@@ -426,12 +426,9 @@ class CliffordAlgebra(CombinatorialFreeModule):
426
426
(where `\ZZ_2 = \ZZ / 2 \ZZ`); this grading is determined by
427
427
placing all elements of `V` in degree `1`. It is also an
428
428
`\NN`-filtered algebra, with the filtration too being defined
429
- by placing all elements of `V` in degree `1`. Due to current
430
- limitations of the category framework, Sage can consider
431
- either the grading or the filtration but not both at the same
432
- time (though one can introduce two equal Clifford algebras,
433
- one filtered and the other graded); the ``graded`` parameter
434
- determines which of them is to be used.
429
+ by placing all elements of `V` in degree `1`. The :meth:`degree` gives
430
+ the `\NN`-*filtration* degree, and to get the super degree use instead
431
+ :meth:`~sage.categories.super_modules.SuperModules.ElementMethods.is_even_odd`.
435
432
436
433
The Clifford algebra also can be considered as a covariant functor
437
434
from the category of vector spaces equipped with quadratic forms
@@ -466,8 +463,6 @@ class CliffordAlgebra(CombinatorialFreeModule):
466
463
467
464
- ``Q`` -- a quadratic form
468
465
- ``names`` -- (default: ``'e'``) the generator names
469
- - ``graded`` -- (default: ``True``) if ``True``, then use the `\ZZ / 2\ZZ`
470
- grading, otherwise use the `\ZZ` filtration
471
466
472
467
EXAMPLES:
473
468
@@ -528,6 +523,9 @@ def __init__(self, Q, names, category=None):
528
523
529
524
sage: Q = QuadraticForm(ZZ, 3, [1,2,3,4,5,6])
530
525
sage: Cl = CliffordAlgebra(Q)
526
+ sage: Cl.category()
527
+ Category of finite dimensional super algebras with basis
528
+ over (euclidean domains and infinite enumerated sets)
531
529
sage: TestSuite(Cl).run()
532
530
533
531
TESTS:
@@ -1125,7 +1123,8 @@ def lift_isometry(self, m, names=None):
1125
1123
f = lambda x : Cl .prod (Cl ._from_dict ( {(j ,): m [j ,i ] for j in range (n )},
1126
1124
remove_zeros = True )
1127
1125
for i in x )
1128
- return self .module_morphism (on_basis = f , codomain = Cl )
1126
+ return self .module_morphism (on_basis = f , codomain = Cl ,
1127
+ category = AlgebrasWithBasis (self .base_ring ()).Super ())
1129
1128
1130
1129
# This is a general method for finite dimensional algebras with bases
1131
1130
# and should be moved to the corresponding category once there is
@@ -1348,7 +1347,7 @@ class ExteriorAlgebra(CliffordAlgebra):
1348
1347
`Q(v) = 0` for all vectors `v \in V`. See :class:`CliffordAlgebra`
1349
1348
for the notion of a Clifford algebra.
1350
1349
1351
- The exterior algebra of an `R`-module `V` is a super connected
1350
+ The exterior algebra of an `R`-module `V` is a connected `\ZZ`-graded
1352
1351
Hopf superalgebra. It is commutative in the super sense (i.e., the
1353
1352
odd elements anticommute and square to `0`).
1354
1353
@@ -1422,6 +1421,9 @@ def __init__(self, R, names):
1422
1421
EXAMPLES::
1423
1422
1424
1423
sage: E.<x,y,z> = ExteriorAlgebra(QQ)
1424
+ sage: E.category()
1425
+ Category of finite dimensional super hopf algebras with basis
1426
+ over Rational Field
1425
1427
sage: TestSuite(E).run()
1426
1428
"""
1427
1429
cat = HopfAlgebrasWithBasis (R ).Super ()
@@ -1569,7 +1571,7 @@ def lift_morphism(self, phi, names=None):
1569
1571
f = lambda x : E .prod (E ._from_dict ( {(j ,): phi [j ,i ] for j in range (n )},
1570
1572
remove_zeros = True )
1571
1573
for i in x )
1572
- return self .module_morphism (on_basis = f , codomain = E )
1574
+ return self .module_morphism (on_basis = f , codomain = E , category = AlgebrasWithBasis ( R ). Super () )
1573
1575
1574
1576
def volume_form (self ):
1575
1577
"""
0 commit comments