Skip to content
This repository was archived by the owner on Jan 30, 2023. It is now read-only.

Commit 3d63a50

Browse files
committed
move INPUT blocks from .__init__() docstrings to class docstrings
1 parent 156c820 commit 3d63a50

File tree

1 file changed

+20
-20
lines changed

1 file changed

+20
-20
lines changed

src/sage/schemes/elliptic_curves/hom_velusqrt.py

+20-20
Original file line numberDiff line numberDiff line change
@@ -151,6 +151,10 @@ class ProductTree:
151151
r"""
152152
A simple product tree.
153153
154+
INPUT:
155+
156+
- ``leaves`` -- a sequence of elements in a common ring
157+
154158
EXAMPLES::
155159
156160
sage: from sage.schemes.elliptic_curves.hom_velusqrt import ProductTree
@@ -193,10 +197,6 @@ def __init__(self, leaves):
193197
Initialize a product tree having the given ring elements
194198
as its leaves.
195199
196-
INPUT:
197-
198-
- ``leaves`` -- a sequence of elements in a common ring
199-
200200
EXAMPLES::
201201
202202
sage: from sage.schemes.elliptic_curves.hom_velusqrt import ProductTree
@@ -438,6 +438,13 @@ class FastEllipticPolynomial:
438438
- If `Q` is omitted, then `S = \{1,3,5,...,n-2\}`. Note that in this case,
439439
`h_{\{1,2,3,...,n-1\}}` can be computed as `h_S^2` since `n` is odd.
440440
441+
INPUT:
442+
443+
- `E` -- an elliptic curve in short Weierstraß form
444+
- `n` -- an odd integer `\geq 5`
445+
- `P` -- a point on `E`
446+
- `Q` -- a point on `E`, or ``None``
447+
441448
ALGORITHM: [BDLS2020]_, Algorithm 2
442449
443450
.. NOTE::
@@ -505,13 +512,6 @@ def __init__(self, E, n, P, Q=None):
505512
Initialize this elliptic polynomial and precompute some
506513
input-independent data required for evaluation.
507514
508-
INPUT:
509-
510-
- `E` -- an elliptic curve in short Weierstraß form
511-
- `n` -- an odd integer `\geq 5`
512-
- `P` -- a point on `E`
513-
- `Q` -- a point on `E`, or ``None``
514-
515515
EXAMPLES::
516516
517517
sage: from sage.schemes.elliptic_curves.hom_velusqrt import FastEllipticPolynomial
@@ -758,6 +758,15 @@ class EllipticCurveHom_velusqrt(EllipticCurveHom):
758758
759759
REFERENCES: [BDLS2020]_
760760
761+
INPUT:
762+
763+
- `E` -- an elliptic curve over a finite field
764+
- `P` -- a point on `E` of odd order `\geq 5`
765+
- ``codomain`` -- codomain elliptic curve (optional)
766+
- ``model`` -- string (optional); input to
767+
:meth:`~sage.schemes.elliptic_curves.ell_field.compute_model`
768+
- `Q` -- a point on `E` outside `\langle P\rangle`, or ``None``
769+
761770
EXAMPLES::
762771
763772
sage: from sage.schemes.elliptic_curves.hom_velusqrt import EllipticCurveHom_velusqrt
@@ -833,15 +842,6 @@ def __init__(self, E, P, *, codomain=None, model=None, Q=None):
833842
r"""
834843
Initialize this Îlu isogeny from a kernel point of odd order.
835844
836-
INPUT:
837-
838-
- `E` -- an elliptic curve over a finite field
839-
- `P` -- a point on `E` of odd order `\geq 5`
840-
- ``codomain`` -- codomain elliptic curve (optional)
841-
- ``model`` -- string (optional); input to
842-
:meth:`~sage.schemes.elliptic_curves.ell_field.compute_model`
843-
- `Q` -- a point on `E` outside `\langle P\rangle`, or ``None``
844-
845845
EXAMPLES::
846846
847847
sage: from sage.schemes.elliptic_curves.hom_velusqrt import EllipticCurveHom_velusqrt

0 commit comments

Comments
 (0)