This repository was archived by the owner on Jan 30, 2023. It is now read-only.
File tree 1 file changed +5
-5
lines changed
1 file changed +5
-5
lines changed Original file line number Diff line number Diff line change @@ -1365,7 +1365,7 @@ cdef class IntegerRing_class(PrincipalIdealDomain):
1365
1365
# Looking for "large" gaps in the exponents
1366
1366
# These gaps split the polynomial into lower degree components
1367
1367
# Roots of modulus > 1 are common roots of the components
1368
- for i in xrange (1 , k):
1368
+ for i in range (1 , k):
1369
1369
if e[i] - e[i- 1 ] > c_max_nbits:
1370
1370
g = g.gcd(R({e[j] - e[i_min]: c[j] for j in range (i_min,i)}))
1371
1371
if g.is_one(): break
@@ -1407,9 +1407,9 @@ cdef class IntegerRing_class(PrincipalIdealDomain):
1407
1407
m1 = m2 = 0
1408
1408
b1 = b2 = True
1409
1409
1410
- for i in xrange (k):
1410
+ for i in range (k):
1411
1411
s1 = s2 = 0
1412
- for j in xrange (k- i):
1412
+ for j in range (k- i):
1413
1413
if b1: s1 += cc[j]
1414
1414
if b2: s2 += - cc[j] if (ee[j] % 2 ) else cc[j]
1415
1415
if b1 and s1:
@@ -1423,8 +1423,8 @@ cdef class IntegerRing_class(PrincipalIdealDomain):
1423
1423
break
1424
1424
1425
1425
# Sparse derivative, that is (p/x^v)' where v = p.val():
1426
- ee = [ee[j] - ee[0 ] - 1 for j in xrange (1 ,k- i)]
1427
- cc = [(ee[j] + 1 ) * cc[j+ 1 ] for j in xrange (k- i- 1 )]
1426
+ ee = [ee[j] - ee[0 ] - 1 for j in range (1 ,k- i)]
1427
+ cc = [(ee[j] + 1 ) * cc[j+ 1 ] for j in range (k- i- 1 )]
1428
1428
1429
1429
if m1 > 0 :
1430
1430
roots.append((1 , m1))
You can’t perform that action at this time.
0 commit comments