@@ -151,6 +151,10 @@ class ProductTree:
151
151
r"""
152
152
A simple product tree.
153
153
154
+ INPUT:
155
+
156
+ - ``leaves`` -- a sequence of elements in a common ring
157
+
154
158
EXAMPLES::
155
159
156
160
sage: from sage.schemes.elliptic_curves.hom_velusqrt import ProductTree
@@ -193,10 +197,6 @@ def __init__(self, leaves):
193
197
Initialize a product tree having the given ring elements
194
198
as its leaves.
195
199
196
- INPUT:
197
-
198
- - ``leaves`` -- a sequence of elements in a common ring
199
-
200
200
EXAMPLES::
201
201
202
202
sage: from sage.schemes.elliptic_curves.hom_velusqrt import ProductTree
@@ -438,6 +438,13 @@ class FastEllipticPolynomial:
438
438
- If `Q` is omitted, then `S = \{1,3,5,...,n-2\}`. Note that in this case,
439
439
`h_{\{1,2,3,...,n-1\}}` can be computed as `h_S^2` since `n` is odd.
440
440
441
+ INPUT:
442
+
443
+ - `E` -- an elliptic curve in short Weierstraß form
444
+ - `n` -- an odd integer `\geq 5`
445
+ - `P` -- a point on `E`
446
+ - `Q` -- a point on `E`, or ``None``
447
+
441
448
ALGORITHM: [BDLS2020]_, Algorithm 2
442
449
443
450
.. NOTE::
@@ -505,13 +512,6 @@ def __init__(self, E, n, P, Q=None):
505
512
Initialize this elliptic polynomial and precompute some
506
513
input-independent data required for evaluation.
507
514
508
- INPUT:
509
-
510
- - `E` -- an elliptic curve in short Weierstraß form
511
- - `n` -- an odd integer `\geq 5`
512
- - `P` -- a point on `E`
513
- - `Q` -- a point on `E`, or ``None``
514
-
515
515
EXAMPLES::
516
516
517
517
sage: from sage.schemes.elliptic_curves.hom_velusqrt import FastEllipticPolynomial
@@ -758,6 +758,15 @@ class EllipticCurveHom_velusqrt(EllipticCurveHom):
758
758
759
759
REFERENCES: [BDLS2020]_
760
760
761
+ INPUT:
762
+
763
+ - `E` -- an elliptic curve over a finite field
764
+ - `P` -- a point on `E` of odd order `\geq 5`
765
+ - ``codomain`` -- codomain elliptic curve (optional)
766
+ - ``model`` -- string (optional); input to
767
+ :meth:`~sage.schemes.elliptic_curves.ell_field.compute_model`
768
+ - `Q` -- a point on `E` outside `\langle P\rangle`, or ``None``
769
+
761
770
EXAMPLES::
762
771
763
772
sage: from sage.schemes.elliptic_curves.hom_velusqrt import EllipticCurveHom_velusqrt
@@ -833,15 +842,6 @@ def __init__(self, E, P, *, codomain=None, model=None, Q=None):
833
842
r"""
834
843
Initialize this Îlu isogeny from a kernel point of odd order.
835
844
836
- INPUT:
837
-
838
- - `E` -- an elliptic curve over a finite field
839
- - `P` -- a point on `E` of odd order `\geq 5`
840
- - ``codomain`` -- codomain elliptic curve (optional)
841
- - ``model`` -- string (optional); input to
842
- :meth:`~sage.schemes.elliptic_curves.ell_field.compute_model`
843
- - `Q` -- a point on `E` outside `\langle P\rangle`, or ``None``
844
-
845
845
EXAMPLES::
846
846
847
847
sage: from sage.schemes.elliptic_curves.hom_velusqrt import EllipticCurveHom_velusqrt
0 commit comments