18
18
19
19
from sage .misc .cachefunc import cached_function
20
20
from sage .misc .all import prod
21
+ from sage .structure .element import parent
21
22
from sage .rings .all import ZZ
22
23
from sage .combinat .dyck_word import DyckWords
23
24
from sage .combinat .partition import Partition
@@ -215,7 +216,7 @@ def q_binomial(n, k, q=None, algorithm='auto'):
215
216
sage: q_binomial(1/2,1)
216
217
Traceback (most recent call last):
217
218
...
218
- ValueError: arguments (1/2, 1) must be integers
219
+ TypeError: no conversion of this rational to integer
219
220
220
221
One checks that `n` is nonnegative::
221
222
@@ -232,8 +233,13 @@ def q_binomial(n, k, q=None, algorithm='auto'):
232
233
233
234
This also works for complex roots of unity::
234
235
235
- sage: q_binomial(6,1,I)
236
- 1 + I
236
+ sage: q_binomial(6, 1, QQbar(I))
237
+ I + 1
238
+
239
+ Note that the symbolic computation works (see :trac:`14982`)::
240
+
241
+ sage: q_binomial(6, 1, I)
242
+ I + 1
237
243
238
244
Check that the algorithm does not matter::
239
245
@@ -256,14 +262,10 @@ def q_binomial(n, k, q=None, algorithm='auto'):
256
262
- Frederic Chapoton, David Joyner and William Stein
257
263
"""
258
264
# sanity checks
259
- if not ( n in ZZ and k in ZZ ):
260
- raise ValueError ( "arguments (%s, %s) must be integers" % ( n , k ) )
265
+ n = ZZ ( n )
266
+ k = ZZ ( k )
261
267
if n < 0 :
262
268
raise ValueError ('n must be nonnegative' )
263
- if not (0 <= k and k <= n ):
264
- return 0
265
-
266
- k = min (n - k ,k ) # Pick the smallest k
267
269
268
270
# polynomiality test
269
271
if q is None :
@@ -273,10 +275,19 @@ def q_binomial(n, k, q=None, algorithm='auto'):
273
275
else :
274
276
from sage .rings .polynomial .polynomial_element import Polynomial
275
277
is_polynomial = isinstance (q , Polynomial )
276
- from sage .symbolic .ring import SR
278
+
279
+ R = parent (q )
280
+ zero = R (0 )
281
+ one = R (1 )
282
+
283
+ if not (0 <= k and k <= n ):
284
+ return zero
285
+
286
+ k = min (n - k ,k ) # Pick the smallest k
277
287
278
288
# heuristic choice of the fastest algorithm
279
289
if algorithm == 'auto' :
290
+ from sage .symbolic .ring import SR
280
291
if is_polynomial :
281
292
if n <= 70 or k <= n / 4 :
282
293
algorithm = 'naive'
@@ -295,31 +306,29 @@ def q_binomial(n, k, q=None, algorithm='auto'):
295
306
raise ValueError ("invalid algorithm choice" )
296
307
297
308
# the algorithms
298
- try :
299
- if algorithm == 'naive' :
300
- denomin = prod ([1 - q ** i for i in range (1 , k + 1 )])
301
- if denomin == 0 : # q is a root of unity, use the cyclotomic algorithm
302
- algorithm = 'cyclo_generic'
303
- else :
304
- numerat = prod ([1 - q ** i for i in range (n - k + 1 , n + 1 )])
309
+ if algorithm == 'naive' :
310
+ denom = prod (one - q ** i for i in range (1 , k + 1 ))
311
+ if not denom : # q is a root of unity, use the cyclotomic algorithm
312
+ return cyclotomic_value (n , k , q , algorithm = 'cyclotomic' )
313
+ else :
314
+ num = prod (one - q ** i for i in range (n - k + 1 , n + 1 ))
315
+ try :
316
+ return num // denom
317
+ except TypeError :
305
318
try :
306
- return numerat // denomin
307
- except TypeError :
308
- return numerat / denomin
309
- from sage .functions .all import floor
310
- if algorithm == 'cyclo_generic' :
311
- from sage .rings .polynomial .cyclotomic import cyclotomic_value
312
- return prod (cyclotomic_value (d ,q )
313
- for d in range (2 ,n + 1 )
314
- if floor (n / d ) != floor (k / d ) + floor ((n - k )/ d ))
315
- if algorithm == 'cyclo_polynomial' :
316
- R = q .parent ()
317
- return prod (R .cyclotomic_polynomial (d )
318
- for d in range (2 ,n + 1 )
319
- if floor (n / d ) != floor (k / d ) + floor ((n - k )/ d ))
320
- except (ZeroDivisionError , TypeError ):
321
- # As a last attempt, do the computation formally and then substitute
322
- return q_binomial (n , k )(q )
319
+ return num / denom
320
+ except (TypeError ,ZeroDivisionError ):
321
+ #try a substitution
322
+ return q_binomial (n ,k )(q )
323
+ elif algorithm == 'cyclo_generic' :
324
+ from sage .rings .polynomial .cyclotomic import cyclotomic_value
325
+ return prod (cyclotomic_value (d ,q )
326
+ for d in range (2 ,n + 1 )
327
+ if (n / d ).floor () != (k / d ).floor () + ((n - k )/ d ).floor ())
328
+ elif algorithm == 'cyclo_polynomial' :
329
+ return prod (R .cyclotomic_polynomial (d )
330
+ for d in range (2 ,n + 1 )
331
+ if (n / d ).floor () != (k / d ).floor () + ((n - k )/ d ).floor ())
323
332
324
333
def gaussian_binomial (n , k , q = None , algorithm = 'auto' ):
325
334
r"""
0 commit comments