This repository was archived by the owner on Jan 30, 2023. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathlog.py
1377 lines (1082 loc) · 38.8 KB
/
log.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Logarithmic functions
AUTHORS:
- Yoora Yi Tenen (2012-11-16): Add documentation for :meth:`log()` (:trac:`12113`)
- Tomas Kalvoda (2015-04-01): Add :meth:`exp_polar()` (:trac:`18085`)
"""
from sage.symbolic.function import GinacFunction, BuiltinFunction
from sage.symbolic.constants import e as const_e
from sage.symbolic.constants import pi as const_pi
from sage.libs.mpmath import utils as mpmath_utils
from sage.structure.all import parent as s_parent
from sage.symbolic.expression import Expression, register_symbol
from sage.rings.real_double import RDF
from sage.rings.complex_double import CDF
from sage.rings.integer import Integer
from sage.rings.integer_ring import ZZ
from sage.rings.rational_field import QQ
from sage.misc.functional import log as log
class Function_exp(GinacFunction):
r"""
The exponential function, `\exp(x) = e^x`.
EXAMPLES::
sage: exp(-1)
e^(-1)
sage: exp(2)
e^2
sage: exp(2).n(100)
7.3890560989306502272304274606
sage: exp(x^2 + log(x))
e^(x^2 + log(x))
sage: exp(x^2 + log(x)).simplify()
x*e^(x^2)
sage: exp(2.5)
12.1824939607035
sage: exp(float(2.5))
12.182493960703473
sage: exp(RDF('2.5'))
12.182493960703473
sage: exp(I*pi/12)
(1/4*I + 1/4)*sqrt(6) - (1/4*I - 1/4)*sqrt(2)
To prevent automatic evaluation, use the ``hold`` parameter::
sage: exp(I*pi,hold=True)
e^(I*pi)
sage: exp(0,hold=True)
e^0
To then evaluate again, we currently must use Maxima via
:meth:`sage.symbolic.expression.Expression.simplify`::
sage: exp(0,hold=True).simplify()
1
::
sage: exp(pi*I/2)
I
sage: exp(pi*I)
-1
sage: exp(8*pi*I)
1
sage: exp(7*pi*I/2)
-I
For the sake of simplification, the argument is reduced modulo the
period of the complex exponential function, `2\pi i`::
sage: k = var('k', domain='integer')
sage: exp(2*k*pi*I)
1
sage: exp(log(2) + 2*k*pi*I)
2
The precision for the result is deduced from the precision of
the input. Convert the input to a higher precision explicitly
if a result with higher precision is desired::
sage: t = exp(RealField(100)(2)); t
7.3890560989306502272304274606
sage: t.prec()
100
sage: exp(2).n(100)
7.3890560989306502272304274606
TESTS::
sage: latex(exp(x))
e^{x}
sage: latex(exp(sqrt(x)))
e^{\sqrt{x}}
sage: latex(exp)
\exp
sage: latex(exp(sqrt(x))^x)
\left(e^{\sqrt{x}}\right)^{x}
sage: latex(exp(sqrt(x)^x))
e^{\left(\sqrt{x}^{x}\right)}
sage: exp(x)._sympy_()
exp(x)
Test conjugates::
sage: conjugate(exp(x))
e^conjugate(x)
Test simplifications when taking powers of exp (:trac:`7264`)::
sage: var('a,b,c,II')
(a, b, c, II)
sage: model_exp = exp(II)**a*(b)
sage: sol1_l={b: 5.0, a: 1.1}
sage: model_exp.subs(sol1_l)
5.00000000000000*e^(1.10000000000000*II)
::
sage: exp(3)^II*exp(x)
e^(3*II + x)
sage: exp(x)*exp(x)
e^(2*x)
sage: exp(x)*exp(a)
e^(a + x)
sage: exp(x)*exp(a)^2
e^(2*a + x)
Another instance of the same problem (:trac:`7394`)::
sage: 2*sqrt(e)
2*e^(1/2)
Check that :trac:`19918` is fixed::
sage: exp(-x^2).subs(x=oo)
0
sage: exp(-x).subs(x=-oo)
+Infinity
"""
def __init__(self):
"""
TESTS::
sage: loads(dumps(exp))
exp
sage: maxima(exp(x))._sage_()
e^x
"""
GinacFunction.__init__(self, "exp", latex_name=r"\exp",
conversions=dict(maxima='exp', fricas='exp'))
exp = Function_exp()
class Function_log1(GinacFunction):
r"""
The natural logarithm of ``x``.
See :meth:`log()` for extensive documentation.
EXAMPLES::
sage: ln(e^2)
2
sage: ln(2)
log(2)
sage: ln(10)
log(10)
TESTS::
sage: latex(x.log())
\log\left(x\right)
sage: latex(log(1/4))
\log\left(\frac{1}{4}\right)
sage: log(x)._sympy_()
log(x)
sage: loads(dumps(ln(x)+1))
log(x) + 1
``conjugate(log(x))==log(conjugate(x))`` unless on the branch cut which
runs along the negative real axis.::
sage: conjugate(log(x))
conjugate(log(x))
sage: var('y', domain='positive')
y
sage: conjugate(log(y))
log(y)
sage: conjugate(log(y+I))
conjugate(log(y + I))
sage: conjugate(log(-1))
-I*pi
sage: log(conjugate(-1))
I*pi
Check if float arguments are handled properly.::
sage: from sage.functions.log import function_log as log
sage: log(float(5))
1.6094379124341003
sage: log(float(0))
-inf
sage: log(float(-1))
3.141592653589793j
sage: log(x).subs(x=float(-1))
3.141592653589793j
:trac:`22142`::
sage: log(QQbar(sqrt(2)))
log(1.414213562373095?)
sage: log(QQbar(sqrt(2))*1.)
0.346573590279973
sage: polylog(QQbar(sqrt(2)),3)
polylog(1.414213562373095?, 3)
"""
def __init__(self):
"""
TESTS::
sage: loads(dumps(ln))
log
sage: maxima(ln(x))._sage_()
log(x)
"""
GinacFunction.__init__(self, 'log', latex_name=r'\log',
conversions=dict(maxima='log', fricas='log',
mathematica='Log', giac='ln'))
ln = function_log = Function_log1()
class Function_log2(GinacFunction):
"""
Return the logarithm of x to the given base.
See :meth:`log() <sage.functions.log.log>` for extensive documentation.
EXAMPLES::
sage: from sage.functions.log import logb
sage: logb(1000,10)
3
TESTS::
sage: logb(7, 2)
log(7)/log(2)
sage: logb(int(7), 2)
log(7)/log(2)
"""
def __init__(self):
"""
TESTS::
sage: from sage.functions.log import logb
sage: loads(dumps(logb))
log
"""
GinacFunction.__init__(self, 'log', ginac_name='logb', nargs=2,
latex_name=r'\log',
conversions=dict(maxima='log'))
logb = Function_log2()
class Function_polylog(GinacFunction):
def __init__(self):
r"""
The polylog function
`\text{Li}_s(z) = \sum_{k=1}^{\infty} z^k / k^s`.
The first argument is `s` (usually an integer called the weight)
and the second argument is `z` : ``polylog(s, z)``.
This definition is valid for arbitrary complex numbers `s` and `z`
with `|z| < 1`. It can be extended to `|z| \ge 1` by the process of
analytic continuation, with a branch cut along the positive real axis
from `1` to `+\infty`. A `NaN` value may be returned for floating
point arguments that are on the branch cut.
EXAMPLES::
sage: polylog(2.7, 0)
0.000000000000000
sage: polylog(2, 1)
1/6*pi^2
sage: polylog(2, -1)
-1/12*pi^2
sage: polylog(3, -1)
-3/4*zeta(3)
sage: polylog(2, I)
I*catalan - 1/48*pi^2
sage: polylog(4, 1/2)
polylog(4, 1/2)
sage: polylog(4, 0.5)
0.517479061673899
sage: polylog(1, x)
-log(-x + 1)
sage: polylog(2,x^2+1)
dilog(x^2 + 1)
sage: f = polylog(4, 1); f
1/90*pi^4
sage: f.n()
1.08232323371114
sage: polylog(4, 2).n()
2.42786280675470 - 0.174371300025453*I
sage: complex(polylog(4,2))
(2.4278628067547032-0.17437130002545306j)
sage: float(polylog(4,0.5))
0.5174790616738993
sage: z = var('z')
sage: polylog(2,z).series(z==0, 5)
1*z + 1/4*z^2 + 1/9*z^3 + 1/16*z^4 + Order(z^5)
sage: loads(dumps(polylog))
polylog
sage: latex(polylog(5, x))
{\rm Li}_{5}(x)
sage: polylog(x, x)._sympy_()
polylog(x, x)
TESTS:
Check if :trac:`8459` is fixed::
sage: t = maxima(polylog(5,x)).sage(); t
polylog(5, x)
sage: t.operator() == polylog
True
sage: t.subs(x=.5).n()
0.50840057924226...
Check if :trac:`18386` is fixed::
sage: polylog(2.0, 1)
1.64493406684823
sage: polylog(2, 1.0)
1.64493406684823
sage: polylog(2.0, 1.0)
1.64493406684823
sage: polylog(2, RealBallField(100)(1/3))
[0.36621322997706348761674629766... +/- ...]
sage: polylog(2, ComplexBallField(100)(4/3))
[2.27001825336107090380391448586 +/- ...] + [-0.90377988538400159956755721265 +/- ...]*I
sage: polylog(2, CBF(1/3))
[0.366213229977063 +/- ...]
sage: parent(_)
Complex ball field with 53 bits of precision
sage: polylog(2, CBF(1))
[1.644934066848226 +/- ...]
sage: parent(_)
Complex ball field with 53 bits of precision
sage: polylog(1,-1) # known bug
-log(2)
Check for :trac:`21907`::
sage: bool(x*polylog(x,x)==0)
False
"""
GinacFunction.__init__(self, "polylog", nargs=2,
conversions=dict(mathematica='PolyLog',
magma='Polylog',
matlab='polylog',
sympy='polylog'))
def _maxima_init_evaled_(self, *args):
"""
EXAMPLES:
These are indirect doctests for this function::
sage: polylog(2, x)._maxima_()
li[2](_SAGE_VAR_x)
sage: polylog(4, x)._maxima_()
polylog(4,_SAGE_VAR_x)
"""
args_maxima = []
for a in args:
if isinstance(a, str):
args_maxima.append(a)
elif hasattr(a, '_maxima_init_'):
args_maxima.append(a._maxima_init_())
else:
args_maxima.append(str(a))
n, x = args_maxima
if int(n) in [1, 2, 3]:
return 'li[%s](%s)' % (n, x)
else:
return 'polylog(%s, %s)' % (n, x)
def _method_arguments(self, k, z):
r"""
TESTS::
sage: b = RBF(1/2, .0001)
sage: polylog(2, b)
[0.582 +/- ...]
"""
return [z, k]
polylog = Function_polylog()
class Function_dilog(GinacFunction):
def __init__(self):
r"""
The dilogarithm function
`\text{Li}_2(z) = \sum_{k=1}^{\infty} z^k / k^2`.
This is simply an alias for polylog(2, z).
EXAMPLES::
sage: dilog(1)
1/6*pi^2
sage: dilog(1/2)
1/12*pi^2 - 1/2*log(2)^2
sage: dilog(x^2+1)
dilog(x^2 + 1)
sage: dilog(-1)
-1/12*pi^2
sage: dilog(-1.0)
-0.822467033424113
sage: dilog(-1.1)
-0.890838090262283
sage: dilog(1/2)
1/12*pi^2 - 1/2*log(2)^2
sage: dilog(.5)
0.582240526465012
sage: dilog(1/2).n()
0.582240526465012
sage: var('z')
z
sage: dilog(z).diff(z, 2)
log(-z + 1)/z^2 - 1/((z - 1)*z)
sage: dilog(z).series(z==1/2, 3)
(1/12*pi^2 - 1/2*log(2)^2) + (-2*log(1/2))*(z - 1/2) + (2*log(1/2) + 2)*(z - 1/2)^2 + Order(1/8*(2*z - 1)^3)
sage: latex(dilog(z))
{\rm Li}_2\left(z\right)
Dilog has a branch point at `1`. Sage's floating point libraries
may handle this differently from the symbolic package::
sage: dilog(1)
1/6*pi^2
sage: dilog(1.)
1.64493406684823
sage: dilog(1).n()
1.64493406684823
sage: float(dilog(1))
1.6449340668482262
TESTS:
``conjugate(dilog(x))==dilog(conjugate(x))`` unless on the branch cuts
which run along the positive real axis beginning at 1.::
sage: conjugate(dilog(x))
conjugate(dilog(x))
sage: var('y',domain='positive')
y
sage: conjugate(dilog(y))
conjugate(dilog(y))
sage: conjugate(dilog(1/19))
dilog(1/19)
sage: conjugate(dilog(1/2*I))
dilog(-1/2*I)
sage: dilog(conjugate(1/2*I))
dilog(-1/2*I)
sage: conjugate(dilog(2))
conjugate(dilog(2))
Check that return type matches argument type where possible
(:trac:`18386`)::
sage: dilog(0.5)
0.582240526465012
sage: dilog(-1.0)
-0.822467033424113
sage: y = dilog(RealField(13)(0.5))
sage: parent(y)
Real Field with 13 bits of precision
sage: dilog(RealField(13)(1.1))
1.96 - 0.300*I
sage: parent(_)
Complex Field with 13 bits of precision
"""
GinacFunction.__init__(self, 'dilog',
conversions=dict(maxima='li[2]',
magma='Dilog',
fricas='(x+->dilog(1-x))'))
def _sympy_(self, z):
r"""
Special case for sympy, where there is no dilog function.
EXAMPLES::
sage: w = dilog(x)._sympy_(); w
polylog(2, x)
sage: w.diff()
polylog(1, x)/x
sage: w._sage_()
dilog(x)
"""
import sympy
from sympy import polylog as sympy_polylog
return sympy_polylog(2, sympy.sympify(z, evaluate=False))
dilog = Function_dilog()
class Function_lambert_w(BuiltinFunction):
r"""
The integral branches of the Lambert W function `W_n(z)`.
This function satisfies the equation
.. MATH::
z = W_n(z) e^{W_n(z)}
INPUT:
- ``n`` -- an integer. `n=0` corresponds to the principal branch.
- ``z`` -- a complex number
If called with a single argument, that argument is ``z`` and the branch ``n`` is
assumed to be 0 (the principal branch).
ALGORITHM:
Numerical evaluation is handled using the mpmath and SciPy libraries.
REFERENCES:
- :wikipedia:`Lambert_W_function`
EXAMPLES:
Evaluation of the principal branch::
sage: lambert_w(1.0)
0.567143290409784
sage: lambert_w(-1).n()
-0.318131505204764 + 1.33723570143069*I
sage: lambert_w(-1.5 + 5*I)
1.17418016254171 + 1.10651494102011*I
Evaluation of other branches::
sage: lambert_w(2, 1.0)
-2.40158510486800 + 10.7762995161151*I
Solutions to certain exponential equations are returned in terms of lambert_w::
sage: S = solve(e^(5*x)+x==0, x, to_poly_solve=True)
sage: z = S[0].rhs(); z
-1/5*lambert_w(5)
sage: N(z)
-0.265344933048440
Check the defining equation numerically at `z=5`::
sage: N(lambert_w(5)*exp(lambert_w(5)) - 5)
0.000000000000000
There are several special values of the principal branch which
are automatically simplified::
sage: lambert_w(0)
0
sage: lambert_w(e)
1
sage: lambert_w(-1/e)
-1
Integration (of the principal branch) is evaluated using Maxima::
sage: integrate(lambert_w(x), x)
(lambert_w(x)^2 - lambert_w(x) + 1)*x/lambert_w(x)
sage: integrate(lambert_w(x), x, 0, 1)
(lambert_w(1)^2 - lambert_w(1) + 1)/lambert_w(1) - 1
sage: integrate(lambert_w(x), x, 0, 1.0)
0.3303661247616807
Warning: The integral of a non-principal branch is not implemented,
neither is numerical integration using GSL. The :meth:`numerical_integral`
function does work if you pass a lambda function::
sage: numerical_integral(lambda x: lambert_w(x), 0, 1)
(0.33036612476168054, 3.667800782666048e-15)
"""
def __init__(self):
r"""
See the docstring for :meth:`Function_lambert_w`.
EXAMPLES::
sage: lambert_w(0, 1.0)
0.567143290409784
sage: lambert_w(x, x)._sympy_()
LambertW(x, x)
TESTS:
Check that :trac:`25987` is fixed::
sage: lambert_w(x)._fricas_() # optional - fricas
lambertW(x)
sage: fricas(lambert_w(x)).eval(x = -1/e) # optional - fricas
- 1
The two-argument form of Lambert's function is not supported
by FriCAS, so we return a generic operator::
sage: var("n")
n
sage: lambert_w(n, x)._fricas_() # optional - fricas
generalizedLambertW(n,x)
"""
BuiltinFunction.__init__(self, "lambert_w", nargs=2,
conversions={'mathematica': 'ProductLog',
'maple': 'LambertW',
'matlab': 'lambertw',
'maxima': 'generalized_lambert_w',
'fricas': "((n,z)+->(if n=0 then lambertW(z) else operator('generalizedLambertW)(n,z)))",
'sympy': 'LambertW'})
def __call__(self, *args, **kwds):
r"""
Custom call method allows the user to pass one argument or two. If
one argument is passed, we assume it is ``z`` and that ``n=0``.
EXAMPLES::
sage: lambert_w(1)
lambert_w(1)
sage: lambert_w(1, 2)
lambert_w(1, 2)
"""
if len(args) == 2:
return BuiltinFunction.__call__(self, *args, **kwds)
elif len(args) == 1:
return BuiltinFunction.__call__(self, 0, args[0], **kwds)
else:
raise TypeError("lambert_w takes either one or two arguments.")
def _method_arguments(self, n, z):
r"""
TESTS::
sage: b = RBF(1, 0.001)
sage: lambert_w(b)
[0.567 +/- 6.44e-4]
sage: lambert_w(CBF(b))
[0.567 +/- 6.44e-4]
sage: lambert_w(2r, CBF(b))
[-2.40 +/- 2.79e-3] + [10.78 +/- 4.91e-3]*I
sage: lambert_w(2, CBF(b))
[-2.40 +/- 2.79e-3] + [10.78 +/- 4.91e-3]*I
"""
if n == 0:
return [z]
else:
return [z, n]
def _eval_(self, n, z):
"""
EXAMPLES::
sage: lambert_w(6.0)
1.43240477589830
sage: lambert_w(1)
lambert_w(1)
sage: lambert_w(x+1)
lambert_w(x + 1)
There are three special values which are automatically simplified::
sage: lambert_w(0)
0
sage: lambert_w(e)
1
sage: lambert_w(-1/e)
-1
sage: lambert_w(SR(0))
0
The special values only hold on the principal branch::
sage: lambert_w(1,e)
lambert_w(1, e)
sage: lambert_w(1, e.n())
-0.532092121986380 + 4.59715801330257*I
TESTS:
When automatic simplification occurs, the parent of the output
value should be either the same as the parent of the input, or
a Sage type::
sage: parent(lambert_w(int(0)))
<... 'int'>
sage: parent(lambert_w(Integer(0)))
Integer Ring
sage: parent(lambert_w(e))
Symbolic Ring
"""
if not isinstance(z, Expression):
if n == 0 and z == 0:
return s_parent(z)(0)
elif n == 0:
if z.is_trivial_zero():
return s_parent(z)(Integer(0))
elif (z - const_e).is_trivial_zero():
return s_parent(z)(Integer(1))
elif (z + 1 / const_e).is_trivial_zero():
return s_parent(z)(Integer(-1))
def _evalf_(self, n, z, parent=None, algorithm=None):
"""
EXAMPLES::
sage: N(lambert_w(1))
0.567143290409784
sage: lambert_w(RealField(100)(1))
0.56714329040978387299996866221
SciPy is used to evaluate for float, RDF, and CDF inputs::
sage: lambert_w(RDF(1))
0.5671432904097838
sage: lambert_w(float(1))
0.5671432904097838
sage: lambert_w(CDF(1))
0.5671432904097838
sage: lambert_w(complex(1))
(0.5671432904097838+0j)
sage: lambert_w(RDF(-1)) # abs tol 2e-16
-0.31813150520476413 + 1.3372357014306895*I
sage: lambert_w(float(-1)) # abs tol 2e-16
(-0.31813150520476413+1.3372357014306895j)
"""
R = parent or s_parent(z)
if R is float or R is RDF:
from scipy.special import lambertw
res = lambertw(z, n)
# SciPy always returns a complex value, make it real if possible
if not res.imag:
return R(res.real)
elif R is float:
return complex(res)
else:
return CDF(res)
elif R is complex or R is CDF:
from scipy.special import lambertw
return R(lambertw(z, n))
else:
import mpmath
return mpmath_utils.call(mpmath.lambertw, z, n, parent=R)
def _derivative_(self, n, z, diff_param=None):
r"""
The derivative of `W_n(x)` is `W_n(x)/(x \cdot W_n(x) + x)`.
EXAMPLES::
sage: x = var('x')
sage: derivative(lambert_w(x), x)
lambert_w(x)/(x*lambert_w(x) + x)
sage: derivative(lambert_w(2, exp(x)), x)
e^x*lambert_w(2, e^x)/(e^x*lambert_w(2, e^x) + e^x)
TESTS:
Differentiation in the first parameter raises an error :trac:`14788`::
sage: n = var('n')
sage: lambert_w(n, x).diff(n)
Traceback (most recent call last):
...
ValueError: cannot differentiate lambert_w in the first parameter
"""
if diff_param == 0:
raise ValueError("cannot differentiate lambert_w in the first parameter")
return lambert_w(n, z) / (z * lambert_w(n, z) + z)
def _maxima_init_evaled_(self, n, z):
"""
EXAMPLES:
These are indirect doctests for this function.::
sage: lambert_w(0, x)._maxima_()
lambert_w(_SAGE_VAR_x)
sage: lambert_w(1, x)._maxima_()
generalized_lambert_w(1,_SAGE_VAR_x)
TESTS::
sage: lambert_w(x)._maxima_()._sage_()
lambert_w(x)
sage: lambert_w(2, x)._maxima_()._sage_()
lambert_w(2, x)
"""
if isinstance(z, str):
maxima_z = z
elif hasattr(z, '_maxima_init_'):
maxima_z = z._maxima_init_()
else:
maxima_z = str(z)
if n == 0:
return "lambert_w(%s)" % maxima_z
else:
return "generalized_lambert_w(%s,%s)" % (n, maxima_z)
def _print_(self, n, z):
"""
Custom _print_ method to avoid printing the branch number if
it is zero.
EXAMPLES::
sage: lambert_w(1)
lambert_w(1)
sage: lambert_w(0,x)
lambert_w(x)
"""
if n == 0:
return "lambert_w(%s)" % z
else:
return "lambert_w(%s, %s)" % (n, z)
def _print_latex_(self, n, z):
r"""
Custom _print_latex_ method to avoid printing the branch
number if it is zero.
EXAMPLES::
sage: latex(lambert_w(1))
\operatorname{W}({1})
sage: latex(lambert_w(0,x))
\operatorname{W}({x})
sage: latex(lambert_w(1,x))
\operatorname{W_{1}}({x})
sage: latex(lambert_w(1,x+exp(x)))
\operatorname{W_{1}}({x + e^{x}})
"""
if n == 0:
return r"\operatorname{W}({%s})" % z._latex_()
else:
return r"\operatorname{W_{%s}}({%s})" % (n, z._latex_())
lambert_w = Function_lambert_w()
class Function_exp_polar(BuiltinFunction):
def __init__(self):
r"""
Representation of a complex number in a polar form.
INPUT:
- ``z`` -- a complex number `z = a + ib`.
OUTPUT:
A complex number with modulus `\exp(a)` and argument `b`.
If `-\pi < b \leq \pi` then `\operatorname{exp\_polar}(z)=\exp(z)`.
For other values of `b` the function is left unevaluated.
EXAMPLES:
The following expressions are evaluated using the exponential
function::
sage: exp_polar(pi*I/2)
I
sage: x = var('x', domain='real')
sage: exp_polar(-1/2*I*pi + x)
e^(-1/2*I*pi + x)
The function is left unevaluated when the imaginary part of the
input `z` does not satisfy `-\pi < \Im(z) \leq \pi`::
sage: exp_polar(2*pi*I)
exp_polar(2*I*pi)
sage: exp_polar(-4*pi*I)
exp_polar(-4*I*pi)
This fixes :trac:`18085`::
sage: integrate(1/sqrt(1+x^3),x,algorithm='sympy')
1/3*x*gamma(1/3)*hypergeometric((1/3, 1/2), (4/3,), -x^3)/gamma(4/3)
.. SEEALSO::
`Examples in Sympy documentation <http://docs.sympy.org/latest/modules/functions/special.html?highlight=exp_polar>`_,
`Sympy source code of exp_polar <http://docs.sympy.org/0.7.4/_modules/sympy/functions/elementary/exponential.html>`_
REFERENCES:
:wikipedia:`Complex_number#Polar_form`
"""
BuiltinFunction.__init__(self, "exp_polar",
latex_name=r"\operatorname{exp\_polar}",
conversions=dict(sympy='exp_polar'))
def _evalf_(self, z, parent=None, algorithm=None):
r"""
EXAMPLES:
If the imaginary part of `z` obeys `-\pi < z \leq \pi`, then
`\operatorname{exp\_polar}(z)` is evaluated as `\exp(z)`::
sage: exp_polar(1.0 + 2.0*I)
-1.13120438375681 + 2.47172667200482*I
If the imaginary part of `z` is outside of that interval the
expression is left unevaluated::
sage: exp_polar(-5.0 + 8.0*I)
exp_polar(-5.00000000000000 + 8.00000000000000*I)
An attempt to numerically evaluate such an expression raises an error::
sage: exp_polar(-5.0 + 8.0*I).n()
Traceback (most recent call last):
...
ValueError: invalid attempt to numerically evaluate exp_polar()
"""
from sage.functions.other import imag
if (not isinstance(z, Expression) and
bool(-const_pi < imag(z) <= const_pi)):
return exp(z)
else:
raise ValueError("invalid attempt to numerically evaluate exp_polar()")
def _eval_(self, z):
"""
EXAMPLES::
sage: exp_polar(3*I*pi)
exp_polar(3*I*pi)
sage: x = var('x', domain='real')
sage: exp_polar(4*I*pi + x)
exp_polar(4*I*pi + x)
TESTS:
Check that :trac:`24441` is fixed::
sage: exp_polar(arcsec(jacobi_sn(1.1*I*x, x))) # should be fast
exp_polar(arcsec(jacobi_sn(1.10000000000000*I*x, x)))
"""
try:
im = z.imag_part()
if not im.variables() and (-const_pi < im <= const_pi):
return exp(z)
except AttributeError:
pass