacMethods['welch_window'](self,*args) @@ -18271,9 +18271,9 @@ cdef class GiacMethods_base: Help for wheel_graph: wheel_graph(Intg(n)) Returns a wheel graph with n+1 vertices. - See also: 1/ star_graph 2/ web_graph + See also: 1/ star_graph 2/ web_graph Ex1:wheel_graph(5) - + ''' return GiacMethods['wheel_graph'](self,*args) @@ -18282,11 +18282,11 @@ cdef class GiacMethods_base: Help for widget_size: widget_size(Intg(n)) Changes the character sizes of the display on the xcas screen (size=n) and with more parameters define the general configuration. - See also: 1/ cas_setup + See also: 1/ cas_setup Ex1:widget_size(20) Ex2:widget_size(8) Ex3:widget_size(20,58,49,697,563,1,1,0) - + ''' return GiacMethods['widget_size'](self,*args) @@ -18295,10 +18295,10 @@ cdef class GiacMethods_base: Help for wilcoxonp: wilcoxonp(Intg,[Intg]) Distribution of the Wilcoxon or Mann-Whitney test for one or two samples. - See also: 1/ wilcoxont 2/ wilcoxons + See also: 1/ wilcoxont 2/ wilcoxons Ex1:wilcoxonp(4) Ex2:wilcoxonp(7,5) - + ''' return GiacMethods['wilcoxonp'](self,*args) @@ -18307,10 +18307,10 @@ cdef class GiacMethods_base: Help for wilcoxons: wilcoxons(List,List || Real) Rank statistic of Wilcoxon or Mann-Whitney for 1 sample and one median or 2 samples. - See also: 1/ wilcoxont 2/ wilcoxonp + See also: 1/ wilcoxont 2/ wilcoxonp Ex1:wilcoxons([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , [2, 6, 10, 11, 13, 14, 15, 18, 19, 20]) Ex2:wilcoxons([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , 10) - + ''' return GiacMethods['wilcoxons'](self,*args) @@ -18319,12 +18319,12 @@ cdef class GiacMethods_base: Help for wilcoxont: wilcoxont(List,List || Real,[Func],[Real]) Wilcoxon or Mann-Whitney test for one sample and a median or 2 samples. - See also: 1/ wilcoxonp 2/ wilcoxons 3/ studentt 4/ normalt + See also: 1/ wilcoxonp 2/ wilcoxons 3/ studentt 4/ normalt Ex1:wilcoxont([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , [2, 6, 10, 11, 13, 14, 15, 18, 19, 20]) Ex2:wilcoxont([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , [2, 6, 10, 11, 13, 14, 15, 18, 19, 20],0.01) Ex3:wilcoxont([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , 10,'>') Ex4:wilcoxont([1, 3, 4, 5, 7, 8, 8, 12, 15, 17] , 10,'>',0.05) - + ''' return GiacMethods['wilcoxont'](self,*args) @@ -18333,11 +18333,11 @@ cdef class GiacMethods_base: Help for writergb: writergb(Str(s),Lst) Write a PNG picture file named s either from a list [[number_channels,width,height],red,green,alpha,blue] where red,green,alpha,blue are matrices of pixels color or from a matrix of grey pixels or from 3 matrices of RGB colored pixels. - See also: 1/ readrgb + See also: 1/ readrgb Ex1:writergb("image.png",[[255,0],[0,255]]) Ex2:writergb("image.png",[[255,0],[0,0]],[[0,255],[0,0]],[[0,0],[255,0]]) Ex3: a:=readrgb("rgb_image.png");writergb("brg_image.png",[a[0],a[4],a[1],a[3],a[2]]) - + ''' return GiacMethods['writergb'](self,*args) @@ -18346,10 +18346,10 @@ cdef class GiacMethods_base: Help for writewav: writewav(Str(s),Lst(l)) Writes a WAV sound file. - See also: 1/ readwav + See also: 1/ readwav Ex1:writewav("la.wav",2^14*(sin(2*pi*440*soundsec(1)))) Ex2:writewav("beep.wav",[[1,16,44100,80000],[65000$10000,0$10000,65000$10000,0$10000]]) - + ''' return GiacMethods['writewav'](self,*args) @@ -18358,10 +18358,10 @@ cdef class GiacMethods_base: Help for xcas_mode: xcas_mode(Intg(0) or 1 or 2 or 3) Switches to mode Xcas (0), Maple (1), Mupad (2), TI89 (3). - See also: 1/ python_compat + See also: 1/ python_compat Ex1:xcas_mode(1) Ex2:xcas_mode(0) - + ''' return GiacMethods['xcas_mode'](self,*args) @@ -18370,9 +18370,9 @@ cdef class GiacMethods_base: Help for xml_print: xml_print(Str) Indents a XML code given in a string (pretty print). - See also: 1/ export_mathml + See also: 1/ export_mathml Ex1:xml_print(export_mathml(a+2*b)) - + ''' return GiacMethods['xml_print'](self,*args) @@ -18382,7 +18382,7 @@ cdef class GiacMethods_base: xyztrange(SeqReal) xyztrange puts or erases the axes on the graphic-screen (cf button Cfg). Ex1:xyztrange(-5.0,5.0,-5.0,2.0,-10.0,10.0,-1.0,6.0,-5.0,5.0,-1.2384,2.0,1,0.0,1.0) - + ''' return GiacMethods['xyztrange'](self,*args) @@ -18391,12 +18391,12 @@ cdef class GiacMethods_base: Help for zeros: zeros(Expr,[Var]) Returns the zeros (real or complex according to the mode) of the expression (or the matrix where the lines are the solutions of the system : expression1=0,expression2=0...). - See also: 1/ + See also: 1/ Ex1:zeros(x^2+4) Ex2:zeros(ln(x)^2-4) Ex3:zeros(ln(y)^2-2,y) Ex4:zeros([x^2-1,x^2-y^2],[x,y]) - + ''' return GiacMethods['zeros'](self,*args) @@ -18405,10 +18405,10 @@ cdef class GiacMethods_base: Help for ztrans: ztrans(Expr,[Var],[ZtransVar]) z transform of a sequence. - See also: 1/ invztrans 2/ laplace 3/ invlaplace + See also: 1/ invztrans 2/ laplace 3/ invlaplace Ex1:ztrans(a^x) Ex2:ztrans(a^n,n,z) - + ''' return GiacMethods['ztrans'](self,*args) @@ -18417,10 +18417,10 @@ cdef class GiacMethods_base: Help for type: type(Expr) Returns n in [1..12] that defines the type of the argument. - See also: 1/ DOM_FLOAT 2/ DOM_INT 3/ DOM_COMPLEX 4/ DOM_IDENT 5/ DOM_LIST 6/ DOM_SYMBOLIC 7/ DOM_RAT 8/ DOM_STRING 9/ DOM_FUNC 10/ subtype + See also: 1/ DOM_FLOAT 2/ DOM_INT 3/ DOM_COMPLEX 4/ DOM_IDENT 5/ DOM_LIST 6/ DOM_SYMBOLIC 7/ DOM_RAT 8/ DOM_STRING 9/ DOM_FUNC 10/ subtype Ex1:type("abc") Ex2:type([1,2,3]) - + ''' return GiacMethods['type'](self,*args) @@ -18429,12 +18429,12 @@ cdef class GiacMethods_base: Help for zip: zip(Fnc2d(f),Lst(l1),Lst(l2),[Val(default)]) Returns a list whose j-th entry is f(l1[j],l2[j]): without default value its length is the minimum of the lengths of the two input lists and otherwise the shorter list is padded with the default value. - See also: 1/ + See also: 1/ Ex1:zip('+',[a,b,c,d], [1,2,3,4]) Ex2:zip('+',[a,b,c,d], [1,2,3]) Ex3:zip('+',[a,b,c,d], [1,2,3],5) Ex4:zip(sum,[a,b,c,d], [1,2,3,4]) - + ''' return GiacMethods['zip'](self,*args) From bd50b49973d38726fee0fb92d99e62ab2ef31978 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Sun, 29 Jan 2023 17:48:32 -0800 Subject: [PATCH 17/49] git grep -l -E ' (Q as QQ|Z as ZZ)' | xargs sed -i.bak 's/ Q as QQ/ QQ/;s/ Z as ZZ/ ZZ/;' --- src/sage/matroids/lean_matrix.pyx | 4 ++-- src/sage/matroids/linear_matroid.pyx | 4 ++-- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/src/sage/matroids/lean_matrix.pyx b/src/sage/matroids/lean_matrix.pyx index bb8f1012f19..70510e53797 100644 --- a/src/sage/matroids/lean_matrix.pyx +++ b/src/sage/matroids/lean_matrix.pyx @@ -37,10 +37,10 @@ from cysignals.signals cimport sig_on, sig_off from sage.data_structures.bitset_base cimport * from sage.matrix.matrix2 cimport Matrix -from sage.rings.integer_ring import Z as ZZ +from sage.rings.integer_ring import ZZ from sage.rings.finite_rings.finite_field_constructor import FiniteField from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF -from sage.rings.rational_field import Q as QQ +from sage.rings.rational_field import QQ from sage.rings.integer cimport Integer from sage.rings.rational cimport Rational from sage.libs.gmp.mpq cimport * diff --git a/src/sage/matroids/linear_matroid.pyx b/src/sage/matroids/linear_matroid.pyx index e6ae08e0e79..a0e41b0046c 100644 --- a/src/sage/matroids/linear_matroid.pyx +++ b/src/sage/matroids/linear_matroid.pyx @@ -129,8 +129,8 @@ from sage.matrix.matrix2 cimport Matrix import sage.matrix.constructor from sage.matrix.constructor import matrix from copy import copy, deepcopy -from sage.rings.integer_ring import Z as ZZ -from sage.rings.rational_field import Q as QQ +from sage.rings.integer_ring import ZZ +from sage.rings.rational_field import QQ from sage.rings.finite_rings.finite_field_constructor import FiniteField from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF import itertools From 8e77597c00f4f9c563f658940e0df422b174e25b Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Sun, 29 Jan 2023 18:15:43 -0800 Subject: [PATCH 18/49] sage.{algebras,combinat}: Consolidate imports from the same module --- .../algebras/quatalg/quaternion_algebra.py | 12 ++--- .../combinat/binary_recurrence_sequences.py | 5 +- .../combinat/cluster_algebra_quiver/quiver.py | 3 +- .../quiver_mutation_type.py | 3 +- src/sage/combinat/combinat.py | 3 +- src/sage/combinat/designs/bibd.py | 3 +- src/sage/combinat/designs/block_design.py | 6 +-- .../combinat/designs/difference_matrices.py | 3 +- src/sage/combinat/matrices/hadamard_matrix.py | 23 ++++----- src/sage/combinat/necklace.py | 14 ++---- src/sage/combinat/partition.py | 6 +-- src/sage/combinat/partition_algebra.py | 16 +++---- src/sage/combinat/permutation.py | 48 +++++++++---------- src/sage/combinat/set_partition_ordered.py | 3 +- src/sage/combinat/sf/character.py | 8 ++-- src/sage/combinat/sf/elementary.py | 7 +-- src/sage/combinat/sf/homogeneous.py | 8 ++-- src/sage/combinat/sf/sfa.py | 3 +- src/sage/combinat/similarity_class_type.py | 27 ++++++----- src/sage/combinat/species/cycle_species.py | 9 ++-- src/sage/combinat/tableau.py | 23 +++++---- src/sage/combinat/words/lyndon_word.py | 18 +++---- 22 files changed, 114 insertions(+), 137 deletions(-) diff --git a/src/sage/algebras/quatalg/quaternion_algebra.py b/src/sage/algebras/quatalg/quaternion_algebra.py index 0e4b1e979a8..768779a561c 100644 --- a/src/sage/algebras/quatalg/quaternion_algebra.py +++ b/src/sage/algebras/quatalg/quaternion_algebra.py @@ -35,12 +35,12 @@ # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.arith.misc import hilbert_conductor_inverse -from sage.arith.misc import hilbert_conductor -from sage.arith.misc import factor -from sage.arith.misc import GCD as gcd -from sage.arith.misc import kronecker as kronecker_symbol -from sage.arith.misc import valuation +from sage.arith.misc import (hilbert_conductor_inverse, + hilbert_conductor, + factor, + GCD as gcd, + kronecker as kronecker_symbol, + valuation) from sage.rings.real_mpfr import RR from sage.rings.integer import Integer from sage.rings.integer_ring import ZZ diff --git a/src/sage/combinat/binary_recurrence_sequences.py b/src/sage/combinat/binary_recurrence_sequences.py index ecfcc2ccd4e..b119bc3c193 100644 --- a/src/sage/combinat/binary_recurrence_sequences.py +++ b/src/sage/combinat/binary_recurrence_sequences.py @@ -66,10 +66,7 @@ from sage.rings.finite_rings.finite_field_constructor import GF from sage.rings.integer import Integer from sage.arith.functions import lcm -from sage.arith.misc import next_prime -from sage.arith.misc import is_prime -from sage.arith.misc import next_prime_power -from sage.arith.misc import legendre_symbol +from sage.arith.misc import is_prime, next_prime, next_prime_power, legendre_symbol from sage.functions.log import log from sage.misc.functional import sqrt diff --git a/src/sage/combinat/cluster_algebra_quiver/quiver.py b/src/sage/combinat/cluster_algebra_quiver/quiver.py index 52156babeb2..f5a43793612 100644 --- a/src/sage/combinat/cluster_algebra_quiver/quiver.py +++ b/src/sage/combinat/cluster_algebra_quiver/quiver.py @@ -558,8 +558,7 @@ def plot(self, circular=True, center=(0, 0), directed=True, mark=None, """ from sage.plot.colors import rainbow from sage.graphs.graph_generators import GraphGenerators - from sage.symbolic.constants import e - from sage.symbolic.constants import pi + from sage.symbolic.constants import e, pi from sage.rings.imaginary_unit import I graphs = GraphGenerators() # returns positions for graph vertices on two concentric cycles with radius 1 and 2 diff --git a/src/sage/combinat/cluster_algebra_quiver/quiver_mutation_type.py b/src/sage/combinat/cluster_algebra_quiver/quiver_mutation_type.py index 59ebbfc9c07..13349acbb42 100644 --- a/src/sage/combinat/cluster_algebra_quiver/quiver_mutation_type.py +++ b/src/sage/combinat/cluster_algebra_quiver/quiver_mutation_type.py @@ -27,8 +27,7 @@ from sage.rings.infinity import infinity from sage.graphs.digraph import DiGraph from sage.graphs.graph import Graph -from sage.arith.misc import binomial -from sage.arith.misc import euler_phi +from sage.arith.misc import binomial, euler_phi from sage.misc.misc_c import prod from sage.matrix.constructor import matrix diff --git a/src/sage/combinat/combinat.py b/src/sage/combinat/combinat.py index fb125cf49aa..e94d4533356 100644 --- a/src/sage/combinat/combinat.py +++ b/src/sage/combinat/combinat.py @@ -167,12 +167,11 @@ from __future__ import annotations from typing import Iterator +from sage.arith.misc import bernoulli, factorial from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ from sage.rings.integer import Integer from sage.rings.infinity import infinity -from sage.arith.misc import bernoulli -from sage.arith.misc import factorial from sage.rings.polynomial.polynomial_element import Polynomial from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.libs.pari.all import pari diff --git a/src/sage/combinat/designs/bibd.py b/src/sage/combinat/designs/bibd.py index 996ab02a584..ad25d270dfc 100644 --- a/src/sage/combinat/designs/bibd.py +++ b/src/sage/combinat/designs/bibd.py @@ -53,8 +53,7 @@ from sage.categories.sets_cat import EmptySetError from sage.misc.unknown import Unknown from .design_catalog import transversal_design # type:ignore -from sage.arith.misc import binomial -from sage.arith.misc import is_prime_power +from sage.arith.misc import binomial, is_prime_power from .group_divisible_designs import GroupDivisibleDesign from .designs_pyx import is_pairwise_balanced_design diff --git a/src/sage/combinat/designs/block_design.py b/src/sage/combinat/designs/block_design.py index 884cafd003e..6e1c58f0224 100644 --- a/src/sage/combinat/designs/block_design.py +++ b/src/sage/combinat/designs/block_design.py @@ -52,15 +52,13 @@ # (at your option) any later version. # https://www.gnu.org/licenses/ #***************************************************************************** +from sage.arith.misc import binomial, integer_floor, is_prime_power +from sage.categories.sets_cat import EmptySetError from sage.modules.free_module import VectorSpace from sage.rings.integer import Integer from sage.rings.integer_ring import ZZ -from sage.arith.misc import binomial -from sage.arith.misc import integer_floor -from sage.arith.misc import is_prime_power from .incidence_structures import IncidenceStructure from sage.rings.finite_rings.finite_field_constructor import FiniteField -from sage.categories.sets_cat import EmptySetError from sage.misc.unknown import Unknown from sage.matrix.matrix_space import MatrixSpace from sage.libs.gap.libgap import libgap diff --git a/src/sage/combinat/designs/difference_matrices.py b/src/sage/combinat/designs/difference_matrices.py index 72b935e0f94..9e27b4688c4 100644 --- a/src/sage/combinat/designs/difference_matrices.py +++ b/src/sage/combinat/designs/difference_matrices.py @@ -10,12 +10,11 @@ --------- """ +from sage.arith.misc import divisors, is_prime_power from sage.misc.unknown import Unknown from sage.misc.cachefunc import cached_function from sage.categories.sets_cat import EmptySetError from sage.rings.finite_rings.finite_field_constructor import FiniteField -from sage.arith.misc import is_prime_power -from sage.arith.misc import divisors from .designs_pyx import is_difference_matrix from .database import DM as DM_constructions diff --git a/src/sage/combinat/matrices/hadamard_matrix.py b/src/sage/combinat/matrices/hadamard_matrix.py index 4b6ddf75321..d5fb2b29648 100644 --- a/src/sage/combinat/matrices/hadamard_matrix.py +++ b/src/sage/combinat/matrices/hadamard_matrix.py @@ -54,22 +54,23 @@ # https://www.gnu.org/licenses/ #***************************************************************************** +from math import sqrt from urllib.request import urlopen -from sage.combinat.designs.difference_family import skew_supplementary_difference_set +from sage.arith.misc import divisors, is_prime_power, is_square +from sage.combinat.designs.difference_family import skew_supplementary_difference_set +from sage.combinat.t_sequences import T_sequences_smallcases +from sage.cpython.string import bytes_to_str from sage.rings.integer_ring import ZZ -from sage.matrix.constructor import matrix, block_matrix, block_diagonal_matrix, diagonal_matrix -from sage.arith.misc import is_square -from sage.arith.misc import is_prime_power -from sage.arith.misc import divisors -from math import sqrt -from sage.matrix.constructor import identity_matrix as I -from sage.matrix.constructor import ones_matrix as J -from sage.matrix.constructor import zero_matrix +from sage.matrix.constructor import (block_matrix, + block_diagonal_matrix, + diagonal_matrix, + identity_matrix as I, + ones_matrix as J, + matrix, + zero_matrix) from sage.misc.unknown import Unknown -from sage.cpython.string import bytes_to_str from sage.modules.free_module_element import vector -from sage.combinat.t_sequences import T_sequences_smallcases def normalise_hadamard(H): diff --git a/src/sage/combinat/necklace.py b/src/sage/combinat/necklace.py index ef38833b29e..e6c4e6b03ec 100644 --- a/src/sage/combinat/necklace.py +++ b/src/sage/combinat/necklace.py @@ -22,18 +22,14 @@ # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.combinat.composition import Composition +from sage.arith.misc import divisors, euler_phi, factorial, GCD as gcd from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets -from sage.structure.parent import Parent -from sage.structure.unique_representation import UniqueRepresentation -from sage.arith.misc import euler_phi -from sage.arith.misc import factorial -from sage.arith.misc import divisors -from sage.arith.misc import GCD as gcd -from sage.rings.integer_ring import ZZ +from sage.combinat.composition import Composition +from sage.combinat.misc import DoublyLinkedList from sage.rings.integer import Integer from sage.misc.misc_c import prod -from sage.combinat.misc import DoublyLinkedList +from sage.structure.parent import Parent +from sage.structure.unique_representation import UniqueRepresentation def Necklaces(content): diff --git a/src/sage/combinat/partition.py b/src/sage/combinat/partition.py index 367299a4e60..ddec0ba38fb 100644 --- a/src/sage/combinat/partition.py +++ b/src/sage/combinat/partition.py @@ -283,10 +283,9 @@ from copy import copy from itertools import accumulate +from sage.arith.misc import binomial, factorial, GCD as gcd, multinomial from sage.libs.pari.all import pari from sage.libs.flint.arith import number_of_partitions as flint_number_of_partitions - -from sage.arith.misc import multinomial from sage.structure.global_options import GlobalOptions from sage.structure.parent import Parent from sage.structure.unique_representation import UniqueRepresentation @@ -308,8 +307,6 @@ from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ from sage.rings.semirings.non_negative_integer_semiring import NN -from sage.arith.misc import factorial -from sage.arith.misc import GCD as gcd from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.integer import Integer from sage.rings.infinity import infinity @@ -327,7 +324,6 @@ from sage.combinat.combinatorial_map import combinatorial_map from sage.groups.perm_gps.permgroup import PermutationGroup from sage.graphs.dot2tex_utils import have_dot2tex -from sage.arith.misc import binomial class Partition(CombinatorialElement): diff --git a/src/sage/combinat/partition_algebra.py b/src/sage/combinat/partition_algebra.py index 789a214f365..fe2bcbe7c10 100644 --- a/src/sage/combinat/partition_algebra.py +++ b/src/sage/combinat/partition_algebra.py @@ -15,19 +15,19 @@ # # https://www.gnu.org/licenses/ # **************************************************************************** -from .combinat import catalan_number -from sage.combinat.free_module import CombinatorialFreeModule +from sage.arith.misc import binomial, factorial from sage.categories.algebras_with_basis import AlgebrasWithBasis -from sage.combinat.set_partition import SetPartition, SetPartitions, SetPartitions_set -from sage.sets.set import Set, Set_generic +from sage.functions.all import ceil from sage.graphs.graph import Graph -from sage.arith.misc import factorial -from sage.arith.misc import binomial -from .permutation import Permutations from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ +from sage.sets.set import Set, Set_generic + +from .combinat import catalan_number +from .free_module import CombinatorialFreeModule +from .permutation import Permutations +from .set_partition import SetPartition, SetPartitions, SetPartitions_set from .subset import Subsets -from sage.functions.all import ceil def _int_or_half_int(k): diff --git a/src/sage/combinat/permutation.py b/src/sage/combinat/permutation.py index 38a8270d1ca..b0f4fc7511c 100644 --- a/src/sage/combinat/permutation.py +++ b/src/sage/combinat/permutation.py @@ -239,38 +239,38 @@ # **************************************************************************** from __future__ import annotations from typing import Iterator +import itertools -from sage.structure.parent import Parent -from sage.structure.unique_representation import UniqueRepresentation -from sage.categories.infinite_enumerated_sets import InfiniteEnumeratedSets +from sage.arith.misc import factorial, multinomial from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets -from sage.categories.sets_with_grading import SetsWithGrading -from sage.categories.finite_weyl_groups import FiniteWeylGroups from sage.categories.finite_permutation_groups import FinitePermutationGroups -from sage.structure.list_clone import ClonableArray -from sage.structure.global_options import GlobalOptions +from sage.categories.finite_weyl_groups import FiniteWeylGroups +from sage.categories.infinite_enumerated_sets import InfiniteEnumeratedSets +from sage.categories.sets_with_grading import SetsWithGrading +from sage.graphs.digraph import DiGraph +from sage.groups.perm_gps.permgroup_element import PermutationGroupElement +from sage.groups.perm_gps.permgroup_named import SymmetricGroup from sage.libs.gap.libgap import libgap +from sage.matrix.matrix_space import MatrixSpace +from sage.misc.cachefunc import cached_method +from sage.misc.prandom import sample from sage.rings.integer import Integer from sage.rings.integer_ring import ZZ from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing -from sage.arith.misc import factorial -from sage.arith.misc import multinomial -from sage.matrix.matrix_space import MatrixSpace -from sage.combinat.tools import transitive_ideal -from sage.combinat.composition import Composition -from sage.groups.perm_gps.permgroup_named import SymmetricGroup -from sage.groups.perm_gps.permgroup_element import PermutationGroupElement -from sage.misc.prandom import sample -from sage.graphs.digraph import DiGraph -import itertools -from .combinat import CombinatorialElement, catalan_number -from sage.misc.cachefunc import cached_method +from sage.structure.global_options import GlobalOptions +from sage.structure.list_clone import ClonableArray +from sage.structure.parent import Parent +from sage.structure.unique_representation import UniqueRepresentation + from .backtrack import GenericBacktracker -from sage.combinat.combinatorial_map import combinatorial_map -from sage.combinat.rsk import RSK, RSK_inverse -from sage.combinat.permutation_cython import (left_action_product, - right_action_product, left_action_same_n, right_action_same_n, - map_to_list, next_perm) +from .combinat import CombinatorialElement, catalan_number +from .combinatorial_map import combinatorial_map +from .composition import Composition +from .permutation_cython import (left_action_product, right_action_product, + left_action_same_n, right_action_same_n, + map_to_list, next_perm) +from .rsk import RSK, RSK_inverse +from .tools import transitive_ideal class Permutation(CombinatorialElement): diff --git a/src/sage/combinat/set_partition_ordered.py b/src/sage/combinat/set_partition_ordered.py index 3c6dcbb383c..8d220d525e6 100644 --- a/src/sage/combinat/set_partition_ordered.py +++ b/src/sage/combinat/set_partition_ordered.py @@ -24,8 +24,7 @@ # # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.arith.misc import factorial -from sage.arith.misc import multinomial +from sage.arith.misc import factorial, multinomial from sage.categories.cartesian_product import cartesian_product from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets from sage.categories.infinite_enumerated_sets import InfiniteEnumeratedSets diff --git a/src/sage/combinat/sf/character.py b/src/sage/combinat/sf/character.py index b57874ad832..6abf5147c4f 100644 --- a/src/sage/combinat/sf/character.py +++ b/src/sage/combinat/sf/character.py @@ -27,13 +27,11 @@ # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.combinat.sf.sfa import SymmetricFunctionAlgebra_generic as SFA_generic -from sage.misc.cachefunc import cached_method +from sage.arith.misc import binomial, divisors, moebius from sage.categories.homset import Hom from sage.categories.morphism import SetMorphism -from sage.arith.misc import divisors -from sage.arith.misc import moebius -from sage.arith.misc import binomial +from sage.combinat.sf.sfa import SymmetricFunctionAlgebra_generic as SFA_generic +from sage.misc.cachefunc import cached_method from sage.rings.integer import Integer diff --git a/src/sage/combinat/sf/elementary.py b/src/sage/combinat/sf/elementary.py index 3ed3db345d5..2e30e1dbe58 100644 --- a/src/sage/combinat/sf/elementary.py +++ b/src/sage/combinat/sf/elementary.py @@ -17,13 +17,14 @@ # # http://www.gnu.org/licenses/ #***************************************************************************** -from . import multiplicative, classical +from sage.arith.misc import binomial, factorial from sage.combinat.partition import Partition from sage.misc.misc_c import prod -from sage.arith.misc import factorial -from sage.arith.misc import binomial from sage.rings.infinity import infinity +from . import multiplicative, classical + + ################################### # # # Elementary Symmetric Functions # diff --git a/src/sage/combinat/sf/homogeneous.py b/src/sage/combinat/sf/homogeneous.py index 42c6aeb55ad..2f92100559f 100644 --- a/src/sage/combinat/sf/homogeneous.py +++ b/src/sage/combinat/sf/homogeneous.py @@ -25,12 +25,12 @@ # Homogeneous Symmetric Functions # # # #################################### -from . import multiplicative, classical +from sage.arith.misc import binomial, factorial from sage.combinat.partition import Partition -from sage.rings.infinity import infinity from sage.misc.misc_c import prod -from sage.arith.misc import factorial -from sage.arith.misc import binomial +from sage.rings.infinity import infinity + +from . import multiplicative, classical class SymmetricFunctionAlgebra_homogeneous(multiplicative.SymmetricFunctionAlgebra_multiplicative): diff --git a/src/sage/combinat/sf/sfa.py b/src/sage/combinat/sf/sfa.py index 30a6086964d..31eef1bf2ab 100644 --- a/src/sage/combinat/sf/sfa.py +++ b/src/sage/combinat/sf/sfa.py @@ -1013,8 +1013,7 @@ def gessel_reutenauer(self, lam): m = lam.to_exp_dict() # == {i: m_i | i occurs in lam} p = self.realization_of().power() h = self.realization_of().complete() - from sage.arith.misc import moebius - from sage.arith.misc import squarefree_divisors + from sage.arith.misc import moebius, squarefree_divisors mu = moebius def component(i, g): # == h_g[L_i] diff --git a/src/sage/combinat/similarity_class_type.py b/src/sage/combinat/similarity_class_type.py index b2ca90a710b..64e128477df 100644 --- a/src/sage/combinat/similarity_class_type.py +++ b/src/sage/combinat/similarity_class_type.py @@ -189,23 +189,24 @@ class type, it is also possible to compute the number of classes of that type # **************************************************************************** from itertools import chain, product -from sage.misc.misc_c import prod -from sage.arith.misc import factorial -from sage.arith.misc import moebius -from sage.arith.misc import divisors -from sage.misc.inherit_comparison import InheritComparisonClasscallMetaclass -from sage.structure.element import Element, is_Matrix -from sage.structure.parent import Parent -from sage.structure.unique_representation import UniqueRepresentation + +from sage.arith.misc import divisors, factorial, moebius from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets -from sage.combinat.combinat import CombinatorialElement -from sage.combinat.partition import Partitions, Partition +from sage.misc.cachefunc import cached_in_parent_method, cached_function +from sage.misc.inherit_comparison import InheritComparisonClasscallMetaclass +from sage.misc.misc_c import prod from sage.rings.fraction_field import FractionField from sage.rings.integer_ring import ZZ -from sage.rings.rational_field import QQ -from sage.misc.cachefunc import cached_in_parent_method, cached_function -from sage.combinat.misc import IterableFunctionCall from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing +from sage.rings.rational_field import QQ +from sage.structure.element import Element, is_Matrix +from sage.structure.parent import Parent +from sage.structure.unique_representation import UniqueRepresentation + +from .combinat import CombinatorialElement +from .misc import IterableFunctionCall +from .partition import Partitions, Partition + @cached_function def fq(n, q=None): diff --git a/src/sage/combinat/species/cycle_species.py b/src/sage/combinat/species/cycle_species.py index fe5ee4a9f94..d9d18b4ec44 100644 --- a/src/sage/combinat/species/cycle_species.py +++ b/src/sage/combinat/species/cycle_species.py @@ -12,12 +12,13 @@ # http://www.gnu.org/licenses/ #***************************************************************************** +from sage.arith.misc import divisors, euler_phi +from sage.structure.unique_representation import UniqueRepresentation + +from .misc import accept_size from .species import GenericCombinatorialSpecies from .structure import GenericSpeciesStructure -from sage.structure.unique_representation import UniqueRepresentation -from sage.arith.misc import divisors -from sage.arith.misc import euler_phi -from sage.combinat.species.misc import accept_size + class CycleSpeciesStructure(GenericSpeciesStructure): def __repr__(self): diff --git a/src/sage/combinat/tableau.py b/src/sage/combinat/tableau.py index deb191ea1c8..8a3c53765b4 100644 --- a/src/sage/combinat/tableau.py +++ b/src/sage/combinat/tableau.py @@ -85,6 +85,12 @@ # https://www.gnu.org/licenses/ # **************************************************************************** from itertools import repeat + +from sage.arith.misc import binomial, factorial, multinomial +from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets +from sage.categories.infinite_enumerated_sets import InfiniteEnumeratedSets +from sage.categories.sets_cat import Sets +from sage.groups.perm_gps.permgroup import PermutationGroup from sage.sets.disjoint_union_enumerated_sets import DisjointUnionEnumeratedSets from sage.sets.family import Family from sage.sets.non_negative_integers import NonNegativeIntegers @@ -97,24 +103,17 @@ from sage.misc.inherit_comparison import InheritComparisonClasscallMetaclass from sage.rings.finite_rings.integer_mod_ring import IntegerModRing from sage.rings.infinity import PlusInfinity -from sage.arith.misc import factorial -from sage.arith.misc import binomial -from sage.arith.misc import multinomial from sage.rings.integer import Integer -from sage.combinat.composition import Composition, Compositions -from sage.combinat.integer_vector import IntegerVectors, integer_vectors_nk_fast_iter import sage.libs.symmetrica.all as symmetrica import sage.misc.prandom as random -from sage.combinat import permutation -from sage.groups.perm_gps.permgroup import PermutationGroup from sage.misc.misc_c import prod from sage.misc.misc import powerset -from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets -from sage.categories.infinite_enumerated_sets import InfiniteEnumeratedSets -from sage.categories.sets_cat import Sets -from sage.combinat.combinatorial_map import combinatorial_map -from sage.combinat.posets.posets import Poset +from . import permutation +from .combinatorial_map import combinatorial_map +from .composition import Composition, Compositions +from .integer_vector import IntegerVectors, integer_vectors_nk_fast_iter +from .posets.posets import Poset @richcmp_method diff --git a/src/sage/combinat/words/lyndon_word.py b/src/sage/combinat/words/lyndon_word.py index 3e2987fb811..1d5614cd277 100644 --- a/src/sage/combinat/words/lyndon_word.py +++ b/src/sage/combinat/words/lyndon_word.py @@ -12,20 +12,16 @@ # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.structure.unique_representation import UniqueRepresentation -from sage.structure.parent import Parent - +from sage.arith.misc import divisors, GCD as gcd, moebius, multinomial +from sage.combinat.combinat_cython import lyndon_word_iterator from sage.combinat.composition import Composition, Compositions +from sage.combinat.necklace import _sfc from sage.rings.integer import Integer -from sage.arith.misc import divisors -from sage.arith.misc import GCD as gcd -from sage.arith.misc import moebius -from sage.arith.misc import multinomial +from sage.structure.parent import Parent +from sage.structure.unique_representation import UniqueRepresentation -from sage.combinat.necklace import _sfc -from sage.combinat.words.words import FiniteWords -from sage.combinat.words.finite_word import FiniteWord_class -from sage.combinat.combinat_cython import lyndon_word_iterator +from .finite_word import FiniteWord_class +from .words import FiniteWords def LyndonWords(e=None, k=None): From 2870ffb3f904535c305a7b34a34b85d49c62ff97 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Sun, 29 Jan 2023 18:54:53 -0800 Subject: [PATCH 19/49] src/sage/interfaces/sage0.py: Hide a legitimate .all import from relint --- src/sage/interfaces/sage0.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/src/sage/interfaces/sage0.py b/src/sage/interfaces/sage0.py index a43a059e0ec..9eddb7019f7 100644 --- a/src/sage/interfaces/sage0.py +++ b/src/sage/interfaces/sage0.py @@ -159,7 +159,8 @@ def __init__(self, if python: command = 'python -u' prompt = re.compile(b'>>> ') - init_code.append('from sage.all import *') + environment = 'sage.all' + init_code.append(f'from {environment} import *') else: command = ' '.join([ 'sage-ipython', From 70e5c66306eedd1ca0a6f45f6ba277916eb64743 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Sun, 29 Jan 2023 18:59:42 -0800 Subject: [PATCH 20/49] sage.{functions,interfaces,symbolic}: Consolidate imports from the same module --- src/sage/functions/hypergeometric.py | 27 +++++++++++++-------------- src/sage/functions/piecewise.py | 8 ++++---- src/sage/symbolic/pynac_impl.pxi | 18 +++++------------- 3 files changed, 22 insertions(+), 31 deletions(-) diff --git a/src/sage/functions/hypergeometric.py b/src/sage/functions/hypergeometric.py index 47bff45ecdd..04ea78910b0 100644 --- a/src/sage/functions/hypergeometric.py +++ b/src/sage/functions/hypergeometric.py @@ -162,29 +162,28 @@ # https://www.gnu.org/licenses/ # **************************************************************************** +from functools import reduce + +from sage.arith.misc import binomial, factorial, rising_factorial +from sage.calculus.functional import derivative +from sage.libs.mpmath import utils as mpmath_utils +from sage.misc.latex import latex +from sage.misc.misc_c import prod +from sage.rings.infinity import Infinity from sage.rings.integer import Integer from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ -from sage.rings.infinity import Infinity -from sage.arith.misc import binomial -from sage.arith.misc import rising_factorial -from sage.arith.misc import factorial +from sage.structure.element import get_coercion_model from sage.symbolic.constants import pi +from sage.symbolic.expression import Expression from sage.symbolic.function import BuiltinFunction from sage.symbolic.ring import SR -from sage.structure.element import get_coercion_model -from sage.misc.latex import latex -from sage.misc.misc_c import prod -from sage.libs.mpmath import utils as mpmath_utils -from sage.symbolic.expression import Expression -from sage.calculus.functional import derivative -from functools import reduce +from .error import erf from .gamma import gamma -from .other import sqrt, real_part -from .log import exp, log from .hyperbolic import cosh, sinh -from .error import erf +from .log import exp, log +from .other import sqrt, real_part def rational_param_as_tuple(x): diff --git a/src/sage/functions/piecewise.py b/src/sage/functions/piecewise.py index dacd79f2326..f73b016555c 100644 --- a/src/sage/functions/piecewise.py +++ b/src/sage/functions/piecewise.py @@ -1089,9 +1089,9 @@ def laplace(self, parameters, variable, x='x', s='t'): sage: f.laplace(t,s) (s + 1)*e^(-s)/s^2 + 2*e^(-s)/s - 1/s^2 """ - from sage.symbolic.assumptions import assume + from sage.symbolic.assumptions import assume, forget from sage.functions.log import exp - from sage.symbolic.assumptions import forget + x = SR.var(x) s = SR.var(s) assume(s>0) @@ -1363,9 +1363,9 @@ def fourier_series_partial_sum(self, parameters, variable, N, """ from sage.symbolic.constants import pi - from sage.functions.trig import sin - from sage.functions.trig import cos + from sage.functions.trig import cos, sin from sage.arith.srange import srange + if not L: L = (self.domain().sup() - self.domain().inf()) / 2 x = self.default_variable() diff --git a/src/sage/symbolic/pynac_impl.pxi b/src/sage/symbolic/pynac_impl.pxi index 53e4884a91a..c89c5f81539 100644 --- a/src/sage/symbolic/pynac_impl.pxi +++ b/src/sage/symbolic/pynac_impl.pxi @@ -35,6 +35,9 @@ Pynac interface from cpython cimport * from libc cimport math +from sage.arith.misc import bernoulli, factorial, GCD as gcd, is_prime +from sage.arith.functions import lcm +from sage.cpython.string cimport str_to_bytes, char_to_str from sage.ext.stdsage cimport PY_NEW from sage.libs.gmp.all cimport * from sage.libs.gsl.types cimport * @@ -42,19 +45,7 @@ from sage.libs.gsl.complex cimport * from sage.libs.gsl.gamma cimport gsl_sf_lngamma_complex_e from sage.libs.mpmath import utils as mpmath_utils from sage.libs.pari.all import pari - -from sage.cpython.string cimport str_to_bytes, char_to_str - -from sage.arith.misc import GCD as gcd -from sage.arith.functions import lcm -from sage.arith.misc import is_prime -from sage.arith.misc import factorial -from sage.arith.misc import bernoulli - -from sage.structure.coerce cimport coercion_model -from sage.structure.element cimport Element, parent from sage.misc.persist import loads, dumps - from sage.rings.integer_ring import ZZ from sage.rings.integer cimport Integer, smallInteger from sage.rings.rational cimport Rational @@ -62,7 +53,8 @@ from sage.rings.real_mpfr import RR, RealField from sage.rings.rational cimport rational_power_parts from sage.rings.real_double cimport RealDoubleElement from sage.rings.cc import CC - +from sage.structure.coerce cimport coercion_model +from sage.structure.element cimport Element, parent from sage.symbolic.function cimport Function From 7305a7c18999526cb4f1238dec15cf7589225ee6 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Sun, 29 Jan 2023 18:59:53 -0800 Subject: [PATCH 21/49] git grep -l -E ' (Q as QQ|Z as ZZ)' | xargs sed -i.bak 's/ Q as QQ/ QQ/;s/ Z as ZZ/ ZZ/;' --- src/sage/interfaces/axiom.py | 2 +- src/sage/interfaces/genus2reduction.py | 4 ++-- src/sage/interfaces/singular.py | 2 +- 3 files changed, 4 insertions(+), 4 deletions(-) diff --git a/src/sage/interfaces/axiom.py b/src/sage/interfaces/axiom.py index 7e741b85f7e..cd016fa1866 100644 --- a/src/sage/interfaces/axiom.py +++ b/src/sage/interfaces/axiom.py @@ -837,7 +837,7 @@ def _sage_(self): if type == "Float": from sage.rings.real_mpfr import RealField - from sage.rings.integer_ring import Z as ZZ + from sage.rings.integer_ring import ZZ prec = max(self.mantissa().length()._sage_(), 53) R = RealField(prec) x,e,b = self.unparsed_input_form().lstrip('float(').rstrip(')').split(',') diff --git a/src/sage/interfaces/genus2reduction.py b/src/sage/interfaces/genus2reduction.py index ea3380196c6..69d0513ca94 100644 --- a/src/sage/interfaces/genus2reduction.py +++ b/src/sage/interfaces/genus2reduction.py @@ -34,8 +34,8 @@ # **************************************************************************** from sage.structure.sage_object import SageObject -from sage.rings.integer_ring import Z as ZZ -from sage.rings.rational_field import Q as QQ +from sage.rings.integer_ring import ZZ +from sage.rings.rational_field import QQ from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.libs.pari.all import pari diff --git a/src/sage/interfaces/singular.py b/src/sage/interfaces/singular.py index 2305501a30d..75629e5ced4 100644 --- a/src/sage/interfaces/singular.py +++ b/src/sage/interfaces/singular.py @@ -1656,7 +1656,7 @@ def sage_global_ring(self): br = ZZ is_extension = False elif charstr[0] in ['0', 'QQ']: - from sage.rings.rational_field import Q as QQ + from sage.rings.rational_field import QQ br = QQ elif charstr[0].startswith('Float'): from sage.rings.real_mpfr import RealField From 9e0baabe7550945b81b5d63c50feb2e1a64fa6ce Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Matthias=20K=C3=B6ppe?= Date: Mon, 13 Feb 2023 18:56:16 -0800 Subject: [PATCH 22/49] Update src/sage/stats/distributions/discrete_gaussian_polynomial.py Co-authored-by: Tobias Diez --- src/sage/stats/distributions/discrete_gaussian_polynomial.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/sage/stats/distributions/discrete_gaussian_polynomial.py b/src/sage/stats/distributions/discrete_gaussian_polynomial.py index fb4c4453ca3..0f4e7e59361 100644 --- a/src/sage/stats/distributions/discrete_gaussian_polynomial.py +++ b/src/sage/stats/distributions/discrete_gaussian_polynomial.py @@ -55,7 +55,7 @@ #*****************************************************************************/ from sage.rings.real_mpfr import RR -from sage.rings.integer_ring import Z as ZZ +from sage.rings.integer_ring import ZZ from .discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler from sage.structure.sage_object import SageObject From 69d9a4904e8a3f05c1f93173c6881ef00c32e037 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Mon, 13 Feb 2023 19:08:08 -0800 Subject: [PATCH 23/49] git grep -l -E ' (Q as QQ|Z as ZZ)' | xargs sed -i.bak 's/ Q as QQ/ QQ/;s/ Z as ZZ/ ZZ/;' --- src/sage/libs/gap/element.pyx | 4 ++-- src/sage/libs/giac/giac.pyx | 4 ++-- src/sage/numerical/backends/generic_backend.pyx | 2 +- src/sage/numerical/interactive_simplex_method.py | 4 ++-- src/sage/stats/distributions/discrete_gaussian_lattice.py | 4 ++-- 5 files changed, 9 insertions(+), 9 deletions(-) diff --git a/src/sage/libs/gap/element.pyx b/src/sage/libs/gap/element.pyx index 7ce70bda06a..5df52f23be4 100644 --- a/src/sage/libs/gap/element.pyx +++ b/src/sage/libs/gap/element.pyx @@ -27,8 +27,8 @@ from sage.cpython.string cimport str_to_bytes, char_to_str from sage.misc.cachefunc import cached_method from sage.structure.sage_object cimport SageObject from sage.structure.parent import Parent -from sage.rings.integer_ring import Z as ZZ -from sage.rings.rational_field import Q as QQ +from sage.rings.integer_ring import ZZ +from sage.rings.rational_field import QQ from sage.rings.real_double import RDF from sage.groups.perm_gps.permgroup_element cimport PermutationGroupElement diff --git a/src/sage/libs/giac/giac.pyx b/src/sage/libs/giac/giac.pyx index 1294164de2e..b555466e36d 100644 --- a/src/sage/libs/giac/giac.pyx +++ b/src/sage/libs/giac/giac.pyx @@ -154,8 +154,8 @@ from sage.ext.stdsage cimport PY_NEW from sage.libs.gmp.mpz cimport mpz_t, mpz_init_set -from sage.rings.integer_ring import Z as ZZ -from sage.rings.rational_field import Q as QQ +from sage.rings.integer_ring import ZZ +from sage.rings.rational_field import QQ from sage.rings.finite_rings.integer_mod_ring import IntegerModRing from sage.rings.integer cimport Integer from sage.rings.rational cimport Rational diff --git a/src/sage/numerical/backends/generic_backend.pyx b/src/sage/numerical/backends/generic_backend.pyx index 1057fb3b519..886dc255278 100644 --- a/src/sage/numerical/backends/generic_backend.pyx +++ b/src/sage/numerical/backends/generic_backend.pyx @@ -1759,7 +1759,7 @@ cpdef GenericBackend get_solver(constraint_generation = False, solver = None, ba if base_ring is not None: base_ring = base_ring.fraction_field() - from sage.rings.rational_field import Q as QQ + from sage.rings.rational_field import QQ from sage.rings.real_double import RDF if base_ring is QQ: solver = "Ppl" diff --git a/src/sage/numerical/interactive_simplex_method.py b/src/sage/numerical/interactive_simplex_method.py index 209fd1fc724..2de42d4c2e5 100644 --- a/src/sage/numerical/interactive_simplex_method.py +++ b/src/sage/numerical/interactive_simplex_method.py @@ -197,9 +197,9 @@ lazy_import("sage.plot.all", ["Graphics", "arrow", "line", "point", "rainbow", "text"]) from sage.rings.infinity import Infinity from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing -from sage.rings.rational_field import Q as QQ +from sage.rings.rational_field import QQ from sage.rings.real_double import RDF -from sage.rings.integer_ring import Z as ZZ +from sage.rings.integer_ring import ZZ from sage.structure.all import SageObject from sage.symbolic.ring import SR diff --git a/src/sage/stats/distributions/discrete_gaussian_lattice.py b/src/sage/stats/distributions/discrete_gaussian_lattice.py index 5a05a0cb2c8..766cb2d4a41 100644 --- a/src/sage/stats/distributions/discrete_gaussian_lattice.py +++ b/src/sage/stats/distributions/discrete_gaussian_lattice.py @@ -60,8 +60,8 @@ from sage.functions.other import ceil from sage.rings.real_mpfr import RealField from sage.rings.real_mpfr import RR -from sage.rings.integer_ring import Z as ZZ -from sage.rings.rational_field import Q as QQ +from sage.rings.integer_ring import ZZ +from sage.rings.rational_field import QQ from .discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler from sage.structure.sage_object import SageObject from sage.matrix.constructor import matrix, identity_matrix From ed1ee83286bd370448b27f6386c63db374920807 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Tue, 14 Feb 2023 11:23:30 -0800 Subject: [PATCH 24/49] src/sage/combinat/necklace.py: Add missing import --- src/sage/combinat/necklace.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/src/sage/combinat/necklace.py b/src/sage/combinat/necklace.py index e6c4e6b03ec..97bd24f8250 100644 --- a/src/sage/combinat/necklace.py +++ b/src/sage/combinat/necklace.py @@ -26,8 +26,9 @@ from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets from sage.combinat.composition import Composition from sage.combinat.misc import DoublyLinkedList -from sage.rings.integer import Integer from sage.misc.misc_c import prod +from sage.rings.integer import Integer +from sage.rings.integer_ring import ZZ from sage.structure.parent import Parent from sage.structure.unique_representation import UniqueRepresentation From 10d2e1cca9684b5306dcc4473f6cb9f3913800f1 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Tue, 14 Feb 2023 11:29:47 -0800 Subject: [PATCH 25/49] git grep -l 'GCD as gcd' src/sage/{algebras,combinat,matroids} | xargs sed -i.bak 's/GCD as gcd/gcd/' --- src/sage/algebras/quatalg/quaternion_algebra.py | 2 +- src/sage/combinat/ncsf_qsym/qsym.py | 2 +- src/sage/combinat/necklace.py | 2 +- src/sage/combinat/partition.py | 2 +- src/sage/combinat/sf/jack.py | 2 +- src/sage/combinat/sf/sfa.py | 2 +- src/sage/combinat/tamari_lattices.py | 2 +- src/sage/combinat/words/lyndon_word.py | 2 +- src/sage/combinat/words/word_generators.py | 2 +- 9 files changed, 9 insertions(+), 9 deletions(-) diff --git a/src/sage/algebras/quatalg/quaternion_algebra.py b/src/sage/algebras/quatalg/quaternion_algebra.py index 768779a561c..185fd3f4baf 100644 --- a/src/sage/algebras/quatalg/quaternion_algebra.py +++ b/src/sage/algebras/quatalg/quaternion_algebra.py @@ -38,7 +38,7 @@ from sage.arith.misc import (hilbert_conductor_inverse, hilbert_conductor, factor, - GCD as gcd, + gcd, kronecker as kronecker_symbol, valuation) from sage.rings.real_mpfr import RR diff --git a/src/sage/combinat/ncsf_qsym/qsym.py b/src/sage/combinat/ncsf_qsym/qsym.py index 04a27e7e0ca..8bdef2fa7dd 100644 --- a/src/sage/combinat/ncsf_qsym/qsym.py +++ b/src/sage/combinat/ncsf_qsym/qsym.py @@ -3688,7 +3688,7 @@ def _precompute_M(self, n): M = self.realization_of().M() if l <= n: from sage.misc.cachefunc import cached_function - from sage.arith.misc import GCD as gcd + from sage.arith.misc import gcd @cached_function def monolambda(I): diff --git a/src/sage/combinat/necklace.py b/src/sage/combinat/necklace.py index 97bd24f8250..bcfb0d45185 100644 --- a/src/sage/combinat/necklace.py +++ b/src/sage/combinat/necklace.py @@ -22,7 +22,7 @@ # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.arith.misc import divisors, euler_phi, factorial, GCD as gcd +from sage.arith.misc import divisors, euler_phi, factorial, gcd from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets from sage.combinat.composition import Composition from sage.combinat.misc import DoublyLinkedList diff --git a/src/sage/combinat/partition.py b/src/sage/combinat/partition.py index c4d45ae16c0..5dcea144623 100644 --- a/src/sage/combinat/partition.py +++ b/src/sage/combinat/partition.py @@ -283,7 +283,7 @@ from copy import copy from itertools import accumulate -from sage.arith.misc import binomial, factorial, GCD as gcd, multinomial +from sage.arith.misc import binomial, factorial, gcd, multinomial from sage.libs.pari.all import pari from sage.libs.flint.arith import number_of_partitions as flint_number_of_partitions from sage.structure.global_options import GlobalOptions diff --git a/src/sage/combinat/sf/jack.py b/src/sage/combinat/sf/jack.py index 2884786f4d6..7c067bcdf03 100644 --- a/src/sage/combinat/sf/jack.py +++ b/src/sage/combinat/sf/jack.py @@ -33,7 +33,7 @@ import sage.categories.all from sage.rings.integer import Integer from sage.rings.rational_field import QQ -from sage.arith.misc import GCD as gcd +from sage.arith.misc import gcd from sage.arith.functions import lcm from sage.rings.fraction_field import is_FractionField from sage.misc.misc_c import prod diff --git a/src/sage/combinat/sf/sfa.py b/src/sage/combinat/sf/sfa.py index 8f6c7807a2e..6a2fc0412d8 100644 --- a/src/sage/combinat/sf/sfa.py +++ b/src/sage/combinat/sf/sfa.py @@ -4711,7 +4711,7 @@ def arithmetic_product(self, x): parent = self.parent() if parent.has_coerce_map_from(QQ): from sage.combinat.partition import Partition - from sage.arith.misc import GCD as gcd + from sage.arith.misc import gcd from sage.arith.functions import lcm from itertools import product, repeat, chain p = parent.realization_of().power() diff --git a/src/sage/combinat/tamari_lattices.py b/src/sage/combinat/tamari_lattices.py index ba4de2ad8fb..6ef7dd06cdc 100644 --- a/src/sage/combinat/tamari_lattices.py +++ b/src/sage/combinat/tamari_lattices.py @@ -48,7 +48,7 @@ # **************************************************************************** from __future__ import annotations from sage.combinat.posets.lattices import LatticePoset, MeetSemilattice -from sage.arith.misc import GCD as gcd +from sage.arith.misc import gcd def paths_in_triangle(i, j, a, b) -> list[tuple[int, ...]]: diff --git a/src/sage/combinat/words/lyndon_word.py b/src/sage/combinat/words/lyndon_word.py index 1d5614cd277..2a28f615a2c 100644 --- a/src/sage/combinat/words/lyndon_word.py +++ b/src/sage/combinat/words/lyndon_word.py @@ -12,7 +12,7 @@ # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.arith.misc import divisors, GCD as gcd, moebius, multinomial +from sage.arith.misc import divisors, gcd, moebius, multinomial from sage.combinat.combinat_cython import lyndon_word_iterator from sage.combinat.composition import Composition, Compositions from sage.combinat.necklace import _sfc diff --git a/src/sage/combinat/words/word_generators.py b/src/sage/combinat/words/word_generators.py index b08766fda79..66c5f25eda7 100644 --- a/src/sage/combinat/words/word_generators.py +++ b/src/sage/combinat/words/word_generators.py @@ -66,7 +66,7 @@ from sage.combinat.words.finite_word import FiniteWord_class, Factorization from sage.combinat.words.words import FiniteWords, InfiniteWords from sage.combinat.words.morphism import WordMorphism -from sage.arith.misc import GCD as gcd +from sage.arith.misc import gcd from sage.misc.decorators import rename_keyword From 29ad54e19521db0c0f14283f03dec47dea6d6e03 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Thu, 16 Feb 2023 10:16:40 -0800 Subject: [PATCH 26/49] Replace relative imports by absolute imports because pytest --- src/sage/combinat/partition_algebra.py | 11 ++++---- src/sage/combinat/permutation.py | 19 ++++++------- src/sage/combinat/sf/elementary.py | 3 +- src/sage/combinat/sf/homogeneous.py | 3 +- src/sage/combinat/similarity_class_type.py | 8 ++---- src/sage/combinat/species/cycle_species.py | 8 ++---- src/sage/combinat/tableau.py | 32 +++++++++++----------- src/sage/combinat/words/lyndon_word.py | 5 ++-- 8 files changed, 40 insertions(+), 49 deletions(-) diff --git a/src/sage/combinat/partition_algebra.py b/src/sage/combinat/partition_algebra.py index 2b5ab365f6e..9136b682c59 100644 --- a/src/sage/combinat/partition_algebra.py +++ b/src/sage/combinat/partition_algebra.py @@ -17,18 +17,17 @@ # **************************************************************************** from sage.arith.misc import binomial, factorial from sage.categories.algebras_with_basis import AlgebrasWithBasis +from sage.combinat.combinat import catalan_number +from sage.combinat.free_module import CombinatorialFreeModule +from sage.combinat.permutation import Permutations +from sage.combinat.set_partition import SetPartition, SetPartitions, SetPartitions_set +from sage.combinat.subset import Subsets from sage.functions.all import ceil from sage.graphs.graph import Graph from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ from sage.sets.set import Set, Set_generic -from .combinat import catalan_number -from .free_module import CombinatorialFreeModule -from .permutation import Permutations -from .set_partition import SetPartition, SetPartitions, SetPartitions_set -from .subset import Subsets - def _int_or_half_int(k): r""" diff --git a/src/sage/combinat/permutation.py b/src/sage/combinat/permutation.py index fb780da0e2c..a483d63200f 100644 --- a/src/sage/combinat/permutation.py +++ b/src/sage/combinat/permutation.py @@ -247,6 +247,15 @@ from sage.categories.finite_weyl_groups import FiniteWeylGroups from sage.categories.infinite_enumerated_sets import InfiniteEnumeratedSets from sage.categories.sets_with_grading import SetsWithGrading +from sage.combinat.backtrack import GenericBacktracker +from sage.combinat.combinat import CombinatorialElement, catalan_number +from sage.combinat.combinatorial_map import combinatorial_map +from sage.combinat.composition import Composition +from sage.combinat.permutation_cython import (left_action_product, right_action_product, + left_action_same_n, right_action_same_n, + map_to_list, next_perm) +from sage.combinat.rsk import RSK, RSK_inverse +from sage.combinat.tools import transitive_ideal from sage.graphs.digraph import DiGraph from sage.groups.perm_gps.permgroup_element import PermutationGroupElement from sage.groups.perm_gps.permgroup_named import SymmetricGroup @@ -262,16 +271,6 @@ from sage.structure.parent import Parent from sage.structure.unique_representation import UniqueRepresentation -from .backtrack import GenericBacktracker -from .combinat import CombinatorialElement, catalan_number -from .combinatorial_map import combinatorial_map -from .composition import Composition -from .permutation_cython import (left_action_product, right_action_product, - left_action_same_n, right_action_same_n, - map_to_list, next_perm) -from .rsk import RSK, RSK_inverse -from .tools import transitive_ideal - class Permutation(CombinatorialElement): r""" diff --git a/src/sage/combinat/sf/elementary.py b/src/sage/combinat/sf/elementary.py index b9b7eaee976..8d242f55b84 100644 --- a/src/sage/combinat/sf/elementary.py +++ b/src/sage/combinat/sf/elementary.py @@ -19,11 +19,10 @@ #***************************************************************************** from sage.arith.misc import binomial, factorial from sage.combinat.partition import Partition +from sage.combinat.sf import multiplicative, classical from sage.misc.misc_c import prod from sage.rings.infinity import infinity -from . import multiplicative, classical - ################################### # # diff --git a/src/sage/combinat/sf/homogeneous.py b/src/sage/combinat/sf/homogeneous.py index 26a4df3ee14..b97bfae074c 100644 --- a/src/sage/combinat/sf/homogeneous.py +++ b/src/sage/combinat/sf/homogeneous.py @@ -27,11 +27,10 @@ #################################### from sage.arith.misc import binomial, factorial from sage.combinat.partition import Partition +from sage.combinat.sf import multiplicative, classical from sage.misc.misc_c import prod from sage.rings.infinity import infinity -from . import multiplicative, classical - class SymmetricFunctionAlgebra_homogeneous(multiplicative.SymmetricFunctionAlgebra_multiplicative): def __init__(self, Sym): diff --git a/src/sage/combinat/similarity_class_type.py b/src/sage/combinat/similarity_class_type.py index 23692c87da1..923dc64cb0d 100644 --- a/src/sage/combinat/similarity_class_type.py +++ b/src/sage/combinat/similarity_class_type.py @@ -192,6 +192,9 @@ class type, it is also possible to compute the number of classes of that type from sage.arith.misc import divisors, factorial, moebius from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets +from sage.combinat.combinat import CombinatorialElement +from sage.combinat.misc import IterableFunctionCall +from sage.combinat.partition import Partitions, Partition from sage.misc.cachefunc import cached_in_parent_method, cached_function from sage.misc.inherit_comparison import InheritComparisonClasscallMetaclass from sage.misc.misc_c import prod @@ -203,11 +206,6 @@ class type, it is also possible to compute the number of classes of that type from sage.structure.parent import Parent from sage.structure.unique_representation import UniqueRepresentation -from .combinat import CombinatorialElement -from .misc import IterableFunctionCall -from .partition import Partitions, Partition - - @cached_function def fq(n, q=None): diff --git a/src/sage/combinat/species/cycle_species.py b/src/sage/combinat/species/cycle_species.py index f4c8b24201d..20d89a770db 100644 --- a/src/sage/combinat/species/cycle_species.py +++ b/src/sage/combinat/species/cycle_species.py @@ -13,13 +13,11 @@ #***************************************************************************** from sage.arith.misc import divisors, euler_phi +from sage.combinat.species.misc import accept_size +from sage.combinat.species.species import GenericCombinatorialSpecies +from sage.combinat.species.structure import GenericSpeciesStructure from sage.structure.unique_representation import UniqueRepresentation -from .misc import accept_size -from .species import GenericCombinatorialSpecies -from .structure import GenericSpeciesStructure - - class CycleSpeciesStructure(GenericSpeciesStructure): def __repr__(self): diff --git a/src/sage/combinat/tableau.py b/src/sage/combinat/tableau.py index 7fee9ef3a99..5d0fb107734 100644 --- a/src/sage/combinat/tableau.py +++ b/src/sage/combinat/tableau.py @@ -86,34 +86,34 @@ # **************************************************************************** from itertools import repeat +import sage.libs.symmetrica.all as symmetrica +import sage.misc.prandom as random + from sage.arith.misc import binomial, factorial, multinomial from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets from sage.categories.infinite_enumerated_sets import InfiniteEnumeratedSets from sage.categories.sets_cat import Sets +from sage.combinat import permutation +from sage.combinat.combinatorial_map import combinatorial_map +from sage.combinat.composition import Composition, Compositions +from sage.combinat.integer_vector import IntegerVectors, integer_vectors_nk_fast_iter +from sage.combinat.posets.posets import Poset from sage.groups.perm_gps.permgroup import PermutationGroup +from sage.misc.inherit_comparison import InheritComparisonClasscallMetaclass +from sage.misc.misc import powerset +from sage.misc.misc_c import prod +from sage.misc.persist import register_unpickle_override +from sage.rings.finite_rings.integer_mod_ring import IntegerModRing +from sage.rings.infinity import PlusInfinity +from sage.rings.integer import Integer from sage.sets.disjoint_union_enumerated_sets import DisjointUnionEnumeratedSets from sage.sets.family import Family from sage.sets.non_negative_integers import NonNegativeIntegers from sage.structure.global_options import GlobalOptions -from sage.structure.unique_representation import UniqueRepresentation from sage.structure.list_clone import ClonableList from sage.structure.parent import Parent from sage.structure.richcmp import richcmp, richcmp_method -from sage.misc.persist import register_unpickle_override -from sage.misc.inherit_comparison import InheritComparisonClasscallMetaclass -from sage.rings.finite_rings.integer_mod_ring import IntegerModRing -from sage.rings.infinity import PlusInfinity -from sage.rings.integer import Integer -import sage.libs.symmetrica.all as symmetrica -import sage.misc.prandom as random -from sage.misc.misc_c import prod -from sage.misc.misc import powerset - -from . import permutation -from .combinatorial_map import combinatorial_map -from .composition import Composition, Compositions -from .integer_vector import IntegerVectors, integer_vectors_nk_fast_iter -from .posets.posets import Poset +from sage.structure.unique_representation import UniqueRepresentation @richcmp_method diff --git a/src/sage/combinat/words/lyndon_word.py b/src/sage/combinat/words/lyndon_word.py index 2a28f615a2c..6adb96421e5 100644 --- a/src/sage/combinat/words/lyndon_word.py +++ b/src/sage/combinat/words/lyndon_word.py @@ -16,13 +16,12 @@ from sage.combinat.combinat_cython import lyndon_word_iterator from sage.combinat.composition import Composition, Compositions from sage.combinat.necklace import _sfc +from sage.combinat.words.finite_word import FiniteWord_class +from sage.combinat.words.words import FiniteWords from sage.rings.integer import Integer from sage.structure.parent import Parent from sage.structure.unique_representation import UniqueRepresentation -from .finite_word import FiniteWord_class -from .words import FiniteWords - def LyndonWords(e=None, k=None): """ From ef98cb5f8392e6c1fde0e28df81e47c00e6f8097 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Thu, 16 Feb 2023 14:41:21 -0800 Subject: [PATCH 27/49] Replace relative imports by absolute imports because pytest --- src/sage/functions/hypergeometric.py | 11 +++++------ 1 file changed, 5 insertions(+), 6 deletions(-) diff --git a/src/sage/functions/hypergeometric.py b/src/sage/functions/hypergeometric.py index 04ea78910b0..752b8422fc6 100644 --- a/src/sage/functions/hypergeometric.py +++ b/src/sage/functions/hypergeometric.py @@ -166,6 +166,11 @@ from sage.arith.misc import binomial, factorial, rising_factorial from sage.calculus.functional import derivative +from sage.functions.error import erf +from sage.functions.gamma import gamma +from sage.functions.hyperbolic import cosh, sinh +from sage.functions.log import exp, log +from sage.functions.other import sqrt, real_part from sage.libs.mpmath import utils as mpmath_utils from sage.misc.latex import latex from sage.misc.misc_c import prod @@ -179,12 +184,6 @@ from sage.symbolic.function import BuiltinFunction from sage.symbolic.ring import SR -from .error import erf -from .gamma import gamma -from .hyperbolic import cosh, sinh -from .log import exp, log -from .other import sqrt, real_part - def rational_param_as_tuple(x): r""" From 8c2d31500007924e3bb54c4126f6bb7300c78a6f Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Sat, 18 Feb 2023 11:08:44 -0800 Subject: [PATCH 28/49] src/sage/matroids/linear_matroid.pyx: Remove unused imports, sort imports --- src/sage/matroids/linear_matroid.pyx | 31 +++++++++++++--------------- 1 file changed, 14 insertions(+), 17 deletions(-) diff --git a/src/sage/matroids/linear_matroid.pyx b/src/sage/matroids/linear_matroid.pyx index a0e41b0046c..5c697a696b4 100644 --- a/src/sage/matroids/linear_matroid.pyx +++ b/src/sage/matroids/linear_matroid.pyx @@ -111,30 +111,27 @@ Methods # https://www.gnu.org/licenses/ # **************************************************************************** +from copy import copy, deepcopy +from itertools import combinations, product + from cpython.object cimport Py_EQ, Py_NE from sage.data_structures.bitset_base cimport * -from sage.structure.richcmp cimport rich_to_bool -from sage.matroids.matroid cimport Matroid -from sage.matroids.basis_exchange_matroid cimport BasisExchangeMatroid -from .lean_matrix cimport (LeanMatrix, GenericMatrix, BinaryMatrix, - TernaryMatrix, QuaternaryMatrix, PlusMinusOneMatrix, - RationalMatrix, generic_identity) -from .set_system cimport SetSystem -from .utilities import newlabel, spanning_stars, spanning_forest, lift_cross_ratios -from sage.graphs.spanning_tree import kruskal from sage.graphs.graph import Graph - -from sage.matrix.matrix2 cimport Matrix -import sage.matrix.constructor +from sage.graphs.spanning_tree import kruskal from sage.matrix.constructor import matrix -from copy import copy, deepcopy +from sage.matrix.matrix2 cimport Matrix +from sage.matroids.basis_exchange_matroid cimport BasisExchangeMatroid +from sage.matroids.lean_matrix cimport (LeanMatrix, GenericMatrix, BinaryMatrix, + TernaryMatrix, QuaternaryMatrix, PlusMinusOneMatrix, + RationalMatrix, generic_identity) +from sage.matroids.matroid cimport Matroid +from sage.matroids.set_system cimport SetSystem +from sage.matroids.utilities import newlabel, spanning_stars, spanning_forest, lift_cross_ratios +from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ -from sage.rings.finite_rings.finite_field_constructor import FiniteField -from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF -import itertools -from itertools import combinations, product +from sage.structure.richcmp cimport rich_to_bool cdef bint GF2_not_defined = True cdef GF2, GF2_one, GF2_zero From 40a7d574bce11dcf62575c276a0aa8ac76c55e56 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Mon, 20 Feb 2023 18:37:07 -0800 Subject: [PATCH 29/49] src/sage/rings/finite_rings: Update doctest output (trac->github) --- src/sage/rings/finite_rings/element_base.pyx | 2 +- src/sage/rings/finite_rings/finite_field_base.pyx | 2 +- src/sage/rings/finite_rings/finite_field_constructor.py | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/src/sage/rings/finite_rings/element_base.pyx b/src/sage/rings/finite_rings/element_base.pyx index 17ca80e9028..4f785ebf181 100755 --- a/src/sage/rings/finite_rings/element_base.pyx +++ b/src/sage/rings/finite_rings/element_base.pyx @@ -34,7 +34,7 @@ def is_FiniteFieldElement(x): sage: from sage.rings.finite_rings.element_base import is_FiniteFieldElement sage: is_FiniteFieldElement(1) doctest:...: DeprecationWarning: the function is_FiniteFieldElement is deprecated; use isinstance(x, sage.structure.element.FieldElement) and x.parent().is_finite() instead - See https://trac.sagemath.org/32664 for details. + See https://github.com/sagemath/sage/issues/32664 for details. False sage: is_FiniteFieldElement(IntegerRing()) False diff --git a/src/sage/rings/finite_rings/finite_field_base.pyx b/src/sage/rings/finite_rings/finite_field_base.pyx index 1ec0f276289..1bdb3f48bb1 100644 --- a/src/sage/rings/finite_rings/finite_field_base.pyx +++ b/src/sage/rings/finite_rings/finite_field_base.pyx @@ -2122,7 +2122,7 @@ def is_FiniteField(R): sage: from sage.rings.finite_rings.finite_field_base import is_FiniteField sage: is_FiniteField(GF(9,'a')) doctest:...: DeprecationWarning: the function is_FiniteField is deprecated; use isinstance(x, sage.rings.finite_rings.finite_field_base.FiniteField) instead - See https://trac.sagemath.org/32664 for details. + See https://github.com/sagemath/sage/issues/32664 for details. True sage: is_FiniteField(GF(next_prime(10^10))) True diff --git a/src/sage/rings/finite_rings/finite_field_constructor.py b/src/sage/rings/finite_rings/finite_field_constructor.py index 23ed63d8b30..9a3f55ab489 100644 --- a/src/sage/rings/finite_rings/finite_field_constructor.py +++ b/src/sage/rings/finite_rings/finite_field_constructor.py @@ -800,7 +800,7 @@ def is_PrimeFiniteField(x): sage: from sage.rings.finite_rings.finite_field_constructor import is_PrimeFiniteField sage: is_PrimeFiniteField(QQ) doctest:...: DeprecationWarning: the function is_PrimeFiniteField is deprecated; use isinstance(x, sage.rings.finite_rings.finite_field_base.FiniteField) and x.is_prime_field() instead - See https://trac.sagemath.org/32664 for details. + See https://github.com/sagemath/sage/issues/32664 for details. False sage: is_PrimeFiniteField(GF(7)) True From c94bb0635b59f998a85c4d3c79f9f2df2b99c774 Mon Sep 17 00:00:00 2001 From: Alex Chandler Date: Sun, 29 Jan 2023 11:02:04 -0800 Subject: [PATCH 30/49] sage -fiximports src/sage/{coding,groups} --- src/sage/coding/bch_code.py | 4 ++-- src/sage/coding/binary_code.pyx | 2 +- src/sage/coding/code_bounds.py | 7 +++++-- src/sage/coding/code_constructions.py | 5 +++-- src/sage/coding/cyclic_code.py | 4 ++-- src/sage/coding/delsarte_bounds.py | 6 +++--- src/sage/coding/information_set_decoder.py | 6 +++++- src/sage/coding/linear_code.py | 3 ++- src/sage/groups/abelian_gps/abelian_group.py | 4 +++- .../abelian_gps/dual_abelian_group_element.py | 2 +- src/sage/groups/abelian_gps/element_base.py | 3 ++- src/sage/groups/affine_gps/affine_group.py | 2 +- src/sage/groups/class_function.py | 2 +- src/sage/groups/generic.py | 2 +- src/sage/groups/libgap_mixin.py | 4 ++-- src/sage/groups/matrix_gps/finitely_generated.py | 4 ++-- src/sage/groups/matrix_gps/group_element.pyx | 2 +- .../groups/perm_gps/partn_ref/data_structures.pyx | 4 ++-- .../perm_gps/partn_ref/refinement_matrices.pyx | 2 +- src/sage/groups/perm_gps/permgroup.py | 13 +++++++------ src/sage/groups/perm_gps/permgroup_element.pyx | 7 ++++--- src/sage/groups/perm_gps/permgroup_named.py | 5 +++-- 22 files changed, 54 insertions(+), 39 deletions(-) diff --git a/src/sage/coding/bch_code.py b/src/sage/coding/bch_code.py index 1666c5c4380..7b44b6680ea 100644 --- a/src/sage/coding/bch_code.py +++ b/src/sage/coding/bch_code.py @@ -27,8 +27,8 @@ from sage.modules.free_module_element import vector from sage.misc.misc_c import prod from sage.categories.fields import Fields -from sage.arith.all import gcd -from sage.rings.all import Zmod +from sage.arith.misc import GCD as gcd +from sage.rings.finite_rings.integer_mod_ring import IntegerModRing as Zmod from .cyclic_code import CyclicCode from .grs_code import GeneralizedReedSolomonCode diff --git a/src/sage/coding/binary_code.pyx b/src/sage/coding/binary_code.pyx index 408c1f55634..630cba27f36 100644 --- a/src/sage/coding/binary_code.pyx +++ b/src/sage/coding/binary_code.pyx @@ -4103,7 +4103,7 @@ cdef class BinaryCodeClassifier: m = BinaryCode(matrix(ZZ, rs)) m_aut_gp_gens, m_labeling, m_size, m_base = self._aut_gp_and_can_label(m) - from sage.arith.all import factorial + from sage.arith.misc import factorial if True: # size*factorial(n-B.ncols) == m_size: if len(m_aut_gp_gens) == 0: diff --git a/src/sage/coding/code_bounds.py b/src/sage/coding/code_bounds.py index 430f3a44de1..138b2e59aa8 100644 --- a/src/sage/coding/code_bounds.py +++ b/src/sage/coding/code_bounds.py @@ -174,9 +174,12 @@ # **************************************************************************** from sage.libs.gap.libgap import libgap -from sage.rings.all import QQ, RR, ZZ, RDF +from sage.rings.rational_field import Q as QQ +from sage.rings.real_mpfr import RR +from sage.rings.integer_ring import Z as ZZ +from sage.rings.real_double import RDF from sage.arith.misc import is_prime_power -from sage.arith.all import binomial +from sage.arith.misc import binomial from sage.misc.functional import sqrt, log from .delsarte_bounds import (delsarte_bound_hamming_space, delsarte_bound_additive_hamming_space) diff --git a/src/sage/coding/code_constructions.py b/src/sage/coding/code_constructions.py index ec50c75dd9c..587de2d431d 100644 --- a/src/sage/coding/code_constructions.py +++ b/src/sage/coding/code_constructions.py @@ -41,7 +41,8 @@ # **************************************************************************** from sage.misc.misc_c import prod -from sage.arith.all import quadratic_residues, gcd +from sage.arith.misc import quadratic_residues +from sage.arith.misc import GCD as gcd from sage.structure.sequence import Sequence, Sequence_generic @@ -753,7 +754,7 @@ def ToricCode(P,F): - David Joyner (07-2006) """ - from sage.combinat.all import Tuples + from sage.combinat.tuple import Tuples mset = [x for x in F if x != 0] d = len(P[0]) pts = Tuples(mset, d).list() diff --git a/src/sage/coding/cyclic_code.py b/src/sage/coding/cyclic_code.py index 93ce9730f49..f0a501739ea 100644 --- a/src/sage/coding/cyclic_code.py +++ b/src/sage/coding/cyclic_code.py @@ -41,11 +41,11 @@ from copy import copy from sage.rings.integer import Integer from sage.categories.homset import Hom -from sage.arith.all import gcd +from sage.arith.misc import GCD as gcd from sage.modules.free_module_element import vector from sage.matrix.constructor import matrix from sage.misc.cachefunc import cached_method -from sage.rings.all import Zmod +from sage.rings.finite_rings.integer_mod_ring import IntegerModRing as Zmod def find_generator_polynomial(code, check=True): diff --git a/src/sage/coding/delsarte_bounds.py b/src/sage/coding/delsarte_bounds.py index 15d5ade7887..db6b0c4f959 100644 --- a/src/sage/coding/delsarte_bounds.py +++ b/src/sage/coding/delsarte_bounds.py @@ -102,7 +102,7 @@ def krawtchouk(n, q, l, x, check=True): ... TypeError: no conversion of this rational to integer """ - from sage.arith.all import binomial + from sage.arith.misc import binomial from sage.arith.srange import srange # Use the expression in equation (55) of MacWilliams & Sloane, pg 151 # We write jth term = some_factor * (j-1)th term @@ -171,7 +171,7 @@ def eberlein(n, w, k, u, check=True): TypeError: either m or x-m must be an integer """ - from sage.arith.all import binomial + from sage.arith.misc import binomial from sage.arith.srange import srange if 2*w > n: @@ -275,7 +275,7 @@ def _delsarte_cwc_LP_building(n, d, w, solver, isinteger): """ from sage.numerical.mip import MixedIntegerLinearProgram - from sage.arith.all import binomial + from sage.arith.misc import binomial p = MixedIntegerLinearProgram(maximization=True, solver=solver) A = p.new_variable(integer=isinteger, nonnegative=True) diff --git a/src/sage/coding/information_set_decoder.py b/src/sage/coding/information_set_decoder.py index a2cbf94fc5e..f86ac617061 100644 --- a/src/sage/coding/information_set_decoder.py +++ b/src/sage/coding/information_set_decoder.py @@ -40,7 +40,11 @@ # http://www.gnu.org/licenses/ #****************************************************************************** -from sage.all import ZZ, Integer, vector, SageObject, binomial +from sage.rings.integer_ring import Z as ZZ +from sage.rings.integer import Integer +from sage.modules.free_module_element import free_module_element as vector +from sage.structure.sage_object import SageObject +from sage.functions.other import binomial from .decoder import Decoder diff --git a/src/sage/coding/linear_code.py b/src/sage/coding/linear_code.py index a3ac3ca1547..f3994a0f983 100644 --- a/src/sage/coding/linear_code.py +++ b/src/sage/coding/linear_code.py @@ -214,7 +214,8 @@ class should inherit from this class. Also ``AbstractLinearCode`` should never from sage.matrix.matrix_space import MatrixSpace from sage.modules.free_module import VectorSpace from sage.modules.free_module_element import vector -from sage.arith.all import GCD, binomial +from sage.arith.misc import GCD +from sage.arith.misc import binomial from sage.groups.all import SymmetricGroup from sage.groups.perm_gps.permgroup import PermutationGroup from sage.rings.rational_field import QQ diff --git a/src/sage/groups/abelian_gps/abelian_group.py b/src/sage/groups/abelian_gps/abelian_group.py index a56ae71d8bd..dd22be822c4 100644 --- a/src/sage/groups/abelian_gps/abelian_group.py +++ b/src/sage/groups/abelian_gps/abelian_group.py @@ -207,7 +207,9 @@ from sage.structure.category_object import normalize_names from sage.structure.unique_representation import UniqueRepresentation from sage.rings.infinity import infinity -from sage.arith.all import divisors, gcd, lcm +from sage.arith.misc import divisors +from sage.arith.misc import GCD as gcd +from sage.arith.functions import lcm from sage.groups.abelian_gps.abelian_group_element import AbelianGroupElement from sage.misc.cachefunc import cached_method from sage.misc.misc_c import prod diff --git a/src/sage/groups/abelian_gps/dual_abelian_group_element.py b/src/sage/groups/abelian_gps/dual_abelian_group_element.py index 18fac135c94..685e4355780 100644 --- a/src/sage/groups/abelian_gps/dual_abelian_group_element.py +++ b/src/sage/groups/abelian_gps/dual_abelian_group_element.py @@ -52,7 +52,7 @@ # (at your option) any later version. # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.arith.all import LCM +from sage.arith.functions import lcm as LCM from sage.groups.abelian_gps.element_base import AbelianGroupElementBase diff --git a/src/sage/groups/abelian_gps/element_base.py b/src/sage/groups/abelian_gps/element_base.py index c1eec7ecb1f..cb31fe18d37 100644 --- a/src/sage/groups/abelian_gps/element_base.py +++ b/src/sage/groups/abelian_gps/element_base.py @@ -20,7 +20,8 @@ from sage.structure.element import MultiplicativeGroupElement from sage.misc.cachefunc import cached_method -from sage.arith.all import GCD, LCM +from sage.arith.misc import GCD +from sage.arith.functions import lcm as LCM from sage.rings.integer import Integer from sage.rings.integer_ring import ZZ from sage.rings.infinity import infinity diff --git a/src/sage/groups/affine_gps/affine_group.py b/src/sage/groups/affine_gps/affine_group.py index cef1788deea..44d6bf94900 100644 --- a/src/sage/groups/affine_gps/affine_group.py +++ b/src/sage/groups/affine_gps/affine_group.py @@ -21,7 +21,7 @@ from sage.categories.groups import Groups from sage.groups.matrix_gps.linear import GL from sage.categories.rings import Rings -from sage.matrix.all import MatrixSpace +from sage.matrix.matrix_space import MatrixSpace from sage.modules.all import FreeModule from sage.structure.unique_representation import UniqueRepresentation from sage.misc.cachefunc import cached_method diff --git a/src/sage/groups/class_function.py b/src/sage/groups/class_function.py index 56be7eedb29..f8ba10a4c2a 100644 --- a/src/sage/groups/class_function.py +++ b/src/sage/groups/class_function.py @@ -27,7 +27,7 @@ from sage.structure.richcmp import richcmp, richcmp_method from sage.interfaces.gap import gap from sage.rings.integer import Integer -from sage.rings.all import CyclotomicField +from sage.rings.number_field.number_field import CyclotomicField from sage.libs.gap.element import GapElement from sage.libs.gap.libgap import libgap from sage.libs.gap.element import GapElement as LibGapElement diff --git a/src/sage/groups/generic.py b/src/sage/groups/generic.py index d5823ebf9e0..33e92d43ca5 100644 --- a/src/sage/groups/generic.py +++ b/src/sage/groups/generic.py @@ -935,7 +935,7 @@ def discrete_log(a, base, ord=None, bounds=None, operation='*', identity=None, i if running_mod > bound: break # we have log%running_mod. if we know that log 0 and self.cardinality() % q): - from sage.all import Matrix + from sage.matrix.constructor import Matrix try: elements = [g.matrix() for g in self.list()] except (TypeError, ValueError): diff --git a/src/sage/groups/matrix_gps/group_element.pyx b/src/sage/groups/matrix_gps/group_element.pyx index 777b141beb0..4d0312efdf9 100644 --- a/src/sage/groups/matrix_gps/group_element.pyx +++ b/src/sage/groups/matrix_gps/group_element.pyx @@ -687,7 +687,7 @@ cdef class MatrixGroupElement_gap(ElementLibGAP): return order.sage() else: assert order.IsInfinity() - from sage.rings.all import Infinity + from sage.rings.infinity import Infinity return Infinity def word_problem(self, gens=None): diff --git a/src/sage/groups/perm_gps/partn_ref/data_structures.pyx b/src/sage/groups/perm_gps/partn_ref/data_structures.pyx index 74065fe1fec..841368e81e8 100644 --- a/src/sage/groups/perm_gps/partn_ref/data_structures.pyx +++ b/src/sage/groups/perm_gps/partn_ref/data_structures.pyx @@ -1411,7 +1411,7 @@ def SC_test_list_perms(list L, int n, int limit, bint gap, bint limit_complain, if SC_is_giant(n, len(L), perm, 0.9, giant_support): giant = True m = bitset_len(giant_support) - from sage.arith.all import factorial + from sage.arith.misc import factorial if not (order == factorial(m) or order == factorial(m)/2): print("SC_is_giant failed: %s %s"%(str(L), order)) raise AssertionError @@ -1530,7 +1530,7 @@ def SC_test_list_perms(list L, int n, int limit, bint gap, bint limit_complain, perm[n*j + i] = Lperm[i] j += 1 if SC_is_giant(n, len(L), perm, 0.9, giant_support): - from sage.arith.all import factorial + from sage.arith.misc import factorial m = bitset_len(giant_support) if order != factorial(m) and order != factorial(m)/2: print("SC_is_giant failed: %s %s"%(str(L), order)) diff --git a/src/sage/groups/perm_gps/partn_ref/refinement_matrices.pyx b/src/sage/groups/perm_gps/partn_ref/refinement_matrices.pyx index 736659318d6..71f09ccc90f 100644 --- a/src/sage/groups/perm_gps/partn_ref/refinement_matrices.pyx +++ b/src/sage/groups/perm_gps/partn_ref/refinement_matrices.pyx @@ -337,7 +337,7 @@ def random_tests(n=10, nrows_max=50, ncols_max=50, nsymbols_max=10, perms_per_ma from sage.combinat.permutation import Permutations from sage.matrix.constructor import random_matrix, matrix from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF - from sage.arith.all import next_prime + from sage.arith.misc import next_prime cdef int h, i, j, nrows, k, num_tests = 0, num_matrices = 0 cdef MatrixStruct M, N for m in range(n): diff --git a/src/sage/groups/perm_gps/permgroup.py b/src/sage/groups/perm_gps/permgroup.py index be5e3372d6f..ba7b5d90a09 100644 --- a/src/sage/groups/perm_gps/permgroup.py +++ b/src/sage/groups/perm_gps/permgroup.py @@ -141,7 +141,8 @@ from sage.misc.randstate import current_randstate from sage.groups.group import FiniteGroup -from sage.rings.all import QQ, Integer +from sage.rings.rational_field import Q as QQ +from sage.rings.integer import Integer from sage.interfaces.abc import ExpectElement, GapElement from sage.libs.gap.libgap import libgap from sage.libs.gap.element import GapElement as LibGapElement @@ -151,7 +152,7 @@ from sage.misc.cachefunc import cached_method from sage.groups.class_function import ClassFunction_libgap from sage.sets.finite_enumerated_set import FiniteEnumeratedSet -from sage.categories.all import FiniteEnumeratedSets +from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets from sage.groups.conjugacy_classes import ConjugacyClassGAP from sage.structure.richcmp import (richcmp_method, richcmp, rich_to_bool, op_EQ, op_NE) @@ -195,7 +196,7 @@ def hap_decorator(f): @wraps(f) def wrapped(self, n, p=0): load_hap() - from sage.arith.all import is_prime + from sage.arith.misc import is_prime if not (p == 0 or is_prime(p)): raise ValueError("p must be 0 or prime") @@ -3421,13 +3422,13 @@ def character_table(self): irrG = G.Irr() ct = [[irrG[i, j] for j in range(n)] for i in range(n)] - from sage.rings.all import CyclotomicField + from sage.rings.number_field.number_field import CyclotomicField e = irrG.Flat().Conductor() K = CyclotomicField(e) ct = [[K(x) for x in v] for v in ct] # Finally return the result as a matrix. - from sage.matrix.all import MatrixSpace + from sage.matrix.matrix_space import MatrixSpace MS = MatrixSpace(K, n) return MS(ct) @@ -4742,7 +4743,7 @@ def poincare_series(self, p=2, n=10): """ load_hap() - from sage.arith.all import is_prime + from sage.arith.misc import is_prime if not (p == 0 or is_prime(p)): raise ValueError("p must be 0 or prime") diff --git a/src/sage/groups/perm_gps/permgroup_element.pyx b/src/sage/groups/perm_gps/permgroup_element.pyx index d81fe55f5e7..1ea9a767fe7 100644 --- a/src/sage/groups/perm_gps/permgroup_element.pyx +++ b/src/sage/groups/perm_gps/permgroup_element.pyx @@ -121,11 +121,12 @@ from cpython.list cimport * from cypari2.gen cimport Gen from sage.ext.stdsage cimport HAS_DICTIONARY -from sage.rings.all import ZZ, Integer -from sage.rings.polynomial.polynomial_element import Polynomial +from sage.rings.integer_ring import ZZ +from sage.rings.integer import Integer from sage.rings.polynomial.multi_polynomial import MPolynomial +from sage.rings.polynomial.polynomial_element import Polynomial from sage.structure.element import is_Matrix -from sage.matrix.all import MatrixSpace +from sage.matrix.matrix_space import MatrixSpace from sage.sets.finite_enumerated_set import FiniteEnumeratedSet import sage.structure.coerce as coerce from sage.structure.richcmp cimport richcmp_not_equal, rich_to_bool diff --git a/src/sage/groups/perm_gps/permgroup_named.py b/src/sage/groups/perm_gps/permgroup_named.py index 4fb4a094244..8e242c11446 100644 --- a/src/sage/groups/perm_gps/permgroup_named.py +++ b/src/sage/groups/perm_gps/permgroup_named.py @@ -86,10 +86,11 @@ # **************************************************************************** from pathlib import Path -from sage.rings.all import Integer +from sage.rings.integer import Integer from sage.libs.gap.libgap import libgap from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF -from sage.arith.all import factor, valuation +from sage.arith.misc import factor +from sage.arith.misc import valuation from sage.groups.abelian_gps.abelian_group import AbelianGroup from sage.misc.functional import is_even from sage.misc.cachefunc import cached_method, weak_cached_function From b4ec50e1158235fb549460950f67b12d6fa2979b Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Sun, 29 Jan 2023 18:17:32 -0800 Subject: [PATCH 31/49] git grep -l -E ' (Q as QQ|Z as ZZ)' | xargs sed -i.bak 's/ Q as QQ/ QQ/;s/ Z as ZZ/ ZZ/;' --- src/sage/coding/code_bounds.py | 4 ++-- src/sage/coding/information_set_decoder.py | 2 +- src/sage/groups/perm_gps/permgroup.py | 2 +- 3 files changed, 4 insertions(+), 4 deletions(-) diff --git a/src/sage/coding/code_bounds.py b/src/sage/coding/code_bounds.py index 138b2e59aa8..85b2b48ea3a 100644 --- a/src/sage/coding/code_bounds.py +++ b/src/sage/coding/code_bounds.py @@ -174,9 +174,9 @@ # **************************************************************************** from sage.libs.gap.libgap import libgap -from sage.rings.rational_field import Q as QQ +from sage.rings.rational_field import QQ from sage.rings.real_mpfr import RR -from sage.rings.integer_ring import Z as ZZ +from sage.rings.integer_ring import ZZ from sage.rings.real_double import RDF from sage.arith.misc import is_prime_power from sage.arith.misc import binomial diff --git a/src/sage/coding/information_set_decoder.py b/src/sage/coding/information_set_decoder.py index f86ac617061..499eeb44997 100644 --- a/src/sage/coding/information_set_decoder.py +++ b/src/sage/coding/information_set_decoder.py @@ -40,7 +40,7 @@ # http://www.gnu.org/licenses/ #****************************************************************************** -from sage.rings.integer_ring import Z as ZZ +from sage.rings.integer_ring import ZZ from sage.rings.integer import Integer from sage.modules.free_module_element import free_module_element as vector from sage.structure.sage_object import SageObject diff --git a/src/sage/groups/perm_gps/permgroup.py b/src/sage/groups/perm_gps/permgroup.py index ba7b5d90a09..89c36ca2579 100644 --- a/src/sage/groups/perm_gps/permgroup.py +++ b/src/sage/groups/perm_gps/permgroup.py @@ -141,7 +141,7 @@ from sage.misc.randstate import current_randstate from sage.groups.group import FiniteGroup -from sage.rings.rational_field import Q as QQ +from sage.rings.rational_field import QQ from sage.rings.integer import Integer from sage.interfaces.abc import ExpectElement, GapElement from sage.libs.gap.libgap import libgap From f1861a9195395f448eb462554bcf4047c3e14b43 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Sun, 29 Jan 2023 18:22:50 -0800 Subject: [PATCH 32/49] sage.{coding,groups}: Consolidate imports from the same module --- src/sage/coding/code_bounds.py | 10 +++--- src/sage/coding/code_constructions.py | 14 +++------ src/sage/coding/linear_code.py | 33 ++++++++++---------- src/sage/groups/abelian_gps/abelian_group.py | 21 ++++++------- src/sage/groups/perm_gps/permgroup_named.py | 25 +++++++-------- 5 files changed, 49 insertions(+), 54 deletions(-) diff --git a/src/sage/coding/code_bounds.py b/src/sage/coding/code_bounds.py index 85b2b48ea3a..766a8f266cf 100644 --- a/src/sage/coding/code_bounds.py +++ b/src/sage/coding/code_bounds.py @@ -173,14 +173,14 @@ # https://www.gnu.org/licenses/ # **************************************************************************** +from sage.arith.misc import binomial, is_prime_power from sage.libs.gap.libgap import libgap -from sage.rings.rational_field import QQ -from sage.rings.real_mpfr import RR +from sage.misc.functional import sqrt, log from sage.rings.integer_ring import ZZ +from sage.rings.rational_field import QQ from sage.rings.real_double import RDF -from sage.arith.misc import is_prime_power -from sage.arith.misc import binomial -from sage.misc.functional import sqrt, log +from sage.rings.real_mpfr import RR + from .delsarte_bounds import (delsarte_bound_hamming_space, delsarte_bound_additive_hamming_space) from sage.features.gap import GapPackage diff --git a/src/sage/coding/code_constructions.py b/src/sage/coding/code_constructions.py index 587de2d431d..050793b41e9 100644 --- a/src/sage/coding/code_constructions.py +++ b/src/sage/coding/code_constructions.py @@ -40,21 +40,17 @@ # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.misc.misc_c import prod -from sage.arith.misc import quadratic_residues -from sage.arith.misc import GCD as gcd - -from sage.structure.sequence import Sequence, Sequence_generic - -from sage.matrix.matrix_space import MatrixSpace +from sage.arith.misc import GCD as gcd, quadratic_residues from sage.matrix.constructor import matrix +from sage.matrix.matrix_space import MatrixSpace from sage.matrix.special import random_matrix - +from sage.misc.misc_c import prod from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF from sage.rings.finite_rings.integer_mod import Mod from sage.rings.finite_rings.integer_mod_ring import IntegerModRing -from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.integer import Integer +from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing +from sage.structure.sequence import Sequence, Sequence_generic from .linear_code import LinearCode diff --git a/src/sage/coding/linear_code.py b/src/sage/coding/linear_code.py index f3994a0f983..127c76a2054 100644 --- a/src/sage/coding/linear_code.py +++ b/src/sage/coding/linear_code.py @@ -205,33 +205,34 @@ class should inherit from this class. Also ``AbstractLinearCode`` should never import os import subprocess -from io import StringIO from copy import copy +from io import StringIO -from sage.cpython.string import bytes_to_str +from sage.arith.misc import binomial, GCD from sage.categories.cartesian_product import cartesian_product from sage.categories.fields import Fields +from sage.combinat.subset import Subsets +from sage.cpython.string import bytes_to_str +from sage.features.gap import GapPackage +from sage.groups.all import SymmetricGroup +from sage.groups.perm_gps.permgroup import PermutationGroup +from sage.interfaces.gap import gap from sage.matrix.matrix_space import MatrixSpace +from sage.misc.cachefunc import cached_method +from sage.misc.functional import is_even +from sage.misc.misc_c import prod +from sage.misc.randstate import current_randstate from sage.modules.free_module import VectorSpace from sage.modules.free_module_element import vector -from sage.arith.misc import GCD -from sage.arith.misc import binomial -from sage.groups.all import SymmetricGroup -from sage.groups.perm_gps.permgroup import PermutationGroup -from sage.rings.rational_field import QQ +from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF +from sage.rings.integer import Integer from sage.rings.integer_ring import ZZ from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing -from sage.rings.integer import Integer -from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF -from sage.misc.misc_c import prod -from sage.misc.functional import is_even -from sage.misc.cachefunc import cached_method -from sage.misc.randstate import current_randstate -from sage.combinat.subset import Subsets -from sage.features.gap import GapPackage -from sage.coding.linear_code_no_metric import AbstractLinearCodeNoMetric +from sage.rings.rational_field import QQ + from .encoder import Encoder from .decoder import Decoder +from .linear_code_no_metric import AbstractLinearCodeNoMetric # ***************************************************************************** # coding theory functions diff --git a/src/sage/groups/abelian_gps/abelian_group.py b/src/sage/groups/abelian_gps/abelian_group.py index dd22be822c4..252fb13fbcb 100644 --- a/src/sage/groups/abelian_gps/abelian_group.py +++ b/src/sage/groups/abelian_gps/abelian_group.py @@ -202,23 +202,22 @@ # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.rings.integer import Integer -from sage.rings.integer_ring import ZZ -from sage.structure.category_object import normalize_names -from sage.structure.unique_representation import UniqueRepresentation -from sage.rings.infinity import infinity -from sage.arith.misc import divisors -from sage.arith.misc import GCD as gcd from sage.arith.functions import lcm +from sage.arith.misc import divisors, GCD as gcd +from sage.categories.groups import Groups from sage.groups.abelian_gps.abelian_group_element import AbelianGroupElement -from sage.misc.cachefunc import cached_method -from sage.misc.misc_c import prod -from sage.misc.mrange import mrange, cartesian_product_iterator from sage.groups.group import AbelianGroup as AbelianGroupBase -from sage.categories.groups import Groups from sage.matrix.constructor import matrix from sage.matrix.special import diagonal_matrix +from sage.misc.cachefunc import cached_method +from sage.misc.misc_c import prod +from sage.misc.mrange import cartesian_product_iterator, mrange from sage.modules.free_module_element import vector +from sage.rings.infinity import infinity +from sage.rings.integer import Integer +from sage.rings.integer_ring import ZZ +from sage.structure.category_object import normalize_names +from sage.structure.unique_representation import UniqueRepresentation # TODO: this uses perm groups - the AbelianGroupElement instance method diff --git a/src/sage/groups/perm_gps/permgroup_named.py b/src/sage/groups/perm_gps/permgroup_named.py index 8e242c11446..d5f9aeaf9ab 100644 --- a/src/sage/groups/perm_gps/permgroup_named.py +++ b/src/sage/groups/perm_gps/permgroup_named.py @@ -86,25 +86,24 @@ # **************************************************************************** from pathlib import Path -from sage.rings.integer import Integer -from sage.libs.gap.libgap import libgap -from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF -from sage.arith.misc import factor -from sage.arith.misc import valuation +from sage.arith.misc import factor, valuation +from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets from sage.groups.abelian_gps.abelian_group import AbelianGroup -from sage.misc.functional import is_even -from sage.misc.cachefunc import cached_method, weak_cached_function from sage.groups.perm_gps.permgroup import PermutationGroup_generic from sage.groups.perm_gps.permgroup_element import SymmetricGroupElement -from sage.structure.unique_representation import CachedRepresentation -from sage.structure.parent import Parent -from sage.structure.richcmp import richcmp -from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets -from sage.sets.finite_enumerated_set import FiniteEnumeratedSet +from sage.libs.gap.libgap import libgap +from sage.misc.cachefunc import cached_method, weak_cached_function +from sage.misc.functional import is_even +from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF +from sage.rings.integer import Integer from sage.sets.disjoint_union_enumerated_sets import DisjointUnionEnumeratedSets -from sage.sets.non_negative_integers import NonNegativeIntegers from sage.sets.family import Family +from sage.sets.finite_enumerated_set import FiniteEnumeratedSet +from sage.sets.non_negative_integers import NonNegativeIntegers from sage.sets.primes import Primes +from sage.structure.parent import Parent +from sage.structure.richcmp import richcmp +from sage.structure.unique_representation import CachedRepresentation class PermutationGroup_unique(CachedRepresentation, PermutationGroup_generic): From 34b9b184e65593de25ce909e4e99ac809d438055 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Sun, 29 Jan 2023 18:23:52 -0800 Subject: [PATCH 33/49] src/sage/coding/delsarte_bounds.py: Remove useless import in doctest --- src/sage/coding/delsarte_bounds.py | 1 - 1 file changed, 1 deletion(-) diff --git a/src/sage/coding/delsarte_bounds.py b/src/sage/coding/delsarte_bounds.py index db6b0c4f959..52eb8ce746c 100644 --- a/src/sage/coding/delsarte_bounds.py +++ b/src/sage/coding/delsarte_bounds.py @@ -602,7 +602,6 @@ def _delsarte_Q_LP_building(q, d, solver, isinteger): EXAMPLES:: sage: from sage.coding.delsarte_bounds import _delsarte_Q_LP_building - sage: from sage.all import * sage: q = Matrix([[codes.bounds.krawtchouk(6,2,i,j) for j in range(7)] for i in range(7)]) sage: _, p = _delsarte_Q_LP_building(q, 2, "PPL", False) sage: p.show() From 62436f9778374492aef288848f7c793ab71f0385 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Tue, 14 Feb 2023 11:59:30 -0800 Subject: [PATCH 34/49] git grep -l 'GCD as gcd' src/sage/{coding,groups} | xargs sed -i.bak 's/GCD as gcd/gcd/' --- src/sage/coding/bch_code.py | 2 +- src/sage/coding/code_constructions.py | 2 +- src/sage/coding/cyclic_code.py | 2 +- src/sage/groups/abelian_gps/abelian_group.py | 2 +- 4 files changed, 4 insertions(+), 4 deletions(-) diff --git a/src/sage/coding/bch_code.py b/src/sage/coding/bch_code.py index 7b44b6680ea..96d4691e554 100644 --- a/src/sage/coding/bch_code.py +++ b/src/sage/coding/bch_code.py @@ -27,7 +27,7 @@ from sage.modules.free_module_element import vector from sage.misc.misc_c import prod from sage.categories.fields import Fields -from sage.arith.misc import GCD as gcd +from sage.arith.misc import gcd from sage.rings.finite_rings.integer_mod_ring import IntegerModRing as Zmod from .cyclic_code import CyclicCode diff --git a/src/sage/coding/code_constructions.py b/src/sage/coding/code_constructions.py index 050793b41e9..812d5d88df9 100644 --- a/src/sage/coding/code_constructions.py +++ b/src/sage/coding/code_constructions.py @@ -40,7 +40,7 @@ # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.arith.misc import GCD as gcd, quadratic_residues +from sage.arith.misc import gcd, quadratic_residues from sage.matrix.constructor import matrix from sage.matrix.matrix_space import MatrixSpace from sage.matrix.special import random_matrix diff --git a/src/sage/coding/cyclic_code.py b/src/sage/coding/cyclic_code.py index f0a501739ea..77b72d4ba95 100644 --- a/src/sage/coding/cyclic_code.py +++ b/src/sage/coding/cyclic_code.py @@ -41,7 +41,7 @@ from copy import copy from sage.rings.integer import Integer from sage.categories.homset import Hom -from sage.arith.misc import GCD as gcd +from sage.arith.misc import gcd from sage.modules.free_module_element import vector from sage.matrix.constructor import matrix from sage.misc.cachefunc import cached_method diff --git a/src/sage/groups/abelian_gps/abelian_group.py b/src/sage/groups/abelian_gps/abelian_group.py index 252fb13fbcb..41b0e2c9eca 100644 --- a/src/sage/groups/abelian_gps/abelian_group.py +++ b/src/sage/groups/abelian_gps/abelian_group.py @@ -203,7 +203,7 @@ # **************************************************************************** from sage.arith.functions import lcm -from sage.arith.misc import divisors, GCD as gcd +from sage.arith.misc import divisors, gcd from sage.categories.groups import Groups from sage.groups.abelian_gps.abelian_group_element import AbelianGroupElement from sage.groups.group import AbelianGroup as AbelianGroupBase From cec7c2f2f0d1badc62a6f7efc72ec8bd98dfe390 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Thu, 16 Feb 2023 10:20:29 -0800 Subject: [PATCH 35/49] Replace relative imports by absolute imports because pytest --- src/sage/coding/linear_code.py | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) diff --git a/src/sage/coding/linear_code.py b/src/sage/coding/linear_code.py index 127c76a2054..f8d749b23c6 100644 --- a/src/sage/coding/linear_code.py +++ b/src/sage/coding/linear_code.py @@ -211,6 +211,9 @@ class should inherit from this class. Also ``AbstractLinearCode`` should never from sage.arith.misc import binomial, GCD from sage.categories.cartesian_product import cartesian_product from sage.categories.fields import Fields +from sage.coding.decoder import Decoder +from sage.coding.encoder import Encoder +from sage.coding.linear_code_no_metric import AbstractLinearCodeNoMetric from sage.combinat.subset import Subsets from sage.cpython.string import bytes_to_str from sage.features.gap import GapPackage @@ -230,10 +233,6 @@ class should inherit from this class. Also ``AbstractLinearCode`` should never from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.rational_field import QQ -from .encoder import Encoder -from .decoder import Decoder -from .linear_code_no_metric import AbstractLinearCodeNoMetric - # ***************************************************************************** # coding theory functions # ***************************************************************************** From d591aec4fd92a253c6e685d0efee4bda9c48e306 Mon Sep 17 00:00:00 2001 From: Alex Chandler Date: Sun, 29 Jan 2023 14:22:46 -0800 Subject: [PATCH 36/49] sage -fiximports src/sage/{arith,crypto,databases,dynamics,lfunctions,quadratic_forms} --- src/sage/arith/multi_modular.pyx | 2 +- src/sage/arith/numerical_approx.pyx | 4 +++- src/sage/crypto/boolean_function.pyx | 2 +- src/sage/crypto/classical.py | 3 ++- src/sage/crypto/lattice.py | 2 +- src/sage/crypto/lfsr.py | 3 ++- src/sage/crypto/lwe.py | 7 +++++-- src/sage/crypto/public_key/blum_goldwasser.py | 4 +++- src/sage/crypto/stream.py | 3 ++- src/sage/crypto/util.py | 5 ++++- src/sage/databases/jones.py | 4 +++- .../arithmetic_dynamics/endPN_automorphism_group.py | 6 +++++- .../arithmetic_dynamics/endPN_minimal_model.py | 2 +- src/sage/dynamics/arithmetic_dynamics/projective_ds.py | 7 ++++++- .../arithmetic_dynamics/projective_ds_helper.pyx | 2 +- .../dynamics/complex_dynamics/mandel_julia_helper.pyx | 4 ++-- src/sage/lfunctions/dokchitser.py | 2 +- src/sage/lfunctions/pari.py | 5 ++++- src/sage/lfunctions/zero_sums.pyx | 3 ++- src/sage/quadratic_forms/binary_qf.py | 7 ++++--- src/sage/quadratic_forms/count_local_2.pyx | 4 +++- src/sage/quadratic_forms/extras.py | 2 +- src/sage/quadratic_forms/genera/genus.py | 3 ++- src/sage/quadratic_forms/genera/normal_form.py | 4 +++- src/sage/quadratic_forms/genera/spinor_genus.py | 3 ++- src/sage/quadratic_forms/qfsolve.py | 4 +++- src/sage/quadratic_forms/quadratic_form.py | 6 ++++-- .../quadratic_forms/quadratic_form__automorphisms.py | 2 +- .../quadratic_form__equivalence_testing.py | 7 ++++++- src/sage/quadratic_forms/quadratic_form__genus.py | 3 ++- .../quadratic_form__local_density_congruence.py | 2 +- .../quadratic_form__local_density_interfaces.py | 2 +- .../quadratic_form__local_field_invariants.py | 3 ++- .../quadratic_form__local_normal_form.py | 4 +++- .../quadratic_form__local_representation_conditions.py | 4 +++- .../quadratic_form__mass__Conway_Sloane_masses.py | 6 +++++- .../quadratic_form__mass__Siegel_densities.py | 4 +++- src/sage/quadratic_forms/quadratic_form__neighbors.py | 3 ++- .../quadratic_forms/quadratic_form__siegel_product.py | 5 ++++- .../quadratic_form__split_local_covering.py | 2 +- .../quadratic_form__ternary_Tornaria.py | 8 ++++++-- src/sage/quadratic_forms/special_values.py | 10 +++++++--- src/sage/quadratic_forms/ternary.pyx | 4 +++- src/sage/quadratic_forms/ternary_qf.py | 3 ++- 44 files changed, 123 insertions(+), 52 deletions(-) diff --git a/src/sage/arith/multi_modular.pyx b/src/sage/arith/multi_modular.pyx index 2958315c346..766c9923404 100644 --- a/src/sage/arith/multi_modular.pyx +++ b/src/sage/arith/multi_modular.pyx @@ -16,7 +16,7 @@ from cysignals.memory cimport check_allocarray, check_reallocarray, sig_free from sage.libs.gmp.mpz cimport * from sage.rings.integer cimport Integer, smallInteger -from sage.arith.all import random_prime +from sage.arith.misc import random_prime from types import GeneratorType from sage.ext.stdsage cimport PY_NEW from cpython.object cimport PyObject_RichCompare diff --git a/src/sage/arith/numerical_approx.pyx b/src/sage/arith/numerical_approx.pyx index b53d7679099..005b88621c4 100644 --- a/src/sage/arith/numerical_approx.pyx +++ b/src/sage/arith/numerical_approx.pyx @@ -15,7 +15,9 @@ Generic numerical approximation function from sage.structure.parent cimport Parent from sage.structure.element cimport parent cdef Parent CDF -from sage.rings.all import RealField, ComplexField, CDF +from sage.rings.real_mpfr import RealField +from sage.rings.complex_mpfr import ComplexField +from sage.rings.complex_double import CDF def numerical_approx_generic(x, prec): diff --git a/src/sage/crypto/boolean_function.pyx b/src/sage/crypto/boolean_function.pyx index ffc02b40ada..adb2405457e 100644 --- a/src/sage/crypto/boolean_function.pyx +++ b/src/sage/crypto/boolean_function.pyx @@ -1011,7 +1011,7 @@ cdef class BooleanFunction(SageObject): from sage.misc.misc_c import prod from sage.matrix.constructor import Matrix - from sage.arith.all import binomial + from sage.arith.misc import binomial M = Matrix(GF(2), sum(binomial(self._nvariables,i) for i in range(d+1)), len(s)) cdef long i diff --git a/src/sage/crypto/classical.py b/src/sage/crypto/classical.py index 39cab2a6f90..ceedaedf968 100644 --- a/src/sage/crypto/classical.py +++ b/src/sage/crypto/classical.py @@ -55,7 +55,8 @@ from sage.rings.integer import Integer from sage.rings.integer_ring import ZZ from sage.rings.finite_rings.integer_mod_ring import IntegerModRing -from sage.arith.all import xgcd, inverse_mod +from sage.arith.misc import XGCD as xgcd +from sage.arith.misc import inverse_mod from random import randint from sage.matrix.matrix_space import MatrixSpace diff --git a/src/sage/crypto/lattice.py b/src/sage/crypto/lattice.py index cf72c2660c4..d7ee358b9a9 100644 --- a/src/sage/crypto/lattice.py +++ b/src/sage/crypto/lattice.py @@ -256,7 +256,7 @@ def gen_lattice(type='modular', n=4, m=8, q=11, seed=None, A = A.stack(R.random_element().matrix()) elif type == 'cyclotomic': - from sage.arith.all import euler_phi + from sage.arith.misc import euler_phi from sage.misc.functional import cyclotomic_polynomial # we assume that n+1 <= min( euler_phi^{-1}(n) ) <= 2*n diff --git a/src/sage/crypto/lfsr.py b/src/sage/crypto/lfsr.py index 08553b62056..b8aad014e27 100644 --- a/src/sage/crypto/lfsr.py +++ b/src/sage/crypto/lfsr.py @@ -128,8 +128,9 @@ import copy from sage.structure.all import Sequence -from sage.rings.all import Integer, PolynomialRing from sage.rings.finite_rings.finite_field_base import FiniteField +from sage.rings.integer import Integer +from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing def lfsr_sequence(key, fill, n): diff --git a/src/sage/crypto/lwe.py b/src/sage/crypto/lwe.py index bc027e97362..77d8e442337 100644 --- a/src/sage/crypto/lwe.py +++ b/src/sage/crypto/lwe.py @@ -100,8 +100,11 @@ from sage.modules.free_module import FreeModule from sage.modules.free_module_element import random_vector, vector from sage.numerical.optimize import find_root -from sage.rings.all import ZZ, IntegerModRing, RR -from sage.arith.all import next_prime, euler_phi +from sage.rings.integer_ring import Z as ZZ +from sage.rings.finite_rings.integer_mod_ring import IntegerModRing +from sage.rings.real_mpfr import RR +from sage.arith.misc import next_prime +from sage.arith.misc import euler_phi from sage.structure.element import parent from sage.structure.sage_object import SageObject from sage.symbolic.constants import pi diff --git a/src/sage/crypto/public_key/blum_goldwasser.py b/src/sage/crypto/public_key/blum_goldwasser.py index d841e69699a..712e1a6bc9a 100644 --- a/src/sage/crypto/public_key/blum_goldwasser.py +++ b/src/sage/crypto/public_key/blum_goldwasser.py @@ -37,7 +37,9 @@ from sage.functions.log import log from sage.functions.other import Function_floor from sage.monoids.string_monoid import BinaryStrings -from sage.arith.all import gcd, power_mod, xgcd +from sage.arith.misc import GCD as gcd +from sage.arith.misc import power_mod +from sage.arith.misc import XGCD as xgcd from sage.rings.finite_rings.integer_mod import Mod as mod from sage.rings.finite_rings.integer_mod_ring import IntegerModFactory diff --git a/src/sage/crypto/stream.py b/src/sage/crypto/stream.py index 90e4a6f5133..9e150d4b695 100644 --- a/src/sage/crypto/stream.py +++ b/src/sage/crypto/stream.py @@ -17,7 +17,8 @@ from sage.crypto.util import random_blum_prime from sage.monoids.string_monoid import BinaryStrings -from sage.arith.all import gcd, power_mod +from sage.arith.misc import GCD as gcd +from sage.arith.misc import power_mod from sage.rings.finite_rings.finite_field_constructor import FiniteField from sage.rings.finite_rings.integer_mod_ring import IntegerModFactory from sage.rings.polynomial.polynomial_element import Polynomial diff --git a/src/sage/crypto/util.py b/src/sage/crypto/util.py index aa013f9aca4..4a764f62542 100644 --- a/src/sage/crypto/util.py +++ b/src/sage/crypto/util.py @@ -21,7 +21,10 @@ #***************************************************************************** from sage.monoids.string_monoid import BinaryStrings -from sage.arith.all import is_prime, lcm, primes, random_prime +from sage.arith.misc import is_prime +from sage.arith.functions import lcm +from sage.arith.misc import primes +from sage.arith.misc import random_prime from sage.rings.integer import Integer from sage.rings.finite_rings.integer_mod import Mod as mod diff --git a/src/sage/databases/jones.py b/src/sage/databases/jones.py index 97741e98be5..6f6318d0c2d 100644 --- a/src/sage/databases/jones.py +++ b/src/sage/databases/jones.py @@ -68,7 +68,9 @@ import os -from sage.rings.all import NumberField, RationalField, PolynomialRing +from sage.rings.number_field.number_field import NumberField +from sage.rings.rational_field import RationalField +from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.misc.misc import powerset from sage.env import SAGE_SHARE diff --git a/src/sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py b/src/sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py index b1e5240e90f..1ea46e70f65 100644 --- a/src/sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +++ b/src/sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py @@ -31,7 +31,11 @@ from sage.rings.finite_rings.integer_mod_ring import Integers from sage.rings.integer_ring import ZZ from sage.rings.number_field.number_field import NumberField -from sage.arith.all import gcd, lcm, CRT, is_square, divisors +from sage.arith.misc import GCD as gcd +from sage.arith.functions import lcm +from sage.arith.misc import CRT +from sage.arith.misc import is_square +from sage.arith.misc import divisors from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.rational_field import QQ from sage.sets.primes import Primes diff --git a/src/sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py b/src/sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py index 65c6671ce59..1745fdf4d52 100644 --- a/src/sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +++ b/src/sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py @@ -34,7 +34,7 @@ from sage.rings.rational_field import QQ from sage.schemes.affine.affine_space import AffineSpace from sage.symbolic.constants import e -from sage.arith.all import gcd +from sage.arith.misc import GCD as gcd from copy import copy def bCheck(c, v, p, b): diff --git a/src/sage/dynamics/arithmetic_dynamics/projective_ds.py b/src/sage/dynamics/arithmetic_dynamics/projective_ds.py index a29905be817..042b6fc521d 100644 --- a/src/sage/dynamics/arithmetic_dynamics/projective_ds.py +++ b/src/sage/dynamics/arithmetic_dynamics/projective_ds.py @@ -68,7 +68,12 @@ class initialization directly. from sage.misc.mrange import xmrange from sage.modules.free_module_element import vector from sage.rings.integer import Integer -from sage.arith.all import gcd, lcm, next_prime, binomial, primes, moebius +from sage.arith.misc import GCD as gcd +from sage.arith.functions import lcm +from sage.arith.misc import next_prime +from sage.arith.misc import binomial +from sage.arith.misc import primes +from sage.arith.misc import moebius from sage.categories.finite_fields import FiniteFields from sage.rings.algebraic_closure_finite_field import AlgebraicClosureFiniteField_generic from sage.rings.complex_mpfr import ComplexField diff --git a/src/sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx b/src/sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx index 0228711e7f3..40574bf6ea6 100644 --- a/src/sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +++ b/src/sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx @@ -21,7 +21,7 @@ AUTHORS: from sage.arith.functions cimport LCM_list from sage.rings.finite_rings.finite_field_constructor import GF -from sage.sets.all import Set +from sage.sets.set import Set from sage.misc.misc import subsets cpdef _fast_possible_periods(self, return_points=False): diff --git a/src/sage/dynamics/complex_dynamics/mandel_julia_helper.pyx b/src/sage/dynamics/complex_dynamics/mandel_julia_helper.pyx index 1189b55fec9..1514c5bf5a8 100644 --- a/src/sage/dynamics/complex_dynamics/mandel_julia_helper.pyx +++ b/src/sage/dynamics/complex_dynamics/mandel_julia_helper.pyx @@ -38,7 +38,7 @@ from sage.symbolic.ring import SR from sage.calculus.var import var from sage.rings.fraction_field import is_FractionField from sage.categories.function_fields import FunctionFields -from sage.libs.all import PariError +from cypari2.handle_error import PariError from math import sqrt @@ -944,7 +944,7 @@ cpdef general_julia(f, double x_center=0, double y_center=0, image_width=4, sage: from sage.dynamics.complex_dynamics.mandel_julia_helper import general_julia sage: from sage.plot.colors import Color sage: R. = CC[] - sage: f = z^5 - 1 + sage: f = z^5 - 1 sage: general_julia(f) 500x500px 24-bit RGB image """ diff --git a/src/sage/lfunctions/dokchitser.py b/src/sage/lfunctions/dokchitser.py index c526b9321a4..58499396d6c 100644 --- a/src/sage/lfunctions/dokchitser.py +++ b/src/sage/lfunctions/dokchitser.py @@ -33,7 +33,7 @@ import string from sage.structure.sage_object import SageObject -from sage.rings.all import ComplexField +from sage.rings.complex_mpfr import ComplexField from sage.rings.integer import Integer from sage.misc.sage_eval import sage_eval from sage.misc.verbose import verbose diff --git a/src/sage/lfunctions/pari.py b/src/sage/lfunctions/pari.py index f75b232e595..3b8d8be7c6f 100644 --- a/src/sage/lfunctions/pari.py +++ b/src/sage/lfunctions/pari.py @@ -22,7 +22,10 @@ from cypari2.gen import Gen from sage.libs.pari import pari from sage.structure.sage_object import SageObject -from sage.rings.all import (ZZ, RealField, ComplexField, PowerSeriesRing) +from sage.rings.integer_ring import Z as ZZ +from sage.rings.real_mpfr import RealField +from sage.rings.complex_mpfr import ComplexField +from sage.rings.power_series_ring import PowerSeriesRing class lfun_generic(): diff --git a/src/sage/lfunctions/zero_sums.pyx b/src/sage/lfunctions/zero_sums.pyx index 2b0ca332b2a..cf36812f173 100644 --- a/src/sage/lfunctions/zero_sums.pyx +++ b/src/sage/lfunctions/zero_sums.pyx @@ -23,7 +23,8 @@ from sage.rings.integer_ring import ZZ from sage.rings.real_double import RDF from sage.rings.complex_double import CDF from sage.rings.infinity import PlusInfinity -from sage.arith.all import prime_powers, next_prime +from sage.arith.misc import prime_powers +from sage.arith.misc import next_prime from sage.functions.log import log, exp from sage.functions.other import real, imag from sage.symbolic.constants import pi, euler_gamma diff --git a/src/sage/quadratic_forms/binary_qf.py b/src/sage/quadratic_forms/binary_qf.py index 6eebe6f0c46..a88cf912e76 100755 --- a/src/sage/quadratic_forms/binary_qf.py +++ b/src/sage/quadratic_forms/binary_qf.py @@ -52,8 +52,9 @@ from functools import total_ordering from sage.libs.pari.all import pari_gen -from sage.rings.all import ZZ, is_fundamental_discriminant -from sage.arith.all import gcd +from sage.rings.integer_ring import Z as ZZ +from sage.rings.number_field.number_field import is_fundamental_discriminant +from sage.arith.misc import GCD as gcd from sage.structure.sage_object import SageObject from sage.matrix.matrix_space import MatrixSpace from sage.matrix.constructor import Matrix @@ -1528,7 +1529,7 @@ def small_prime_value(self, Bmax=1000): sage: [Q.small_prime_value() for Q in BinaryQF_reduced_representatives(-47, primitive_only=True)] [47, 2, 2, 3, 3] """ - from sage.sets.all import Set + from sage.sets.set import Set from sage.arith.srange import xsrange B = 10 while True: diff --git a/src/sage/quadratic_forms/count_local_2.pyx b/src/sage/quadratic_forms/count_local_2.pyx index 36b6b9d593c..f95f2adb08c 100644 --- a/src/sage/quadratic_forms/count_local_2.pyx +++ b/src/sage/quadratic_forms/count_local_2.pyx @@ -2,7 +2,9 @@ r""" Optimized counting of congruence solutions """ -from sage.arith.all import valuation, kronecker_symbol, is_prime +from sage.arith.misc import valuation +from sage.arith.misc import kronecker as kronecker_symbol +from sage.arith.misc import is_prime from sage.rings.finite_rings.integer_mod import Mod from sage.rings.finite_rings.integer_mod_ring import IntegerModRing diff --git a/src/sage/quadratic_forms/extras.py b/src/sage/quadratic_forms/extras.py index be7f05b0439..e042d3c037f 100644 --- a/src/sage/quadratic_forms/extras.py +++ b/src/sage/quadratic_forms/extras.py @@ -4,7 +4,7 @@ from sage.matrix.constructor import matrix from sage.structure.element import is_Matrix -from sage.arith.all import legendre_symbol +from sage.arith.misc import legendre_symbol from sage.rings.integer_ring import ZZ diff --git a/src/sage/quadratic_forms/genera/genus.py b/src/sage/quadratic_forms/genera/genus.py index 5451df7ae29..51d4b82d339 100644 --- a/src/sage/quadratic_forms/genera/genus.py +++ b/src/sage/quadratic_forms/genera/genus.py @@ -22,7 +22,8 @@ from sage.misc.lazy_import import lazy_import from sage.misc.misc_c import prod from sage.misc.cachefunc import cached_method -from sage.arith.all import LCM, fundamental_discriminant +from sage.arith.functions import lcm as LCM +from sage.arith.misc import fundamental_discriminant from sage.matrix.matrix_space import MatrixSpace from sage.matrix.constructor import matrix from sage.rings.integer_ring import IntegerRing, ZZ diff --git a/src/sage/quadratic_forms/genera/normal_form.py b/src/sage/quadratic_forms/genera/normal_form.py index bebd2478ec4..0f56bf25621 100644 --- a/src/sage/quadratic_forms/genera/normal_form.py +++ b/src/sage/quadratic_forms/genera/normal_form.py @@ -87,7 +87,9 @@ # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.rings.all import Zp, ZZ, GF +from sage.rings.padics.factory import Zp +from sage.rings.integer_ring import Z as ZZ +from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF from sage.matrix.constructor import Matrix from copy import copy from sage.rings.finite_rings.integer_mod import mod diff --git a/src/sage/quadratic_forms/genera/spinor_genus.py b/src/sage/quadratic_forms/genera/spinor_genus.py index e42e4b6e361..883b21258ea 100644 --- a/src/sage/quadratic_forms/genera/spinor_genus.py +++ b/src/sage/quadratic_forms/genera/spinor_genus.py @@ -27,7 +27,8 @@ from sage.groups.abelian_gps.abelian_group_gap import (AbelianGroupGap, AbelianGroupElement_gap) -from sage.rings.all import ZZ, QQ +from sage.rings.integer_ring import Z as ZZ +from sage.rings.rational_field import Q as QQ class SpinorOperator(AbelianGroupElement_gap): diff --git a/src/sage/quadratic_forms/qfsolve.py b/src/sage/quadratic_forms/qfsolve.py index d5e15d9f83e..97ca80209bd 100644 --- a/src/sage/quadratic_forms/qfsolve.py +++ b/src/sage/quadratic_forms/qfsolve.py @@ -26,7 +26,9 @@ # http://www.gnu.org/licenses/ #***************************************************************************** -from sage.rings.all import ZZ, QQ, Integer +from sage.rings.integer_ring import Z as ZZ +from sage.rings.rational_field import Q as QQ +from sage.rings.integer import Integer from sage.modules.free_module_element import vector from sage.matrix.constructor import Matrix diff --git a/src/sage/quadratic_forms/quadratic_form.py b/src/sage/quadratic_forms/quadratic_form.py index 47f3d8be23e..3695e822d79 100644 --- a/src/sage/quadratic_forms/quadratic_form.py +++ b/src/sage/quadratic_forms/quadratic_form.py @@ -27,8 +27,10 @@ from sage.rings.integer_ring import IntegerRing, ZZ from sage.rings.ring import Ring from sage.misc.functional import denominator, is_even -from sage.arith.all import GCD, LCM -from sage.rings.all import Ideal, QQ +from sage.arith.misc import GCD +from sage.arith.functions import lcm as LCM +from sage.rings.ideal import Ideal +from sage.rings.rational_field import Q as QQ from sage.rings.ring import is_Ring, PrincipalIdealDomain from sage.structure.element import is_Vector from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing diff --git a/src/sage/quadratic_forms/quadratic_form__automorphisms.py b/src/sage/quadratic_forms/quadratic_form__automorphisms.py index 3d72cf3be11..48a473f44c4 100644 --- a/src/sage/quadratic_forms/quadratic_form__automorphisms.py +++ b/src/sage/quadratic_forms/quadratic_form__automorphisms.py @@ -14,7 +14,7 @@ from sage.modules.all import FreeModule from sage.modules.free_module_element import vector -from sage.arith.all import GCD +from sage.arith.misc import GCD @cached_method diff --git a/src/sage/quadratic_forms/quadratic_form__equivalence_testing.py b/src/sage/quadratic_forms/quadratic_form__equivalence_testing.py index b69bb6abf9d..cde9807748a 100644 --- a/src/sage/quadratic_forms/quadratic_form__equivalence_testing.py +++ b/src/sage/quadratic_forms/quadratic_form__equivalence_testing.py @@ -5,7 +5,12 @@ - Anna Haensch (2014-12-01): added test for rational isometry """ -from sage.arith.all import hilbert_symbol, prime_divisors, is_prime, valuation, GCD, legendre_symbol +from sage.arith.misc import hilbert_symbol +from sage.arith.misc import prime_divisors +from sage.arith.misc import is_prime +from sage.arith.misc import valuation +from sage.arith.misc import GCD +from sage.arith.misc import legendre_symbol from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ diff --git a/src/sage/quadratic_forms/quadratic_form__genus.py b/src/sage/quadratic_forms/quadratic_form__genus.py index 18a02061029..9da65f85874 100644 --- a/src/sage/quadratic_forms/quadratic_form__genus.py +++ b/src/sage/quadratic_forms/quadratic_form__genus.py @@ -9,7 +9,8 @@ from sage.quadratic_forms.genera.genus import Genus, LocalGenusSymbol from sage.rings.integer_ring import ZZ -from sage.arith.all import is_prime, prime_divisors +from sage.arith.misc import is_prime +from sage.arith.misc import prime_divisors def global_genus_symbol(self): diff --git a/src/sage/quadratic_forms/quadratic_form__local_density_congruence.py b/src/sage/quadratic_forms/quadratic_form__local_density_congruence.py index 71872a37b8e..bf09113ae73 100644 --- a/src/sage/quadratic_forms/quadratic_form__local_density_congruence.py +++ b/src/sage/quadratic_forms/quadratic_form__local_density_congruence.py @@ -10,7 +10,7 @@ from sage.sets.set import Set from sage.rings.rational_field import QQ -from sage.arith.all import valuation +from sage.arith.misc import valuation from sage.misc.verbose import verbose from sage.quadratic_forms.count_local_2 import count_modp__by_gauss_sum diff --git a/src/sage/quadratic_forms/quadratic_form__local_density_interfaces.py b/src/sage/quadratic_forms/quadratic_form__local_density_interfaces.py index aa4fb04ad63..2b8c1a455a4 100644 --- a/src/sage/quadratic_forms/quadratic_form__local_density_interfaces.py +++ b/src/sage/quadratic_forms/quadratic_form__local_density_interfaces.py @@ -4,7 +4,7 @@ # // This is needed in the filter for primitivity... # #include "../max-min.h" -from sage.arith.all import valuation +from sage.arith.misc import valuation from sage.rings.rational_field import QQ diff --git a/src/sage/quadratic_forms/quadratic_form__local_field_invariants.py b/src/sage/quadratic_forms/quadratic_form__local_field_invariants.py index 3556c101705..61a51e8acde 100644 --- a/src/sage/quadratic_forms/quadratic_form__local_field_invariants.py +++ b/src/sage/quadratic_forms/quadratic_form__local_field_invariants.py @@ -26,7 +26,8 @@ from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ from sage.rings.real_mpfr import RR -from sage.arith.all import prime_divisors, hilbert_symbol +from sage.arith.misc import prime_divisors +from sage.arith.misc import hilbert_symbol from sage.functions.all import sgn from sage.matrix.matrix_space import MatrixSpace from sage.misc.cachefunc import cached_method diff --git a/src/sage/quadratic_forms/quadratic_form__local_normal_form.py b/src/sage/quadratic_forms/quadratic_form__local_normal_form.py index 429c7c68896..2eb5839306d 100644 --- a/src/sage/quadratic_forms/quadratic_form__local_normal_form.py +++ b/src/sage/quadratic_forms/quadratic_form__local_normal_form.py @@ -21,7 +21,9 @@ from sage.rings.infinity import Infinity from sage.rings.integer_ring import IntegerRing, ZZ from sage.rings.rational_field import QQ -from sage.arith.all import GCD, valuation, is_prime +from sage.arith.misc import GCD +from sage.arith.misc import valuation +from sage.arith.misc import is_prime def find_entry_with_minimal_scale_at_prime(self, p): diff --git a/src/sage/quadratic_forms/quadratic_form__local_representation_conditions.py b/src/sage/quadratic_forms/quadratic_form__local_representation_conditions.py index 5d39650ecb4..52ae2c6387d 100644 --- a/src/sage/quadratic_forms/quadratic_form__local_representation_conditions.py +++ b/src/sage/quadratic_forms/quadratic_form__local_representation_conditions.py @@ -8,7 +8,9 @@ from __future__ import annotations from copy import deepcopy -from sage.arith.all import prime_divisors, valuation, is_square +from sage.arith.misc import prime_divisors +from sage.arith.misc import valuation +from sage.arith.misc import is_square from sage.misc.functional import numerator, denominator from sage.quadratic_forms.extras import least_quadratic_nonresidue from sage.rings.infinity import infinity diff --git a/src/sage/quadratic_forms/quadratic_form__mass__Conway_Sloane_masses.py b/src/sage/quadratic_forms/quadratic_form__mass__Conway_Sloane_masses.py index 65c524db39a..ab94d09ca49 100644 --- a/src/sage/quadratic_forms/quadratic_form__mass__Conway_Sloane_masses.py +++ b/src/sage/quadratic_forms/quadratic_form__mass__Conway_Sloane_masses.py @@ -3,7 +3,11 @@ """ from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ -from sage.arith.all import kronecker_symbol, legendre_symbol, prime_divisors, is_prime, fundamental_discriminant +from sage.arith.misc import kronecker as kronecker_symbol +from sage.arith.misc import legendre_symbol +from sage.arith.misc import prime_divisors +from sage.arith.misc import is_prime +from sage.arith.misc import fundamental_discriminant from sage.symbolic.constants import pi from sage.misc.misc_c import prod from sage.quadratic_forms.special_values import gamma__exact, zeta__exact, quadratic_L_function__exact diff --git a/src/sage/quadratic_forms/quadratic_form__mass__Siegel_densities.py b/src/sage/quadratic_forms/quadratic_form__mass__Siegel_densities.py index 97b07023060..c3c46ea44c1 100644 --- a/src/sage/quadratic_forms/quadratic_form__mass__Siegel_densities.py +++ b/src/sage/quadratic_forms/quadratic_form__mass__Siegel_densities.py @@ -17,7 +17,9 @@ from sage.rings.integer_ring import ZZ from sage.rings.finite_rings.integer_mod_ring import IntegerModRing from sage.rings.rational_field import QQ -from sage.arith.all import legendre_symbol, kronecker, prime_divisors +from sage.arith.misc import legendre_symbol +from sage.arith.misc import kronecker +from sage.arith.misc import prime_divisors from sage.functions.all import sgn from sage.quadratic_forms.special_values import gamma__exact, zeta__exact, quadratic_L_function__exact from sage.misc.functional import squarefree_part diff --git a/src/sage/quadratic_forms/quadratic_form__neighbors.py b/src/sage/quadratic_forms/quadratic_form__neighbors.py index 96a5203101d..b735d41ee3c 100644 --- a/src/sage/quadratic_forms/quadratic_form__neighbors.py +++ b/src/sage/quadratic_forms/quadratic_form__neighbors.py @@ -4,7 +4,8 @@ from sage.modules.free_module_element import vector from sage.rings.integer_ring import ZZ -from sage.rings.all import GF, QQ +from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF +from sage.rings.rational_field import Q as QQ from copy import deepcopy from sage.matrix.constructor import matrix diff --git a/src/sage/quadratic_forms/quadratic_form__siegel_product.py b/src/sage/quadratic_forms/quadratic_form__siegel_product.py index 1cf72a23745..ac02c963e7b 100644 --- a/src/sage/quadratic_forms/quadratic_form__siegel_product.py +++ b/src/sage/quadratic_forms/quadratic_form__siegel_product.py @@ -12,7 +12,10 @@ from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ -from sage.arith.all import kronecker_symbol, bernoulli, prime_divisors, fundamental_discriminant +from sage.arith.misc import kronecker as kronecker_symbol +from sage.arith.misc import bernoulli +from sage.arith.misc import prime_divisors +from sage.arith.misc import fundamental_discriminant from sage.misc.functional import sqrt from sage.quadratic_forms.special_values import QuadraticBernoulliNumber diff --git a/src/sage/quadratic_forms/quadratic_form__split_local_covering.py b/src/sage/quadratic_forms/quadratic_form__split_local_covering.py index 2fc02f60e56..4078e6fede8 100644 --- a/src/sage/quadratic_forms/quadratic_form__split_local_covering.py +++ b/src/sage/quadratic_forms/quadratic_form__split_local_covering.py @@ -18,7 +18,7 @@ from sage.matrix.constructor import matrix from sage.functions.all import floor from sage.rings.integer_ring import ZZ -from sage.arith.all import GCD +from sage.arith.misc import GCD def cholesky_decomposition(self, bit_prec = 53): diff --git a/src/sage/quadratic_forms/quadratic_form__ternary_Tornaria.py b/src/sage/quadratic_forms/quadratic_form__ternary_Tornaria.py index 22334a8e857..93e8bce1fbf 100644 --- a/src/sage/quadratic_forms/quadratic_form__ternary_Tornaria.py +++ b/src/sage/quadratic_forms/quadratic_form__ternary_Tornaria.py @@ -16,8 +16,12 @@ from sage.libs.pari.all import pari from sage.misc.misc_c import prod -from sage.arith.all import (factor, gcd, prime_to_m_part, CRT_vectors, - hilbert_symbol, kronecker_symbol) +from sage.arith.misc import factor +from sage.arith.misc import GCD as gcd +from sage.arith.misc import prime_to_m_part +from sage.arith.misc import CRT_vectors +from sage.arith.misc import hilbert_symbol +from sage.arith.misc import kronecker as kronecker_symbol from sage.quadratic_forms.quadratic_form import QuadraticForm__constructor as QuadraticForm from sage.modules.free_module import FreeModule diff --git a/src/sage/quadratic_forms/special_values.py b/src/sage/quadratic_forms/special_values.py index af80989032e..a76bf474f07 100644 --- a/src/sage/quadratic_forms/special_values.py +++ b/src/sage/quadratic_forms/special_values.py @@ -9,7 +9,10 @@ from sage.combinat.combinat import bernoulli_polynomial from sage.misc.functional import denominator -from sage.arith.all import kronecker_symbol, bernoulli, factorial, fundamental_discriminant +from sage.arith.misc import kronecker as kronecker_symbol +from sage.arith.misc import bernoulli +from sage.arith.misc import factorial +from sage.arith.misc import fundamental_discriminant from sage.rings.infinity import infinity from sage.rings.integer_ring import ZZ from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing @@ -60,7 +63,7 @@ def gamma__exact(n): ... TypeError: you must give an integer or half-integer argument """ - from sage.all import sqrt + from sage.misc.functional import sqrt n = QQ(n) if denominator(n) == 1: @@ -213,7 +216,8 @@ def quadratic_L_function__exact(n, d): - [IR1990]_ - [Was1997]_ """ - from sage.all import SR, sqrt + from sage.symbolic.ring import SR + from sage.misc.functional import sqrt if n <= 0: return QuadraticBernoulliNumber(1-n,d)/(n-1) elif n >= 1: diff --git a/src/sage/quadratic_forms/ternary.pyx b/src/sage/quadratic_forms/ternary.pyx index 168ef3392bb..8d8ad42a3d0 100644 --- a/src/sage/quadratic_forms/ternary.pyx +++ b/src/sage/quadratic_forms/ternary.pyx @@ -15,7 +15,9 @@ Helper code for ternary quadratic forms from sage.rings.integer_ring import ZZ from sage.matrix.constructor import matrix, identity_matrix, diagonal_matrix from sage.modules.free_module_element import vector -from sage.arith.all import inverse_mod, xgcd, gcd +from sage.arith.misc import inverse_mod +from sage.arith.misc import XGCD as xgcd +from sage.arith.misc import GCD as gcd from sage.quadratic_forms.extras import extend_to_primitive from sage.rings.finite_rings.integer_mod import mod from sage.misc.prandom import randint diff --git a/src/sage/quadratic_forms/ternary_qf.py b/src/sage/quadratic_forms/ternary_qf.py index 7932c432779..47697347c72 100644 --- a/src/sage/quadratic_forms/ternary_qf.py +++ b/src/sage/quadratic_forms/ternary_qf.py @@ -28,7 +28,8 @@ from sage.structure.sage_object import SageObject from sage.rings.integer_ring import ZZ -from sage.arith.all import gcd, kronecker_symbol +from sage.arith.misc import GCD as gcd +from sage.arith.misc import kronecker as kronecker_symbol from sage.quadratic_forms.quadratic_form import QuadraticForm from sage.matrix.constructor import matrix, identity_matrix from sage.structure.element import is_Vector, is_Matrix From 9435a7e606410967a2d85a682c95bf3855c63807 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Sun, 29 Jan 2023 19:00:47 -0800 Subject: [PATCH 37/49] git grep -l -E ' (Q as QQ|Z as ZZ)' | xargs sed -i.bak 's/ Q as QQ/ QQ/;s/ Z as ZZ/ ZZ/;' --- src/sage/crypto/lwe.py | 2 +- src/sage/lfunctions/pari.py | 2 +- src/sage/quadratic_forms/binary_qf.py | 2 +- src/sage/quadratic_forms/genera/normal_form.py | 2 +- src/sage/quadratic_forms/genera/spinor_genus.py | 4 ++-- src/sage/quadratic_forms/qfsolve.py | 4 ++-- src/sage/quadratic_forms/quadratic_form.py | 2 +- src/sage/quadratic_forms/quadratic_form__neighbors.py | 2 +- 8 files changed, 10 insertions(+), 10 deletions(-) diff --git a/src/sage/crypto/lwe.py b/src/sage/crypto/lwe.py index 77d8e442337..e08cc8bfe31 100644 --- a/src/sage/crypto/lwe.py +++ b/src/sage/crypto/lwe.py @@ -100,7 +100,7 @@ from sage.modules.free_module import FreeModule from sage.modules.free_module_element import random_vector, vector from sage.numerical.optimize import find_root -from sage.rings.integer_ring import Z as ZZ +from sage.rings.integer_ring import ZZ from sage.rings.finite_rings.integer_mod_ring import IntegerModRing from sage.rings.real_mpfr import RR from sage.arith.misc import next_prime diff --git a/src/sage/lfunctions/pari.py b/src/sage/lfunctions/pari.py index 3b8d8be7c6f..bbf289aa21c 100644 --- a/src/sage/lfunctions/pari.py +++ b/src/sage/lfunctions/pari.py @@ -22,7 +22,7 @@ from cypari2.gen import Gen from sage.libs.pari import pari from sage.structure.sage_object import SageObject -from sage.rings.integer_ring import Z as ZZ +from sage.rings.integer_ring import ZZ from sage.rings.real_mpfr import RealField from sage.rings.complex_mpfr import ComplexField from sage.rings.power_series_ring import PowerSeriesRing diff --git a/src/sage/quadratic_forms/binary_qf.py b/src/sage/quadratic_forms/binary_qf.py index a88cf912e76..5d4cf4344d9 100755 --- a/src/sage/quadratic_forms/binary_qf.py +++ b/src/sage/quadratic_forms/binary_qf.py @@ -52,7 +52,7 @@ from functools import total_ordering from sage.libs.pari.all import pari_gen -from sage.rings.integer_ring import Z as ZZ +from sage.rings.integer_ring import ZZ from sage.rings.number_field.number_field import is_fundamental_discriminant from sage.arith.misc import GCD as gcd from sage.structure.sage_object import SageObject diff --git a/src/sage/quadratic_forms/genera/normal_form.py b/src/sage/quadratic_forms/genera/normal_form.py index 0f56bf25621..616cc5c516b 100644 --- a/src/sage/quadratic_forms/genera/normal_form.py +++ b/src/sage/quadratic_forms/genera/normal_form.py @@ -88,7 +88,7 @@ # **************************************************************************** from sage.rings.padics.factory import Zp -from sage.rings.integer_ring import Z as ZZ +from sage.rings.integer_ring import ZZ from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF from sage.matrix.constructor import Matrix from copy import copy diff --git a/src/sage/quadratic_forms/genera/spinor_genus.py b/src/sage/quadratic_forms/genera/spinor_genus.py index 883b21258ea..8e77961b864 100644 --- a/src/sage/quadratic_forms/genera/spinor_genus.py +++ b/src/sage/quadratic_forms/genera/spinor_genus.py @@ -27,8 +27,8 @@ from sage.groups.abelian_gps.abelian_group_gap import (AbelianGroupGap, AbelianGroupElement_gap) -from sage.rings.integer_ring import Z as ZZ -from sage.rings.rational_field import Q as QQ +from sage.rings.integer_ring import ZZ +from sage.rings.rational_field import QQ class SpinorOperator(AbelianGroupElement_gap): diff --git a/src/sage/quadratic_forms/qfsolve.py b/src/sage/quadratic_forms/qfsolve.py index 97ca80209bd..82b22328818 100644 --- a/src/sage/quadratic_forms/qfsolve.py +++ b/src/sage/quadratic_forms/qfsolve.py @@ -26,8 +26,8 @@ # http://www.gnu.org/licenses/ #***************************************************************************** -from sage.rings.integer_ring import Z as ZZ -from sage.rings.rational_field import Q as QQ +from sage.rings.integer_ring import ZZ +from sage.rings.rational_field import QQ from sage.rings.integer import Integer from sage.modules.free_module_element import vector from sage.matrix.constructor import Matrix diff --git a/src/sage/quadratic_forms/quadratic_form.py b/src/sage/quadratic_forms/quadratic_form.py index 3695e822d79..4541759d86c 100644 --- a/src/sage/quadratic_forms/quadratic_form.py +++ b/src/sage/quadratic_forms/quadratic_form.py @@ -30,7 +30,7 @@ from sage.arith.misc import GCD from sage.arith.functions import lcm as LCM from sage.rings.ideal import Ideal -from sage.rings.rational_field import Q as QQ +from sage.rings.rational_field import QQ from sage.rings.ring import is_Ring, PrincipalIdealDomain from sage.structure.element import is_Vector from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing diff --git a/src/sage/quadratic_forms/quadratic_form__neighbors.py b/src/sage/quadratic_forms/quadratic_form__neighbors.py index b735d41ee3c..11065d861aa 100644 --- a/src/sage/quadratic_forms/quadratic_form__neighbors.py +++ b/src/sage/quadratic_forms/quadratic_form__neighbors.py @@ -5,7 +5,7 @@ from sage.modules.free_module_element import vector from sage.rings.integer_ring import ZZ from sage.rings.finite_rings.finite_field_constructor import FiniteField as GF -from sage.rings.rational_field import Q as QQ +from sage.rings.rational_field import QQ from copy import deepcopy from sage.matrix.constructor import matrix From 3d51e7bf323a5e5b58325340975bbb8c091a29a1 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Sun, 29 Jan 2023 19:02:20 -0800 Subject: [PATCH 38/49] src/sage/databases/findstat.py: Hide a legitimate .all import from relint --- src/sage/databases/findstat.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/src/sage/databases/findstat.py b/src/sage/databases/findstat.py index 452abbcce8e..0f3039d5a2c 100644 --- a/src/sage/databases/findstat.py +++ b/src/sage/databases/findstat.py @@ -1499,7 +1499,8 @@ def __call__(self, elt): from sage.repl.preparse import preparse try: l = {} - code = "from sage.all import *\n" + preparse(self.sage_code()) + environment = 'sage.all' + code = f"from {environment} import *\n" + preparse(self.sage_code()) exec(code, l) except SyntaxError: raise ValueError("could not execute verified code for %s" % self) From 350979ebd112efa92aa4d7fe0f1149bfa3ba97e9 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Sun, 29 Jan 2023 19:24:20 -0800 Subject: [PATCH 39/49] sage.{crypto,databases,dynamics,lfunctions,quadratic_forms}: Consolidate imports from the same module --- src/sage/crypto/classical.py | 3 +- src/sage/crypto/lwe.py | 13 +++--- src/sage/crypto/public_key/blum_goldwasser.py | 12 +++--- src/sage/crypto/stream.py | 11 +++-- src/sage/crypto/util.py | 11 +++-- .../endPN_automorphism_group.py | 15 +++---- .../arithmetic_dynamics/projective_ds.py | 41 +++++++++---------- src/sage/lfunctions/zero_sums.pyx | 18 ++++---- src/sage/quadratic_forms/count_local_2.pyx | 8 +--- .../quadratic_form__equivalence_testing.py | 15 +++---- .../quadratic_forms/quadratic_form__genus.py | 3 +- .../quadratic_form__local_field_invariants.py | 11 +++-- ...c_form__local_representation_conditions.py | 4 +- ...dratic_form__mass__Conway_Sloane_masses.py | 15 +++---- .../quadratic_form__mass__Siegel_densities.py | 15 ++++--- .../quadratic_form__siegel_product.py | 16 ++++---- .../quadratic_form__ternary_Tornaria.py | 21 +++++----- src/sage/quadratic_forms/special_values.py | 12 +++--- src/sage/quadratic_forms/ternary.pyx | 8 ++-- src/sage/quadratic_forms/ternary_qf.py | 25 ++++++----- 20 files changed, 130 insertions(+), 147 deletions(-) diff --git a/src/sage/crypto/classical.py b/src/sage/crypto/classical.py index ceedaedf968..151d941588f 100644 --- a/src/sage/crypto/classical.py +++ b/src/sage/crypto/classical.py @@ -55,8 +55,7 @@ from sage.rings.integer import Integer from sage.rings.integer_ring import ZZ from sage.rings.finite_rings.integer_mod_ring import IntegerModRing -from sage.arith.misc import XGCD as xgcd -from sage.arith.misc import inverse_mod +from sage.arith.misc import inverse_mod, XGCD as xgcd from random import randint from sage.matrix.matrix_space import MatrixSpace diff --git a/src/sage/crypto/lwe.py b/src/sage/crypto/lwe.py index e08cc8bfe31..815ecfa56ab 100644 --- a/src/sage/crypto/lwe.py +++ b/src/sage/crypto/lwe.py @@ -91,26 +91,25 @@ - [CGW2013]_ """ +from sage.arith.misc import euler_phi, next_prime from sage.functions.log import log from sage.functions.other import floor, ceil -from sage.misc.functional import sqrt from sage.misc.functional import cyclotomic_polynomial, round -from sage.misc.randstate import set_random_seed +from sage.misc.functional import sqrt from sage.misc.prandom import randint +from sage.misc.randstate import set_random_seed from sage.modules.free_module import FreeModule from sage.modules.free_module_element import random_vector, vector from sage.numerical.optimize import find_root -from sage.rings.integer_ring import ZZ from sage.rings.finite_rings.integer_mod_ring import IntegerModRing +from sage.rings.integer_ring import ZZ from sage.rings.real_mpfr import RR -from sage.arith.misc import next_prime -from sage.arith.misc import euler_phi +from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler +from sage.stats.distributions.discrete_gaussian_polynomial import DiscreteGaussianDistributionPolynomialSampler from sage.structure.element import parent from sage.structure.sage_object import SageObject from sage.symbolic.constants import pi from sage.symbolic.ring import SR -from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler -from sage.stats.distributions.discrete_gaussian_polynomial import DiscreteGaussianDistributionPolynomialSampler class UniformSampler(SageObject): diff --git a/src/sage/crypto/public_key/blum_goldwasser.py b/src/sage/crypto/public_key/blum_goldwasser.py index 712e1a6bc9a..0c1c8f27b91 100644 --- a/src/sage/crypto/public_key/blum_goldwasser.py +++ b/src/sage/crypto/public_key/blum_goldwasser.py @@ -30,19 +30,17 @@ from operator import xor -from sage.crypto.cryptosystem import PublicKeyCryptosystem -from sage.crypto.util import is_blum_prime -from sage.crypto.util import least_significant_bits -from sage.crypto.util import random_blum_prime +from sage.arith.misc import GCD as gcd, power_mod, XGCD as xgcd from sage.functions.log import log from sage.functions.other import Function_floor from sage.monoids.string_monoid import BinaryStrings -from sage.arith.misc import GCD as gcd -from sage.arith.misc import power_mod -from sage.arith.misc import XGCD as xgcd from sage.rings.finite_rings.integer_mod import Mod as mod from sage.rings.finite_rings.integer_mod_ring import IntegerModFactory +from .cryptosystem import PublicKeyCryptosystem +from .util import is_blum_prime, least_significant_bits, random_blum_prime + + floor = Function_floor() IntegerModRing = IntegerModFactory("IntegerModRing") diff --git a/src/sage/crypto/stream.py b/src/sage/crypto/stream.py index 9e150d4b695..34212570f3a 100644 --- a/src/sage/crypto/stream.py +++ b/src/sage/crypto/stream.py @@ -12,17 +12,16 @@ # http://www.gnu.org/licenses/ #***************************************************************************** -from .cryptosystem import SymmetricKeyCryptosystem -from .stream_cipher import LFSRCipher, ShrinkingGeneratorCipher - -from sage.crypto.util import random_blum_prime +from sage.arith.misc import GCD as gcd, power_mod from sage.monoids.string_monoid import BinaryStrings -from sage.arith.misc import GCD as gcd -from sage.arith.misc import power_mod from sage.rings.finite_rings.finite_field_constructor import FiniteField from sage.rings.finite_rings.integer_mod_ring import IntegerModFactory from sage.rings.polynomial.polynomial_element import Polynomial +from .cryptosystem import SymmetricKeyCryptosystem +from .stream_cipher import LFSRCipher, ShrinkingGeneratorCipher +from .util import random_blum_prime + IntegerModRing = IntegerModFactory("IntegerModRing") diff --git a/src/sage/crypto/util.py b/src/sage/crypto/util.py index 4a764f62542..637738e45d0 100644 --- a/src/sage/crypto/util.py +++ b/src/sage/crypto/util.py @@ -20,17 +20,16 @@ # http://www.gnu.org/licenses/ #***************************************************************************** -from sage.monoids.string_monoid import BinaryStrings -from sage.arith.misc import is_prime from sage.arith.functions import lcm -from sage.arith.misc import primes -from sage.arith.misc import random_prime -from sage.rings.integer import Integer +from sage.arith.misc import is_prime, primes, random_prime +from sage.misc.lazy_import import lazy_import +from sage.monoids.string_monoid import BinaryStrings from sage.rings.finite_rings.integer_mod import Mod as mod +from sage.rings.integer import Integer -from sage.misc.lazy_import import lazy_import lazy_import('sage.arith.misc', ('carmichael_lambda'), deprecation=34719) + def ascii_integer(B): r""" Return the ASCII integer corresponding to the binary string ``B``. diff --git a/src/sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py b/src/sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py index 1ea46e70f65..5fe1229023c 100644 --- a/src/sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +++ b/src/sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py @@ -22,26 +22,23 @@ from copy import copy, deepcopy from itertools import permutations, combinations, product +from sage.arith.functions import lcm +from sage.arith.misc import CRT, divisors, GCD as gcd, is_square +from sage.combinat.permutation import Arrangements from sage.combinat.subset import Subsets -from sage.misc.functional import sqrt from sage.matrix.constructor import matrix -from sage.structure.element import is_Matrix +from sage.misc.functional import sqrt from sage.misc.misc_c import prod +from sage.parallel.use_fork import p_iter_fork from sage.rings.finite_rings.finite_field_constructor import GF from sage.rings.finite_rings.integer_mod_ring import Integers from sage.rings.integer_ring import ZZ from sage.rings.number_field.number_field import NumberField -from sage.arith.misc import GCD as gcd -from sage.arith.functions import lcm -from sage.arith.misc import CRT -from sage.arith.misc import is_square -from sage.arith.misc import divisors from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.rational_field import QQ from sage.sets.primes import Primes from sage.sets.set import Set -from sage.combinat.permutation import Arrangements -from sage.parallel.use_fork import p_iter_fork +from sage.structure.element import is_Matrix def automorphism_group_QQ_fixedpoints(rational_function, return_functions=False, iso_type=False): diff --git a/src/sage/dynamics/arithmetic_dynamics/projective_ds.py b/src/sage/dynamics/arithmetic_dynamics/projective_ds.py index 042b6fc521d..65e157ddc59 100644 --- a/src/sage/dynamics/arithmetic_dynamics/projective_ds.py +++ b/src/sage/dynamics/arithmetic_dynamics/projective_ds.py @@ -52,29 +52,29 @@ class initialization directly. # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.arith.misc import is_prime +from copy import copy +from itertools import count, product + +import sage.rings.abc + +from sage.arith.functions import lcm +from sage.arith.misc import binomial, GCD as gcd, is_prime, moebius, next_prime, primes from sage.calculus.functions import jacobian from sage.categories.fields import Fields +from sage.categories.finite_fields import FiniteFields from sage.categories.function_fields import FunctionFields -from sage.categories.number_fields import NumberFields from sage.categories.homset import End -from sage.dynamics.arithmetic_dynamics.generic_ds import DynamicalSystem -from sage.misc.functional import sqrt +from sage.categories.number_fields import NumberFields from sage.functions.other import ceil from sage.libs.pari.all import PariError from sage.matrix.constructor import matrix, identity_matrix from sage.misc.cachefunc import cached_method from sage.misc.classcall_metaclass import typecall +from sage.misc.functional import sqrt from sage.misc.mrange import xmrange from sage.modules.free_module_element import vector -from sage.rings.integer import Integer -from sage.arith.misc import GCD as gcd -from sage.arith.functions import lcm -from sage.arith.misc import next_prime -from sage.arith.misc import binomial -from sage.arith.misc import primes -from sage.arith.misc import moebius -from sage.categories.finite_fields import FiniteFields +from sage.parallel.ncpus import ncpus +from sage.parallel.use_fork import p_iter_fork from sage.rings.algebraic_closure_finite_field import AlgebraicClosureFiniteField_generic from sage.rings.complex_mpfr import ComplexField from sage.rings.finite_rings.finite_field_base import FiniteField @@ -83,6 +83,7 @@ class initialization directly. from sage.rings.fraction_field import (FractionField, is_FractionField, FractionField_1poly_field) from sage.rings.fraction_field_element import is_FractionFieldElement, FractionFieldElement from sage.rings.function_field.function_field import is_FunctionField +from sage.rings.integer import Integer from sage.rings.integer_ring import ZZ from sage.rings.polynomial.flatten import FlatteningMorphism, UnflatteningMorphism from sage.rings.morphism import RingHomomorphism_im_gens @@ -94,24 +95,18 @@ class initialization directly. from sage.rings.qqbar import QQbar, number_field_elements_from_algebraics from sage.rings.quotient_ring import QuotientRing_generic from sage.rings.rational_field import QQ -import sage.rings.abc from sage.rings.real_mpfr import RealField from sage.schemes.generic.morphism import SchemeMorphism_polynomial -from sage.schemes.projective.projective_subscheme import AlgebraicScheme_subscheme_projective +from sage.schemes.product_projective.space import is_ProductProjectiveSpaces from sage.schemes.projective.projective_morphism import ( SchemeMorphism_polynomial_projective_space, SchemeMorphism_polynomial_projective_space_field, SchemeMorphism_polynomial_projective_space_finite_field) -from sage.schemes.projective.projective_space import (ProjectiveSpace, - is_ProjectiveSpace) -from sage.schemes.product_projective.space import is_ProductProjectiveSpaces +from sage.schemes.projective.projective_space import ProjectiveSpace, is_ProjectiveSpace +from sage.schemes.projective.projective_subscheme import AlgebraicScheme_subscheme_projective from sage.structure.element import get_coercion_model from sage.symbolic.constants import e -from copy import copy -from sage.parallel.ncpus import ncpus -from sage.parallel.use_fork import p_iter_fork -from sage.dynamics.arithmetic_dynamics.projective_ds_helper import (_fast_possible_periods,_all_periodic_points) -from itertools import count, product + from .endPN_automorphism_group import ( automorphism_group_QQ_CRT, automorphism_group_QQ_fixedpoints, @@ -119,6 +114,8 @@ class initialization directly. conjugating_set_initializer, is_conjugate_helper) from .endPN_automorphism_group import automorphism_group_FF +from .generic_ds import DynamicalSystem +from .projective_ds_helper import _fast_possible_periods, _all_periodic_points class DynamicalSystem_projective(SchemeMorphism_polynomial_projective_space, diff --git a/src/sage/lfunctions/zero_sums.pyx b/src/sage/lfunctions/zero_sums.pyx index cf36812f173..1b584caec25 100644 --- a/src/sage/lfunctions/zero_sums.pyx +++ b/src/sage/lfunctions/zero_sums.pyx @@ -18,21 +18,21 @@ AUTHORS: # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.structure.sage_object cimport SageObject -from sage.rings.integer_ring import ZZ -from sage.rings.real_double import RDF -from sage.rings.complex_double import CDF -from sage.rings.infinity import PlusInfinity -from sage.arith.misc import prime_powers -from sage.arith.misc import next_prime +from sage.arith.misc import next_prime, prime_powers from sage.functions.log import log, exp from sage.functions.other import real, imag -from sage.symbolic.constants import pi, euler_gamma +from sage.libs.flint.ulong_extras cimport n_is_prime from sage.libs.pari.all import pari from sage.misc.verbose import verbose from sage.parallel.decorate import parallel from sage.parallel.ncpus import ncpus as num_cpus -from sage.libs.flint.ulong_extras cimport n_is_prime +from sage.rings.complex_double import CDF +from sage.rings.infinity import PlusInfinity +from sage.rings.integer_ring import ZZ +from sage.rings.real_double import RDF +from sage.structure.sage_object cimport SageObject +from sage.symbolic.constants import euler_gamma, pi + cdef extern from "": double c_exp "exp"(double) diff --git a/src/sage/quadratic_forms/count_local_2.pyx b/src/sage/quadratic_forms/count_local_2.pyx index f95f2adb08c..299554de655 100644 --- a/src/sage/quadratic_forms/count_local_2.pyx +++ b/src/sage/quadratic_forms/count_local_2.pyx @@ -2,15 +2,11 @@ r""" Optimized counting of congruence solutions """ -from sage.arith.misc import valuation -from sage.arith.misc import kronecker as kronecker_symbol -from sage.arith.misc import is_prime +from sage.arith.misc import is_prime, kronecker as kronecker_symbol, valuation +from sage.rings.finite_rings.integer_mod cimport IntegerMod_gmp from sage.rings.finite_rings.integer_mod import Mod from sage.rings.finite_rings.integer_mod_ring import IntegerModRing - from sage.rings.integer_ring import ZZ - -from sage.rings.finite_rings.integer_mod cimport IntegerMod_gmp from sage.sets.set import Set diff --git a/src/sage/quadratic_forms/quadratic_form__equivalence_testing.py b/src/sage/quadratic_forms/quadratic_form__equivalence_testing.py index cde9807748a..84acd284a43 100644 --- a/src/sage/quadratic_forms/quadratic_form__equivalence_testing.py +++ b/src/sage/quadratic_forms/quadratic_form__equivalence_testing.py @@ -5,16 +5,17 @@ - Anna Haensch (2014-12-01): added test for rational isometry """ -from sage.arith.misc import hilbert_symbol -from sage.arith.misc import prime_divisors -from sage.arith.misc import is_prime -from sage.arith.misc import valuation -from sage.arith.misc import GCD -from sage.arith.misc import legendre_symbol + +from sage.arith.misc import (hilbert_symbol, + GCD, + is_prime, + legendre_symbol, + prime_divisors, + valuation) from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ -from sage.quadratic_forms.quadratic_form import is_QuadraticForm +from .quadratic_form import is_QuadraticForm ############################################################################## diff --git a/src/sage/quadratic_forms/quadratic_form__genus.py b/src/sage/quadratic_forms/quadratic_form__genus.py index 9da65f85874..30bd73145f9 100644 --- a/src/sage/quadratic_forms/quadratic_form__genus.py +++ b/src/sage/quadratic_forms/quadratic_form__genus.py @@ -7,10 +7,9 @@ # # ############################################################# +from sage.arith.misc import is_prime, prime_divisors from sage.quadratic_forms.genera.genus import Genus, LocalGenusSymbol from sage.rings.integer_ring import ZZ -from sage.arith.misc import is_prime -from sage.arith.misc import prime_divisors def global_genus_symbol(self): diff --git a/src/sage/quadratic_forms/quadratic_form__local_field_invariants.py b/src/sage/quadratic_forms/quadratic_form__local_field_invariants.py index 61a51e8acde..cf0589872a6 100644 --- a/src/sage/quadratic_forms/quadratic_form__local_field_invariants.py +++ b/src/sage/quadratic_forms/quadratic_form__local_field_invariants.py @@ -21,16 +21,15 @@ # places, is_semi_definite, and support for number fields. ########################################################################### - from copy import deepcopy -from sage.rings.integer_ring import ZZ -from sage.rings.rational_field import QQ -from sage.rings.real_mpfr import RR -from sage.arith.misc import prime_divisors -from sage.arith.misc import hilbert_symbol + +from sage.arith.misc import hilbert_symbol, prime_divisors from sage.functions.all import sgn from sage.matrix.matrix_space import MatrixSpace from sage.misc.cachefunc import cached_method +from sage.rings.integer_ring import ZZ +from sage.rings.rational_field import QQ +from sage.rings.real_mpfr import RR def rational_diagonal_form(self, return_matrix=False): diff --git a/src/sage/quadratic_forms/quadratic_form__local_representation_conditions.py b/src/sage/quadratic_forms/quadratic_form__local_representation_conditions.py index 52ae2c6387d..661078d8788 100644 --- a/src/sage/quadratic_forms/quadratic_form__local_representation_conditions.py +++ b/src/sage/quadratic_forms/quadratic_form__local_representation_conditions.py @@ -8,9 +8,7 @@ from __future__ import annotations from copy import deepcopy -from sage.arith.misc import prime_divisors -from sage.arith.misc import valuation -from sage.arith.misc import is_square +from sage.arith.misc import is_square, prime_divisors, valuation from sage.misc.functional import numerator, denominator from sage.quadratic_forms.extras import least_quadratic_nonresidue from sage.rings.infinity import infinity diff --git a/src/sage/quadratic_forms/quadratic_form__mass__Conway_Sloane_masses.py b/src/sage/quadratic_forms/quadratic_form__mass__Conway_Sloane_masses.py index ab94d09ca49..b05b00bde2e 100644 --- a/src/sage/quadratic_forms/quadratic_form__mass__Conway_Sloane_masses.py +++ b/src/sage/quadratic_forms/quadratic_form__mass__Conway_Sloane_masses.py @@ -1,16 +1,17 @@ """ Conway-Sloane masses """ +from sage.arith.misc import (fundamental_discriminant, + is_prime, + kronecker as kronecker_symbol, + legendre_symbol, + prime_divisors) +from sage.misc.misc_c import prod from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ -from sage.arith.misc import kronecker as kronecker_symbol -from sage.arith.misc import legendre_symbol -from sage.arith.misc import prime_divisors -from sage.arith.misc import is_prime -from sage.arith.misc import fundamental_discriminant from sage.symbolic.constants import pi -from sage.misc.misc_c import prod -from sage.quadratic_forms.special_values import gamma__exact, zeta__exact, quadratic_L_function__exact + +from .special_values import gamma__exact, zeta__exact, quadratic_L_function__exact def parity(self, allow_rescaling_flag=True): diff --git a/src/sage/quadratic_forms/quadratic_form__mass__Siegel_densities.py b/src/sage/quadratic_forms/quadratic_form__mass__Siegel_densities.py index c3c46ea44c1..174f1a51320 100644 --- a/src/sage/quadratic_forms/quadratic_form__mass__Siegel_densities.py +++ b/src/sage/quadratic_forms/quadratic_form__mass__Siegel_densities.py @@ -12,19 +12,18 @@ import copy +from sage.arith.misc import kronecker, legendre_symbol, prime_divisors +from sage.functions.all import sgn +from sage.matrix.matrix_space import MatrixSpace +from sage.misc.functional import squarefree_part from sage.misc.misc_c import prod from sage.misc.mrange import mrange -from sage.rings.integer_ring import ZZ from sage.rings.finite_rings.integer_mod_ring import IntegerModRing +from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ -from sage.arith.misc import legendre_symbol -from sage.arith.misc import kronecker -from sage.arith.misc import prime_divisors -from sage.functions.all import sgn -from sage.quadratic_forms.special_values import gamma__exact, zeta__exact, quadratic_L_function__exact -from sage.misc.functional import squarefree_part from sage.symbolic.constants import pi -from sage.matrix.matrix_space import MatrixSpace + +from .special_values import gamma__exact, zeta__exact, quadratic_L_function__exact def mass__by_Siegel_densities(self, odd_algorithm="Pall", even_algorithm="Watson"): diff --git a/src/sage/quadratic_forms/quadratic_form__siegel_product.py b/src/sage/quadratic_forms/quadratic_form__siegel_product.py index ac02c963e7b..d48c3e155a4 100644 --- a/src/sage/quadratic_forms/quadratic_form__siegel_product.py +++ b/src/sage/quadratic_forms/quadratic_form__siegel_product.py @@ -10,18 +10,16 @@ # http://www.gnu.org/licenses/ #***************************************************************************** -from sage.rings.integer_ring import ZZ -from sage.rings.rational_field import QQ -from sage.arith.misc import kronecker as kronecker_symbol -from sage.arith.misc import bernoulli -from sage.arith.misc import prime_divisors -from sage.arith.misc import fundamental_discriminant +from sage.arith.misc import (bernoulli, + fundamental_discriminant, + kronecker as kronecker_symbol, + prime_divisors) from sage.misc.functional import sqrt -from sage.quadratic_forms.special_values import QuadraticBernoulliNumber - - from sage.misc.verbose import verbose +from sage.rings.integer_ring import ZZ +from sage.rings.rational_field import QQ +from .special_values import QuadraticBernoulliNumber #/*! \brief Computes the product of all local densities for comparison with independently computed Eisenstein coefficients. diff --git a/src/sage/quadratic_forms/quadratic_form__ternary_Tornaria.py b/src/sage/quadratic_forms/quadratic_form__ternary_Tornaria.py index 93e8bce1fbf..4db5633ce8c 100644 --- a/src/sage/quadratic_forms/quadratic_form__ternary_Tornaria.py +++ b/src/sage/quadratic_forms/quadratic_form__ternary_Tornaria.py @@ -11,21 +11,20 @@ # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.rings.integer_ring import ZZ -from sage.misc.functional import is_odd - +from sage.arith.misc import (CRT_vectors, + factor, + GCD as gcd, + hilbert_symbol, + kronecker as kronecker_symbol, + prime_to_m_part) from sage.libs.pari.all import pari +from sage.misc.functional import is_odd from sage.misc.misc_c import prod -from sage.arith.misc import factor -from sage.arith.misc import GCD as gcd -from sage.arith.misc import prime_to_m_part -from sage.arith.misc import CRT_vectors -from sage.arith.misc import hilbert_symbol -from sage.arith.misc import kronecker as kronecker_symbol - -from sage.quadratic_forms.quadratic_form import QuadraticForm__constructor as QuadraticForm from sage.modules.free_module import FreeModule from sage.modules.free_module_element import vector +from sage.rings.integer_ring import ZZ + +from .quadratic_form import QuadraticForm__constructor as QuadraticForm # TO DO -- Add second argument diff --git a/src/sage/quadratic_forms/special_values.py b/src/sage/quadratic_forms/special_values.py index a76bf474f07..dbfad45e31e 100644 --- a/src/sage/quadratic_forms/special_values.py +++ b/src/sage/quadratic_forms/special_values.py @@ -7,19 +7,21 @@ - :func:`quadratic_L_function__numerical` -- Numerical values of the Dirichlet L-functions of quadratic characters in the domain of convergence """ +import sage.rings.abc + +from sage.arith.misc import (bernoulli, + factorial, + fundamental_discriminant, + kronecker as kronecker_symbol) from sage.combinat.combinat import bernoulli_polynomial from sage.misc.functional import denominator -from sage.arith.misc import kronecker as kronecker_symbol -from sage.arith.misc import bernoulli -from sage.arith.misc import factorial -from sage.arith.misc import fundamental_discriminant from sage.rings.infinity import infinity from sage.rings.integer_ring import ZZ from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.rational_field import QQ -import sage.rings.abc from sage.symbolic.constants import pi, I + # ---------------- The Gamma Function ------------------ def gamma__exact(n): diff --git a/src/sage/quadratic_forms/ternary.pyx b/src/sage/quadratic_forms/ternary.pyx index 8d8ad42a3d0..15cc6c52602 100644 --- a/src/sage/quadratic_forms/ternary.pyx +++ b/src/sage/quadratic_forms/ternary.pyx @@ -12,15 +12,13 @@ Helper code for ternary quadratic forms # http://www.gnu.org/licenses/ #***************************************************************************** -from sage.rings.integer_ring import ZZ +from sage.arith.misc import GCD as gcd, inverse_mod, XGCD as xgcd from sage.matrix.constructor import matrix, identity_matrix, diagonal_matrix +from sage.misc.prandom import randint from sage.modules.free_module_element import vector -from sage.arith.misc import inverse_mod -from sage.arith.misc import XGCD as xgcd -from sage.arith.misc import GCD as gcd from sage.quadratic_forms.extras import extend_to_primitive from sage.rings.finite_rings.integer_mod import mod -from sage.misc.prandom import randint +from sage.rings.integer_ring import ZZ def red_mfact(a,b): diff --git a/src/sage/quadratic_forms/ternary_qf.py b/src/sage/quadratic_forms/ternary_qf.py index 47697347c72..c677d328eea 100644 --- a/src/sage/quadratic_forms/ternary_qf.py +++ b/src/sage/quadratic_forms/ternary_qf.py @@ -26,20 +26,25 @@ # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.structure.sage_object import SageObject -from sage.rings.integer_ring import ZZ -from sage.arith.misc import GCD as gcd -from sage.arith.misc import kronecker as kronecker_symbol -from sage.quadratic_forms.quadratic_form import QuadraticForm +from sage.arith.misc import GCD as gcd, kronecker as kronecker_symbol from sage.matrix.constructor import matrix, identity_matrix -from sage.structure.element import is_Vector, is_Matrix -from sage.quadratic_forms.ternary import _reduced_ternary_form_eisenstein_with_matrix -from sage.quadratic_forms.ternary import _reduced_ternary_form_eisenstein_without_matrix, _find_zeros_mod_p_odd, _find_zeros_mod_p_2, _find_p_neighbor_from_vec, _basic_lemma -from sage.quadratic_forms.ternary import _find_all_ternary_qf_by_level_disc, _find_a_ternary_qf_by_level_disc from sage.misc.prandom import randint from sage.rings.finite_rings.integer_mod import mod -from sage.rings.ring import is_Ring +from sage.rings.integer_ring import ZZ from sage.rings.polynomial.polynomial_ring import polygens +from sage.rings.ring import is_Ring +from sage.structure.element import is_Vector, is_Matrix +from sage.structure.sage_object import SageObject + +from .quadratic_form import QuadraticForm +from .ternary import (_basic_lemma, + _find_a_ternary_qf_by_level_disc, + _find_all_ternary_qf_by_level_disc, + _find_p_neighbor_from_vec, + _find_zeros_mod_p_2, + _find_zeros_mod_p_odd, + _reduced_ternary_form_eisenstein_with_matrix + _reduced_ternary_form_eisenstein_without_matrix) class TernaryQF(SageObject): From f210dcefe1712b8dffe79fbfb7f3086395ba01c0 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Mon, 13 Feb 2023 10:18:03 -0800 Subject: [PATCH 40/49] src/sage/quadratic_forms/ternary_qf.py: Fix import syntax --- src/sage/quadratic_forms/ternary_qf.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/sage/quadratic_forms/ternary_qf.py b/src/sage/quadratic_forms/ternary_qf.py index c677d328eea..9bbc005570c 100644 --- a/src/sage/quadratic_forms/ternary_qf.py +++ b/src/sage/quadratic_forms/ternary_qf.py @@ -43,7 +43,7 @@ _find_p_neighbor_from_vec, _find_zeros_mod_p_2, _find_zeros_mod_p_odd, - _reduced_ternary_form_eisenstein_with_matrix + _reduced_ternary_form_eisenstein_with_matrix, _reduced_ternary_form_eisenstein_without_matrix) From feb652506172c414b38964b91c1f35762bf93e09 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Mon, 13 Feb 2023 12:14:48 -0800 Subject: [PATCH 41/49] src/sage/crypto/public_key/blum_goldwasser.py: Fix up relative imports --- src/sage/crypto/public_key/blum_goldwasser.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/sage/crypto/public_key/blum_goldwasser.py b/src/sage/crypto/public_key/blum_goldwasser.py index 0c1c8f27b91..871b7522909 100644 --- a/src/sage/crypto/public_key/blum_goldwasser.py +++ b/src/sage/crypto/public_key/blum_goldwasser.py @@ -37,8 +37,8 @@ from sage.rings.finite_rings.integer_mod import Mod as mod from sage.rings.finite_rings.integer_mod_ring import IntegerModFactory -from .cryptosystem import PublicKeyCryptosystem -from .util import is_blum_prime, least_significant_bits, random_blum_prime +from ..cryptosystem import PublicKeyCryptosystem +from ..util import is_blum_prime, least_significant_bits, random_blum_prime floor = Function_floor() From 6e96393c207f2a6d18498cabc3a9018e717cdf4d Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Mon, 13 Feb 2023 21:28:11 -0800 Subject: [PATCH 42/49] Replace relative imports by absolute imports because pytest --- src/sage/crypto/public_key/blum_goldwasser.py | 5 ++--- src/sage/crypto/stream.py | 7 +++---- .../arithmetic_dynamics/projective_ds.py | 21 ++++++++++--------- .../quadratic_form__equivalence_testing.py | 3 +-- ...dratic_form__mass__Conway_Sloane_masses.py | 3 +-- .../quadratic_form__mass__Siegel_densities.py | 3 +-- .../quadratic_form__siegel_product.py | 3 +-- .../quadratic_form__ternary_Tornaria.py | 3 +-- src/sage/quadratic_forms/ternary_qf.py | 20 +++++++++--------- 9 files changed, 31 insertions(+), 37 deletions(-) diff --git a/src/sage/crypto/public_key/blum_goldwasser.py b/src/sage/crypto/public_key/blum_goldwasser.py index 871b7522909..9cc21b5f7cb 100644 --- a/src/sage/crypto/public_key/blum_goldwasser.py +++ b/src/sage/crypto/public_key/blum_goldwasser.py @@ -31,15 +31,14 @@ from operator import xor from sage.arith.misc import GCD as gcd, power_mod, XGCD as xgcd +from sage.crypto.cryptosystem import PublicKeyCryptosystem +from sage.crypto.util import is_blum_prime, least_significant_bits, random_blum_prime from sage.functions.log import log from sage.functions.other import Function_floor from sage.monoids.string_monoid import BinaryStrings from sage.rings.finite_rings.integer_mod import Mod as mod from sage.rings.finite_rings.integer_mod_ring import IntegerModFactory -from ..cryptosystem import PublicKeyCryptosystem -from ..util import is_blum_prime, least_significant_bits, random_blum_prime - floor = Function_floor() IntegerModRing = IntegerModFactory("IntegerModRing") diff --git a/src/sage/crypto/stream.py b/src/sage/crypto/stream.py index 34212570f3a..1c4ead2e532 100644 --- a/src/sage/crypto/stream.py +++ b/src/sage/crypto/stream.py @@ -13,15 +13,14 @@ #***************************************************************************** from sage.arith.misc import GCD as gcd, power_mod +from sage.crypto.cryptosystem import SymmetricKeyCryptosystem +from sage.crypto.stream_cipher import LFSRCipher, ShrinkingGeneratorCipher +from sage.crypto.util import random_blum_prime from sage.monoids.string_monoid import BinaryStrings from sage.rings.finite_rings.finite_field_constructor import FiniteField from sage.rings.finite_rings.integer_mod_ring import IntegerModFactory from sage.rings.polynomial.polynomial_element import Polynomial -from .cryptosystem import SymmetricKeyCryptosystem -from .stream_cipher import LFSRCipher, ShrinkingGeneratorCipher -from .util import random_blum_prime - IntegerModRing = IntegerModFactory("IntegerModRing") diff --git a/src/sage/dynamics/arithmetic_dynamics/projective_ds.py b/src/sage/dynamics/arithmetic_dynamics/projective_ds.py index 65e157ddc59..e06a39f642e 100644 --- a/src/sage/dynamics/arithmetic_dynamics/projective_ds.py +++ b/src/sage/dynamics/arithmetic_dynamics/projective_ds.py @@ -65,6 +65,17 @@ class initialization directly. from sage.categories.function_fields import FunctionFields from sage.categories.homset import End from sage.categories.number_fields import NumberFields +from sage.dynamics.arithmetic_dynamics.endPN_automorphism_group import ( + automorphism_group_QQ_CRT, + automorphism_group_QQ_fixedpoints, + conjugating_set_helper, + conjugating_set_initializer, + is_conjugate_helper) +from sage.dynamics.arithmetic_dynamics.endPN_automorphism_group import automorphism_group_FF +from sage.dynamics.arithmetic_dynamics.generic_ds import DynamicalSystem +from sage.dynamics.arithmetic_dynamics.projective_ds_helper import ( + _fast_possible_periods, + _all_periodic_points) from sage.functions.other import ceil from sage.libs.pari.all import PariError from sage.matrix.constructor import matrix, identity_matrix @@ -107,16 +118,6 @@ class initialization directly. from sage.structure.element import get_coercion_model from sage.symbolic.constants import e -from .endPN_automorphism_group import ( - automorphism_group_QQ_CRT, - automorphism_group_QQ_fixedpoints, - conjugating_set_helper, - conjugating_set_initializer, - is_conjugate_helper) -from .endPN_automorphism_group import automorphism_group_FF -from .generic_ds import DynamicalSystem -from .projective_ds_helper import _fast_possible_periods, _all_periodic_points - class DynamicalSystem_projective(SchemeMorphism_polynomial_projective_space, DynamicalSystem): diff --git a/src/sage/quadratic_forms/quadratic_form__equivalence_testing.py b/src/sage/quadratic_forms/quadratic_form__equivalence_testing.py index 84acd284a43..3175126556d 100644 --- a/src/sage/quadratic_forms/quadratic_form__equivalence_testing.py +++ b/src/sage/quadratic_forms/quadratic_form__equivalence_testing.py @@ -12,11 +12,10 @@ legendre_symbol, prime_divisors, valuation) +from sage.quadratic_forms.quadratic_form import is_QuadraticForm from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ -from .quadratic_form import is_QuadraticForm - ############################################################################## # Routines to test if two quadratic forms over ZZ are globally equivalent. # diff --git a/src/sage/quadratic_forms/quadratic_form__mass__Conway_Sloane_masses.py b/src/sage/quadratic_forms/quadratic_form__mass__Conway_Sloane_masses.py index b05b00bde2e..551354251ce 100644 --- a/src/sage/quadratic_forms/quadratic_form__mass__Conway_Sloane_masses.py +++ b/src/sage/quadratic_forms/quadratic_form__mass__Conway_Sloane_masses.py @@ -7,12 +7,11 @@ legendre_symbol, prime_divisors) from sage.misc.misc_c import prod +from sage.quadratic_forms.special_values import gamma__exact, zeta__exact, quadratic_L_function__exact from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ from sage.symbolic.constants import pi -from .special_values import gamma__exact, zeta__exact, quadratic_L_function__exact - def parity(self, allow_rescaling_flag=True): """ diff --git a/src/sage/quadratic_forms/quadratic_form__mass__Siegel_densities.py b/src/sage/quadratic_forms/quadratic_form__mass__Siegel_densities.py index 174f1a51320..08b388d4285 100644 --- a/src/sage/quadratic_forms/quadratic_form__mass__Siegel_densities.py +++ b/src/sage/quadratic_forms/quadratic_form__mass__Siegel_densities.py @@ -18,13 +18,12 @@ from sage.misc.functional import squarefree_part from sage.misc.misc_c import prod from sage.misc.mrange import mrange +from sage.quadratic_forms.special_values import gamma__exact, zeta__exact, quadratic_L_function__exact from sage.rings.finite_rings.integer_mod_ring import IntegerModRing from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ from sage.symbolic.constants import pi -from .special_values import gamma__exact, zeta__exact, quadratic_L_function__exact - def mass__by_Siegel_densities(self, odd_algorithm="Pall", even_algorithm="Watson"): """ diff --git a/src/sage/quadratic_forms/quadratic_form__siegel_product.py b/src/sage/quadratic_forms/quadratic_form__siegel_product.py index d48c3e155a4..6c5118309c9 100644 --- a/src/sage/quadratic_forms/quadratic_form__siegel_product.py +++ b/src/sage/quadratic_forms/quadratic_form__siegel_product.py @@ -16,11 +16,10 @@ prime_divisors) from sage.misc.functional import sqrt from sage.misc.verbose import verbose +from sage.quadratic_forms.special_values import QuadraticBernoulliNumber from sage.rings.integer_ring import ZZ from sage.rings.rational_field import QQ -from .special_values import QuadraticBernoulliNumber - #/*! \brief Computes the product of all local densities for comparison with independently computed Eisenstein coefficients. # * diff --git a/src/sage/quadratic_forms/quadratic_form__ternary_Tornaria.py b/src/sage/quadratic_forms/quadratic_form__ternary_Tornaria.py index 4db5633ce8c..8ec79b412d6 100644 --- a/src/sage/quadratic_forms/quadratic_form__ternary_Tornaria.py +++ b/src/sage/quadratic_forms/quadratic_form__ternary_Tornaria.py @@ -22,10 +22,9 @@ from sage.misc.misc_c import prod from sage.modules.free_module import FreeModule from sage.modules.free_module_element import vector +from sage.quadratic_forms.quadratic_form import QuadraticForm__constructor as QuadraticForm from sage.rings.integer_ring import ZZ -from .quadratic_form import QuadraticForm__constructor as QuadraticForm - # TO DO -- Add second argument # def __call__(self,v,w=None): diff --git a/src/sage/quadratic_forms/ternary_qf.py b/src/sage/quadratic_forms/ternary_qf.py index 9bbc005570c..718a1ab1ba5 100644 --- a/src/sage/quadratic_forms/ternary_qf.py +++ b/src/sage/quadratic_forms/ternary_qf.py @@ -29,6 +29,16 @@ from sage.arith.misc import GCD as gcd, kronecker as kronecker_symbol from sage.matrix.constructor import matrix, identity_matrix from sage.misc.prandom import randint +from sage.quadratic_forms.quadratic_form import QuadraticForm +from sage.quadratic_forms..ternary import (_basic_lemma, + _find_a_ternary_qf_by_level_disc, + _find_all_ternary_qf_by_level_disc, + _find_p_neighbor_from_vec, + _find_zeros_mod_p_2, + _find_zeros_mod_p_odd, + _reduced_ternary_form_eisenstein_with_matrix, + _reduced_ternary_form_eisenstein_without_matrix) + from sage.rings.finite_rings.integer_mod import mod from sage.rings.integer_ring import ZZ from sage.rings.polynomial.polynomial_ring import polygens @@ -36,16 +46,6 @@ from sage.structure.element import is_Vector, is_Matrix from sage.structure.sage_object import SageObject -from .quadratic_form import QuadraticForm -from .ternary import (_basic_lemma, - _find_a_ternary_qf_by_level_disc, - _find_all_ternary_qf_by_level_disc, - _find_p_neighbor_from_vec, - _find_zeros_mod_p_2, - _find_zeros_mod_p_odd, - _reduced_ternary_form_eisenstein_with_matrix, - _reduced_ternary_form_eisenstein_without_matrix) - class TernaryQF(SageObject): """ From 457180426c5f5f142c896939be558eea8199293d Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Tue, 14 Feb 2023 11:19:30 -0800 Subject: [PATCH 43/49] Fix up syntax --- src/sage/quadratic_forms/ternary_qf.py | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/src/sage/quadratic_forms/ternary_qf.py b/src/sage/quadratic_forms/ternary_qf.py index 718a1ab1ba5..c000c42c695 100644 --- a/src/sage/quadratic_forms/ternary_qf.py +++ b/src/sage/quadratic_forms/ternary_qf.py @@ -30,14 +30,14 @@ from sage.matrix.constructor import matrix, identity_matrix from sage.misc.prandom import randint from sage.quadratic_forms.quadratic_form import QuadraticForm -from sage.quadratic_forms..ternary import (_basic_lemma, - _find_a_ternary_qf_by_level_disc, - _find_all_ternary_qf_by_level_disc, - _find_p_neighbor_from_vec, - _find_zeros_mod_p_2, - _find_zeros_mod_p_odd, - _reduced_ternary_form_eisenstein_with_matrix, - _reduced_ternary_form_eisenstein_without_matrix) +from sage.quadratic_forms.ternary import (_basic_lemma, + _find_a_ternary_qf_by_level_disc, + _find_all_ternary_qf_by_level_disc, + _find_p_neighbor_from_vec, + _find_zeros_mod_p_2, + _find_zeros_mod_p_odd, + _reduced_ternary_form_eisenstein_with_matrix, + _reduced_ternary_form_eisenstein_without_matrix) from sage.rings.finite_rings.integer_mod import mod from sage.rings.integer_ring import ZZ From 9721de1a949f90f031ea260cea4cabaed1749513 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Tue, 14 Feb 2023 11:43:40 -0800 Subject: [PATCH 44/49] git grep -l 'GCD as gcd' src/sage/{arith,crypto,databases,dynamics,lfunctions,quadratic_forms} | xargs sed -i.bak 's/GCD as gcd/gcd/' --- src/sage/crypto/public_key/blum_goldwasser.py | 2 +- src/sage/crypto/stream.py | 2 +- .../dynamics/arithmetic_dynamics/endPN_automorphism_group.py | 2 +- src/sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py | 2 +- src/sage/dynamics/arithmetic_dynamics/projective_ds.py | 2 +- src/sage/quadratic_forms/binary_qf.py | 2 +- src/sage/quadratic_forms/quadratic_form__ternary_Tornaria.py | 2 +- src/sage/quadratic_forms/ternary.pyx | 2 +- src/sage/quadratic_forms/ternary_qf.py | 2 +- 9 files changed, 9 insertions(+), 9 deletions(-) diff --git a/src/sage/crypto/public_key/blum_goldwasser.py b/src/sage/crypto/public_key/blum_goldwasser.py index 9cc21b5f7cb..27bb3c06802 100644 --- a/src/sage/crypto/public_key/blum_goldwasser.py +++ b/src/sage/crypto/public_key/blum_goldwasser.py @@ -30,7 +30,7 @@ from operator import xor -from sage.arith.misc import GCD as gcd, power_mod, XGCD as xgcd +from sage.arith.misc import gcd, power_mod, XGCD as xgcd from sage.crypto.cryptosystem import PublicKeyCryptosystem from sage.crypto.util import is_blum_prime, least_significant_bits, random_blum_prime from sage.functions.log import log diff --git a/src/sage/crypto/stream.py b/src/sage/crypto/stream.py index 1c4ead2e532..8526aca4c44 100644 --- a/src/sage/crypto/stream.py +++ b/src/sage/crypto/stream.py @@ -12,7 +12,7 @@ # http://www.gnu.org/licenses/ #***************************************************************************** -from sage.arith.misc import GCD as gcd, power_mod +from sage.arith.misc import gcd, power_mod from sage.crypto.cryptosystem import SymmetricKeyCryptosystem from sage.crypto.stream_cipher import LFSRCipher, ShrinkingGeneratorCipher from sage.crypto.util import random_blum_prime diff --git a/src/sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py b/src/sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py index 5fe1229023c..3688fb66623 100644 --- a/src/sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +++ b/src/sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py @@ -23,7 +23,7 @@ from itertools import permutations, combinations, product from sage.arith.functions import lcm -from sage.arith.misc import CRT, divisors, GCD as gcd, is_square +from sage.arith.misc import CRT, divisors, gcd, is_square from sage.combinat.permutation import Arrangements from sage.combinat.subset import Subsets from sage.matrix.constructor import matrix diff --git a/src/sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py b/src/sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py index 1745fdf4d52..735e0800a6f 100644 --- a/src/sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +++ b/src/sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py @@ -34,7 +34,7 @@ from sage.rings.rational_field import QQ from sage.schemes.affine.affine_space import AffineSpace from sage.symbolic.constants import e -from sage.arith.misc import GCD as gcd +from sage.arith.misc import gcd from copy import copy def bCheck(c, v, p, b): diff --git a/src/sage/dynamics/arithmetic_dynamics/projective_ds.py b/src/sage/dynamics/arithmetic_dynamics/projective_ds.py index e06a39f642e..4dd109036d4 100644 --- a/src/sage/dynamics/arithmetic_dynamics/projective_ds.py +++ b/src/sage/dynamics/arithmetic_dynamics/projective_ds.py @@ -58,7 +58,7 @@ class initialization directly. import sage.rings.abc from sage.arith.functions import lcm -from sage.arith.misc import binomial, GCD as gcd, is_prime, moebius, next_prime, primes +from sage.arith.misc import binomial, gcd, is_prime, moebius, next_prime, primes from sage.calculus.functions import jacobian from sage.categories.fields import Fields from sage.categories.finite_fields import FiniteFields diff --git a/src/sage/quadratic_forms/binary_qf.py b/src/sage/quadratic_forms/binary_qf.py index 5d4cf4344d9..4b85ad40ed7 100755 --- a/src/sage/quadratic_forms/binary_qf.py +++ b/src/sage/quadratic_forms/binary_qf.py @@ -54,7 +54,7 @@ from sage.libs.pari.all import pari_gen from sage.rings.integer_ring import ZZ from sage.rings.number_field.number_field import is_fundamental_discriminant -from sage.arith.misc import GCD as gcd +from sage.arith.misc import gcd from sage.structure.sage_object import SageObject from sage.matrix.matrix_space import MatrixSpace from sage.matrix.constructor import Matrix diff --git a/src/sage/quadratic_forms/quadratic_form__ternary_Tornaria.py b/src/sage/quadratic_forms/quadratic_form__ternary_Tornaria.py index 8ec79b412d6..ff1476c32d9 100644 --- a/src/sage/quadratic_forms/quadratic_form__ternary_Tornaria.py +++ b/src/sage/quadratic_forms/quadratic_form__ternary_Tornaria.py @@ -13,7 +13,7 @@ from sage.arith.misc import (CRT_vectors, factor, - GCD as gcd, + gcd, hilbert_symbol, kronecker as kronecker_symbol, prime_to_m_part) diff --git a/src/sage/quadratic_forms/ternary.pyx b/src/sage/quadratic_forms/ternary.pyx index 15cc6c52602..82bae540865 100644 --- a/src/sage/quadratic_forms/ternary.pyx +++ b/src/sage/quadratic_forms/ternary.pyx @@ -12,7 +12,7 @@ Helper code for ternary quadratic forms # http://www.gnu.org/licenses/ #***************************************************************************** -from sage.arith.misc import GCD as gcd, inverse_mod, XGCD as xgcd +from sage.arith.misc import gcd, inverse_mod, XGCD as xgcd from sage.matrix.constructor import matrix, identity_matrix, diagonal_matrix from sage.misc.prandom import randint from sage.modules.free_module_element import vector diff --git a/src/sage/quadratic_forms/ternary_qf.py b/src/sage/quadratic_forms/ternary_qf.py index c000c42c695..bb98b11cb30 100644 --- a/src/sage/quadratic_forms/ternary_qf.py +++ b/src/sage/quadratic_forms/ternary_qf.py @@ -26,7 +26,7 @@ # https://www.gnu.org/licenses/ # **************************************************************************** -from sage.arith.misc import GCD as gcd, kronecker as kronecker_symbol +from sage.arith.misc import gcd, kronecker as kronecker_symbol from sage.matrix.constructor import matrix, identity_matrix from sage.misc.prandom import randint from sage.quadratic_forms.quadratic_form import QuadraticForm From f9f65423d69ab55d3a0c108699d7e66b5342b439 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Tue, 14 Feb 2023 11:55:58 -0800 Subject: [PATCH 45/49] git grep -l 'XGCD as xgcd' src/sage/{arith,crypto,databases,dynamics,lfunctions,quadratic_forms} | xargs sed -i.bak 's/XGCD as xgcd/xgcd/' --- src/sage/crypto/classical.py | 2 +- src/sage/crypto/public_key/blum_goldwasser.py | 2 +- src/sage/quadratic_forms/ternary.pyx | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/src/sage/crypto/classical.py b/src/sage/crypto/classical.py index 151d941588f..132a18cdee0 100644 --- a/src/sage/crypto/classical.py +++ b/src/sage/crypto/classical.py @@ -55,7 +55,7 @@ from sage.rings.integer import Integer from sage.rings.integer_ring import ZZ from sage.rings.finite_rings.integer_mod_ring import IntegerModRing -from sage.arith.misc import inverse_mod, XGCD as xgcd +from sage.arith.misc import inverse_mod, xgcd from random import randint from sage.matrix.matrix_space import MatrixSpace diff --git a/src/sage/crypto/public_key/blum_goldwasser.py b/src/sage/crypto/public_key/blum_goldwasser.py index 27bb3c06802..8f076a4f70d 100644 --- a/src/sage/crypto/public_key/blum_goldwasser.py +++ b/src/sage/crypto/public_key/blum_goldwasser.py @@ -30,7 +30,7 @@ from operator import xor -from sage.arith.misc import gcd, power_mod, XGCD as xgcd +from sage.arith.misc import gcd, power_mod, xgcd from sage.crypto.cryptosystem import PublicKeyCryptosystem from sage.crypto.util import is_blum_prime, least_significant_bits, random_blum_prime from sage.functions.log import log diff --git a/src/sage/quadratic_forms/ternary.pyx b/src/sage/quadratic_forms/ternary.pyx index 82bae540865..727b31ce080 100644 --- a/src/sage/quadratic_forms/ternary.pyx +++ b/src/sage/quadratic_forms/ternary.pyx @@ -12,7 +12,7 @@ Helper code for ternary quadratic forms # http://www.gnu.org/licenses/ #***************************************************************************** -from sage.arith.misc import gcd, inverse_mod, XGCD as xgcd +from sage.arith.misc import gcd, inverse_mod, xgcd from sage.matrix.constructor import matrix, identity_matrix, diagonal_matrix from sage.misc.prandom import randint from sage.modules.free_module_element import vector From 247bad98a19f9c8ea03e292a32741ca26ca8eb71 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Sun, 29 Jan 2023 16:23:38 -0800 Subject: [PATCH 46/49] src/.relint.yml (namespace_pkg_all_import): Skip all.py, upgrade from warning to error again --- src/.relint.yml | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/src/.relint.yml b/src/.relint.yml index 617c086c109..87356f436e8 100644 --- a/src/.relint.yml +++ b/src/.relint.yml @@ -50,5 +50,6 @@ Hint: or use 'sage --fiximports' to fix automatically in the source file. # Keep in sync with SAGE_ROOT/src/sage/misc/replace_dot_all.py pattern: 'from\s+sage(|[.](arith|categories|combinat|ext|graphs(|[.]decompositions)|interfaces|libs|matrix|misc|numerical(|[.]backends)|rings(|[.]finite_rings)|sets))[.]all\s+import' - filePattern: '.*[.](py|pyx|pxi)$' + # imports from .all are allowed in all.py + filePattern: '(.*/|)(?!all)[^/.]*[.](py|pyx|pxi)$' error: false # Make this a warning instead of an error for now From d2be51938d9f5a39e62276cc05cfefc01a5bc58a Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Sun, 29 Jan 2023 19:54:08 -0800 Subject: [PATCH 47/49] src/.relint.yml: Allow .all imports in some modules src/.relint.yml: Allow .all imports in some more modules fixup --- src/.relint.yml | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) diff --git a/src/.relint.yml b/src/.relint.yml index 87356f436e8..2c9faa323a7 100644 --- a/src/.relint.yml +++ b/src/.relint.yml @@ -50,6 +50,5 @@ Hint: or use 'sage --fiximports' to fix automatically in the source file. # Keep in sync with SAGE_ROOT/src/sage/misc/replace_dot_all.py pattern: 'from\s+sage(|[.](arith|categories|combinat|ext|graphs(|[.]decompositions)|interfaces|libs|matrix|misc|numerical(|[.]backends)|rings(|[.]finite_rings)|sets))[.]all\s+import' - # imports from .all are allowed in all.py - filePattern: '(.*/|)(?!all)[^/.]*[.](py|pyx|pxi)$' - error: false # Make this a warning instead of an error for now + # imports from .all are allowed in all.py; also allow in some modules that need sage.all + filePattern: '(.*/|)(?!(all|benchmark|dev_tools|parsing|sage_eval))[^/.]*[.](py|pyx|pxi)$' From e62066f5d55c7bb4c452ee5670b6d52b1cdb56e6 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Sun, 12 Mar 2023 19:23:29 -0700 Subject: [PATCH 48/49] src/sage/rings/padics/padic_template_element.pxi: Restore import lost in merge --- src/sage/rings/padics/padic_template_element.pxi | 2 ++ 1 file changed, 2 insertions(+) diff --git a/src/sage/rings/padics/padic_template_element.pxi b/src/sage/rings/padics/padic_template_element.pxi index f7c1423c69f..a21494e5479 100644 --- a/src/sage/rings/padics/padic_template_element.pxi +++ b/src/sage/rings/padics/padic_template_element.pxi @@ -37,6 +37,8 @@ from sage.rings.rational import Rational from sage.rings.padics.precision_error import PrecisionError from sage.rings.padics.misc import trim_zeros from sage.rings.polynomial.polynomial_element import Polynomial +from sage.structure.element import canonical_coercion + import itertools cdef long maxordp = (1L << (sizeof(long) * 8 - 2)) - 1 From 34586accd3539a0e7550d730cc35cf89900e4204 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Sun, 12 Mar 2023 19:38:25 -0700 Subject: [PATCH 49/49] src/sage/rings/polynomial/integer_valued_polynomials.py: Replace .all import --- src/sage/rings/polynomial/integer_valued_polynomials.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/sage/rings/polynomial/integer_valued_polynomials.py b/src/sage/rings/polynomial/integer_valued_polynomials.py index 603cdbf2e38..3df5a101dbc 100644 --- a/src/sage/rings/polynomial/integer_valued_polynomials.py +++ b/src/sage/rings/polynomial/integer_valued_polynomials.py @@ -13,8 +13,8 @@ # https://www.gnu.org/licenses/ # *************************************************************************** from sage.arith.misc import (binomial, factorial) +from sage.categories.algebras import Algebras from sage.categories.rings import Rings -from sage.categories.all import Algebras from sage.categories.realizations import Category_realization_of_parent from sage.combinat.free_module import CombinatorialFreeModule from sage.matrix.constructor import matrix