@@ -2077,17 +2077,6 @@ cdef class Polynomial(CommutativeAlgebraElement):
2077
2077
0
2078
2078
sage: g._mul_generic(h) - K([h*c for c in g.list()])
2079
2079
0
2080
-
2081
- Compare with external libraries::
2082
-
2083
- sage: K = ZZ['x']
2084
- sage: L = []
2085
- sage: for i in range(10):
2086
- ... f = K.random_element(randint(10,100),100)
2087
- ... g = K.random_element(randint(10,100),100)
2088
- ... L.append(f*g - f._mul_generic(g))
2089
- sage: L
2090
- [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
2091
2080
"""
2092
2081
if self is right:
2093
2082
return self ._square_generic()
@@ -2326,17 +2315,6 @@ cdef class Polynomial(CommutativeAlgebraElement):
2326
2315
sage: h2 = f. _mul_karatsuba( g,randint( 0,10))
2327
2316
sage: h1 == h2
2328
2317
True
2329
-
2330
- Compare with external libraries::
2331
-
2332
- sage: K = ZZ['x' ]
2333
- sage: L = []
2334
- sage: for i in range( 10) :
2335
- ... f = K. random_element( randint( 10,100) ,100)
2336
- ... g = K. random_element( randint( 10,100) ,100)
2337
- ... L. append( f* g - f. _mul_karatsuba( g, randint( 0,32)))
2338
- sage: L
2339
- [0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
2340
2318
"""
2341
2319
if self .is_zero():
2342
2320
return self
@@ -6601,7 +6579,7 @@ cdef do_karatsuba_different_size(left, right, Py_ssize_t K_threshold):
6601
6579
Here, we use Fibonacci numbers that need deepest recursion in this method.
6602
6580
6603
6581
sage: K = ZZ[x]
6604
- sage: f = K.random_element(28 )
6582
+ sage: f = K.random_element(21 )
6605
6583
sage: g = K.random_element(34)
6606
6584
sage: f*g - f._mul_karatsuba(g,0)
6607
6585
0
@@ -6676,7 +6654,7 @@ cdef do_karatsuba(left, right, Py_ssize_t K_threshold,Py_ssize_t start_l, Py_ssi
6676
6654
- num_elts: the length of the polynomials.
6677
6655
6678
6656
Thus, the actual polynomials we want to multiply are represented by the
6679
- slices: left[ start_l: start_l+num_elts ], left [ right_l: right_l+num_elts ].
6657
+ slices: left[ start_l: start_l+num_elts ], right [ right_l: right_l+num_elts ].
6680
6658
We use this representation in order to avoid creating slices of lists and
6681
6659
create smaller lists.
6682
6660
0 commit comments