Skip to content
This repository was archived by the owner on Jan 30, 2023. It is now read-only.

Commit 0aa11af

Browse files
videlecmezzarobba
authored andcommitted
#14982 fix q_binomial
1 parent 61c73bb commit 0aa11af

File tree

2 files changed

+62
-41
lines changed

2 files changed

+62
-41
lines changed

src/sage/combinat/q_analogues.py

+43-34
Original file line numberDiff line numberDiff line change
@@ -18,6 +18,7 @@
1818

1919
from sage.misc.cachefunc import cached_function
2020
from sage.misc.all import prod
21+
from sage.structure.element import parent
2122
from sage.rings.all import ZZ
2223
from sage.combinat.dyck_word import DyckWords
2324
from sage.combinat.partition import Partition
@@ -215,7 +216,7 @@ def q_binomial(n, k, q=None, algorithm='auto'):
215216
sage: q_binomial(1/2,1)
216217
Traceback (most recent call last):
217218
...
218-
ValueError: arguments (1/2, 1) must be integers
219+
TypeError: no conversion of this rational to integer
219220
220221
One checks that `n` is nonnegative::
221222
@@ -232,8 +233,13 @@ def q_binomial(n, k, q=None, algorithm='auto'):
232233
233234
This also works for complex roots of unity::
234235
235-
sage: q_binomial(6,1,I)
236-
1 + I
236+
sage: q_binomial(6, 1, QQbar(I))
237+
I + 1
238+
239+
Note that the symbolic computation works (see :trac:`14982`)::
240+
241+
sage: q_binomial(6, 1, I)
242+
I + 1
237243
238244
Check that the algorithm does not matter::
239245
@@ -256,14 +262,10 @@ def q_binomial(n, k, q=None, algorithm='auto'):
256262
- Frederic Chapoton, David Joyner and William Stein
257263
"""
258264
# sanity checks
259-
if not( n in ZZ and k in ZZ ):
260-
raise ValueError("arguments (%s, %s) must be integers" % (n, k))
265+
n = ZZ(n)
266+
k = ZZ(k)
261267
if n < 0:
262268
raise ValueError('n must be nonnegative')
263-
if not(0 <= k and k <= n):
264-
return 0
265-
266-
k = min(n-k,k) # Pick the smallest k
267269

268270
# polynomiality test
269271
if q is None:
@@ -273,10 +275,19 @@ def q_binomial(n, k, q=None, algorithm='auto'):
273275
else:
274276
from sage.rings.polynomial.polynomial_element import Polynomial
275277
is_polynomial = isinstance(q, Polynomial)
276-
from sage.symbolic.ring import SR
278+
279+
R = parent(q)
280+
zero = R(0)
281+
one = R(1)
282+
283+
if not(0 <= k and k <= n):
284+
return zero
285+
286+
k = min(n-k,k) # Pick the smallest k
277287

278288
# heuristic choice of the fastest algorithm
279289
if algorithm == 'auto':
290+
from sage.symbolic.ring import SR
280291
if is_polynomial:
281292
if n <= 70 or k <= n/4:
282293
algorithm = 'naive'
@@ -295,31 +306,29 @@ def q_binomial(n, k, q=None, algorithm='auto'):
295306
raise ValueError("invalid algorithm choice")
296307

297308
# the algorithms
298-
try:
299-
if algorithm == 'naive':
300-
denomin = prod([1 - q**i for i in range(1, k+1)])
301-
if denomin == 0: # q is a root of unity, use the cyclotomic algorithm
302-
algorithm = 'cyclo_generic'
303-
else:
304-
numerat = prod([1 - q**i for i in range(n-k+1, n+1)])
309+
if algorithm == 'naive':
310+
denom = prod(one - q**i for i in range(1, k+1))
311+
if not denom: # q is a root of unity, use the cyclotomic algorithm
312+
return cyclotomic_value(n, k, q, algorithm='cyclotomic')
313+
else:
314+
num = prod(one - q**i for i in range(n-k+1, n+1))
315+
try:
316+
return num//denom
317+
except TypeError:
305318
try:
306-
return numerat//denomin
307-
except TypeError:
308-
return numerat/denomin
309-
from sage.functions.all import floor
310-
if algorithm == 'cyclo_generic':
311-
from sage.rings.polynomial.cyclotomic import cyclotomic_value
312-
return prod(cyclotomic_value(d,q)
313-
for d in range(2,n+1)
314-
if floor(n/d) != floor(k/d) + floor((n-k)/d))
315-
if algorithm == 'cyclo_polynomial':
316-
R = q.parent()
317-
return prod(R.cyclotomic_polynomial(d)
318-
for d in range(2,n+1)
319-
if floor(n/d) != floor(k/d) + floor((n-k)/d))
320-
except (ZeroDivisionError, TypeError):
321-
# As a last attempt, do the computation formally and then substitute
322-
return q_binomial(n, k)(q)
319+
return num/denom
320+
except (TypeError,ZeroDivisionError):
321+
#try a substitution
322+
return q_binomial(n,k)(q)
323+
elif algorithm == 'cyclo_generic':
324+
from sage.rings.polynomial.cyclotomic import cyclotomic_value
325+
return prod(cyclotomic_value(d,q)
326+
for d in range(2,n+1)
327+
if (n/d).floor() != (k/d).floor() + ((n-k)/d).floor())
328+
elif algorithm == 'cyclo_polynomial':
329+
return prod(R.cyclotomic_polynomial(d)
330+
for d in range(2,n+1)
331+
if (n/d).floor() != (k/d).floor() + ((n-k)/d).floor())
323332

324333
def gaussian_binomial(n, k, q=None, algorithm='auto'):
325334
r"""

src/sage/rings/polynomial/cyclotomic.pyx

+19-7
Original file line numberDiff line numberDiff line change
@@ -30,8 +30,11 @@ include "sage/ext/stdsage.pxi"
3030
include "sage/ext/interrupt.pxi"
3131
include "sage/ext/cdefs.pxi"
3232

33+
from sage.structure.element cimport parent_c
34+
3335
from sage.rings.arith import factor
3436
from sage.rings.infinity import infinity
37+
from sage.rings.integer_ring import ZZ
3538
from sage.misc.all import prod, subsets
3639
from sage.rings.integer cimport Integer
3740
from sage.rings.rational cimport Rational
@@ -276,19 +279,29 @@ def cyclotomic_value(n, x):
276279
-t^7 - t^6 - t^5 + t^2 + t + 1
277280
sage: cyclotomic_value(10,mod(3,4))
278281
1
282+
283+
Check that the issue with symbolic element in :trac:`14982` is fixed::
284+
285+
sage: a = cyclotomic_value(3, I)
286+
sage: a.pyobject()
287+
I
288+
sage: parent(_)
289+
Number Field in I with defining polynomial x^2 + 1
279290
"""
280-
n = int(n)
291+
n = ZZ(n)
281292
if n < 3:
282293
if n == 1:
283-
return x - 1
294+
return x - ZZ.one()
284295
if n == 2:
285-
return x + 1
296+
return x + ZZ.one()
286297
raise ValueError("n must be positive")
287298

299+
P = parent_c(x)
288300
try:
289-
return x.parent()(pari.polcyclo_eval(n, x))
301+
return P(pari.polcyclo_eval(n, x).sage())
290302
except Exception:
291303
pass
304+
one = P(1)
292305

293306
# The following is modeled on the implementation in PARI and is
294307
# used for cases for which PARI doesn't work. These are in
@@ -297,11 +310,11 @@ def cyclotomic_value(n, x):
297310
# - x is some Sage type which cannot be converted to PARI;
298311
# - PARI's algorithm encounters a zero-divisor which is not zero.
299312

300-
factors = factor(n)
313+
factors = n.factor()
301314
cdef Py_ssize_t i, j, ti, L, root_of_unity = -1
302315
primes = [p for p, e in factors]
303316
L = len(primes)
304-
if any([e != 1 for p, e in factors]):
317+
if any(e != 1 for p, e in factors):
305318
# If there are primes that occur in the factorization with multiplicity
306319
# greater than one we use the fact that Phi_ar(x) = Phi_r(x^a) when all
307320
# primes dividing a divide r.
@@ -318,7 +331,6 @@ def cyclotomic_value(n, x):
318331
xd = [x] # the x^d for d | n
319332
cdef char mu
320333
cdef char* md = <char*>sage_malloc(sizeof(char) * (1 << L)) # the mu(d) for d | n
321-
one = x.parent()(1)
322334
try:
323335
md[0] = 1
324336
if L & 1:

0 commit comments

Comments
 (0)