From 688181916a902bfd09ebca5f1705aed409357626 Mon Sep 17 00:00:00 2001 From: Seewoo Lee Date: Mon, 17 Mar 2025 15:02:15 -0700 Subject: [PATCH] update docstring --- src/sage/modular/quasimodform/ring.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/sage/modular/quasimodform/ring.py b/src/sage/modular/quasimodform/ring.py index a1aa46b9be6..8f50878b3a2 100644 --- a/src/sage/modular/quasimodform/ring.py +++ b/src/sage/modular/quasimodform/ring.py @@ -5,7 +5,7 @@ .. MATH:: - E_2(z) = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma(n) q^n + E_2(z) = 1 - 24 \sum_{n=1}^{\infty} \sigma(n) q^n where `\sigma` is the sum of divisors function and `q = \mathrm{exp}(2\pi i z)` is the classical parameter at infinity, with `\mathrm{im}(z)>0`. This weight 2 @@ -14,7 +14,7 @@ .. MATH:: - z^2 E_2(-1/z) = E_2(z) + \frac{2k}{4\pi i B_k z}. + z^2 E_2(-1/z) = E_2(z) + \frac{6}{\pi i z}. `E_2` is a quasimodular form of weight 2. General quasimodular forms of given weight can also be defined. We denote by `QM` the graded ring of quasimodular