This repository was archived by the owner on Jan 30, 2023. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathspike_function.py
279 lines (229 loc) · 8.46 KB
/
spike_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
r"""
Spike functions
AUTHORS:
- William Stein (2007-07): initial version
- Karl-Dieter Crisman (2009-09): adding documentation and doctests
"""
# ****************************************************************************
# Copyright (C) 2007 William Stein <[email protected]>
# Copyright (C) 2009 Karl-Dieter Crisman <[email protected]>
#
# Distributed under the terms of the GNU General Public License (GPL)
# as published by the Free Software Foundation; either version 2 of
# the License, or (at your option) any later version.
# https://www.gnu.org/licenses/
# ****************************************************************************
import math
from sage.misc.lazy_import import lazy_import
lazy_import("sage.plot.all", "line")
from sage.modules.free_module_element import vector
from sage.rings.real_double import RDF
class SpikeFunction:
"""
Base class for spike functions.
INPUT:
- ``v`` - list of pairs (x, height)
- ``eps`` - parameter that determines approximation to a true spike
OUTPUT:
a function with spikes at each point ``x`` in ``v`` with the given height.
EXAMPLES::
sage: spike_function([(-3,4),(-1,1),(2,3)],0.001)
A spike function with spikes at [-3.0, -1.0, 2.0]
Putting the spikes too close together may delete some::
sage: spike_function([(1,1),(1.01,4)],0.1)
Some overlapping spikes have been deleted.
You might want to use a smaller value for eps.
A spike function with spikes at [1.0]
Note this should normally be used indirectly via
``spike_function``, but one can use it directly::
sage: from sage.functions.spike_function import SpikeFunction
sage: S = SpikeFunction([(0,1),(1,2),(pi,-5)])
sage: S
A spike function with spikes at [0.0, 1.0, 3.141592653589793]
sage: S.support
[0.0, 1.0, 3.141592653589793]
"""
def __init__(self, v, eps=0.0000001):
"""
Initialize base class SpikeFunction.
EXAMPLES::
sage: S = spike_function([(-3,4),(-1,1),(2,3)],0.001); S
A spike function with spikes at [-3.0, -1.0, 2.0]
sage: S.height
[4.0, 1.0, 3.0]
sage: S.eps
0.00100000000000000
"""
if not v:
v = [(0, 0)]
v = sorted([(float(x[0]), float(x[1])) for x in v])
notify = False
for i in reversed(range(len(v)-1)):
if v[i+1][0] - v[i][0] <= eps:
notify = True
del v[i+1]
if notify:
print("Some overlapping spikes have been deleted.")
print("You might want to use a smaller value for eps.")
self.v = v
self.eps = eps
self.support = [float(x[0]) for x in self.v]
self.height = [float(x[1]) for x in self.v]
def __repr__(self):
"""
String representation of a spike function.
EXAMPLES::
sage: spike_function([(-3,4),(-1,1),(2,3)],0.001)
A spike function with spikes at [-3.0, -1.0, 2.0]
"""
return "A spike function with spikes at %s" % self.support
def _eval(self, x):
"""
Evaluate spike function.
Note that when one calls the function within the tolerance,
the return value is the full height at that point.
EXAMPLES::
sage: S = spike_function([(0,5)],eps=.001)
sage: S(0)
5.0
sage: S(.1)
0.0
sage: S(.01)
0.0
sage: S(.001)
5.0
"""
eps = self.eps
x = float(x)
for i in range(len(self.support)):
z = self.support[i]
if z - eps <= x and x <= z + eps:
return self.height[i], i
return float(0), -1
def __call__(self, x):
"""
Called when spike function is used as callable function.
EXAMPLES::
sage: S = spike_function([(0,5)],eps=.001)
sage: S(0)
5.0
sage: S(.1)
0.0
sage: S(.01)
0.0
sage: S(.001)
5.0
"""
return self._eval(x)[0]
def plot_fft_abs(self, samples=2**12, xmin=None, xmax=None, **kwds):
"""
Plot of (absolute values of) Fast Fourier Transform of
the spike function with given number of samples.
EXAMPLES::
sage: S = spike_function([(-3,4),(-1,1),(2,3)]); S
A spike function with spikes at [-3.0, -1.0, 2.0]
sage: P = S.plot_fft_abs(8)
sage: p = P[0]; p.ydata # abs tol 1e-8
[5.0, 5.0, 3.367958691924177, 3.367958691924177, 4.123105625617661,
4.123105625617661, 4.759921664218055, 4.759921664218055]
"""
w = self.vector(samples=samples, xmin=xmin, xmax=xmax)
z = w.fft()
k = vector(RDF, [abs(z[i]) for i in range(len(z)//2)])
return k.plot(xmin=0, xmax=1, **kwds)
def plot_fft_arg(self, samples=2**12, xmin=None, xmax=None, **kwds):
"""
Plot of (absolute values of) Fast Fourier Transform of
the spike function with given number of samples.
EXAMPLES::
sage: S = spike_function([(-3,4),(-1,1),(2,3)]); S
A spike function with spikes at [-3.0, -1.0, 2.0]
sage: P = S.plot_fft_arg(8)
sage: p = P[0]; p.ydata # abs tol 1e-8
[0.0, 0.0, -0.211524990023434, -0.211524990023434,
0.244978663126864, 0.244978663126864, -0.149106180027477,
-0.149106180027477]
"""
w = self.vector(samples=samples, xmin=xmin, xmax=xmax)
z = w.fft()
k = vector(RDF, [(z[i]).arg() for i in range(len(z)//2)])
return k.plot(xmin=0, xmax=1, **kwds)
def vector(self, samples=2**16, xmin=None, xmax=None):
"""
Create a sampling vector of the spike function in question.
EXAMPLES::
sage: S = spike_function([(-3,4),(-1,1),(2,3)],0.001); S
A spike function with spikes at [-3.0, -1.0, 2.0]
sage: S.vector(16)
(4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0)
"""
v = vector(RDF, samples) # creates vector of zeros of length 2^16
xmin, xmax = self._ranges(xmin, xmax)
delta = (xmax - xmin) / samples
w = int(math.ceil(self.eps / delta))
for i in range(len(self.support)):
x = self.support[i]
if x > xmax:
break
h = self.height[i]
j = int((x - xmin) / delta)
for k in range(j, min(samples, j + w)):
v[k] = h
return v
def _ranges(self, xmin, xmax):
"""
Quickly find appropriate plotting interval.
EXAMPLES::
sage: S = spike_function([(-1,1),(1,40)])
sage: S._ranges(None,None)
(-1.0, 1.0)
"""
width = (self.support[-1] + self.support[0])/float(2)
if xmin is None:
xmin = self.support[0] - width/float(5)
if xmax is None:
xmax = self.support[-1] + width/float(5)
if xmax <= xmin:
xmax = xmin + 1
return xmin, xmax
def plot(self, xmin=None, xmax=None, **kwds):
"""
Special fast plot method for spike functions.
EXAMPLES::
sage: S = spike_function([(-1,1),(1,40)])
sage: P = plot(S)
sage: P[0]
Line defined by 8 points
"""
v = []
xmin, xmax = self._ranges(xmin, xmax)
x = xmin
eps = self.eps
while x < xmax:
y, i = self._eval(x)
v.append((x, y))
if i != -1:
x0 = self.support[i] + eps
v.extend([(x0, y), (x0, 0)])
if i+1 < len(self.support):
x = self.support[i + 1] - eps
v.append((x, 0))
else:
x = xmax
v.append((xmax, 0))
else:
new_x = None
for j in range(len(self.support)):
if self.support[j] - eps > x:
new_x = self.support[j] - eps
break
if new_x is None:
new_x = xmax
v.append((new_x, 0))
x = new_x
L = line(v, **kwds)
L.xmin(xmin-1)
L.xmax(xmax)
return L
spike_function = SpikeFunction