1
1
"""
2
- Exterior algebras backend
2
+ Exterior algebras Gröbner bases
3
3
4
- This contains the backend implementations in Cython for the exterior algebra.
4
+ This contains the backend implementations in Cython for the Gröbner bases
5
+ of exterior algebra.
6
+
7
+ AUTHORS:
8
+
9
+ - Trevor Karn, Travis Scrimshaw (July 2022): Initial implementation
5
10
"""
6
11
12
+ # *****************************************************************************
13
+ # Copyright (C) 2022 Trevor Karn <karnx018 at umn.edu>
14
+ # (C) 2022 Travis Scrimshaw <tcscrims at gmail.com>
15
+ #
16
+ # This program is free software: you can redistribute it and/or modify
17
+ # it under the terms of the GNU General Public License as published by
18
+ # the Free Software Foundation, either version 2 of the License, or
19
+ # (at your option) any later version.
20
+ # http://www.gnu.org/licenses/
21
+ # *****************************************************************************
22
+
7
23
from sage.libs.gmp.mpz cimport mpz_sizeinbase, mpz_setbit, mpz_tstbit, mpz_cmp_si, mpz_sgn
8
- from sage.data_structures.bitset_base cimport bitset_t, bitset_init, bitset_first, bitset_next, bitset_set_to
24
+ from sage.data_structures.bitset_base cimport (bitset_t, bitset_init, bitset_first,
25
+ bitset_next, bitset_set_to, bitset_len)
9
26
from sage.structure.parent cimport Parent
10
27
11
28
cdef inline Integer bitset_to_int(FrozenBitset X):
@@ -23,7 +40,7 @@ cdef inline FrozenBitset int_to_bitset(Integer n):
23
40
"""
24
41
Convert a nonnegative integer ``n`` to a :class:`FrozenBitset`.
25
42
"""
26
- cdef unsigned long i
43
+ cdef Py_ssize_t i
27
44
28
45
if mpz_sgn(n.value) == 0 :
29
46
return FrozenBitset()
@@ -36,20 +53,15 @@ cdef inline FrozenBitset int_to_bitset(Integer n):
36
53
return ret
37
54
38
55
39
- cdef inline unsigned long degree(FrozenBitset X):
56
+ cdef inline long degree(FrozenBitset X):
40
57
"""
41
58
Compute the degree of ``X``.
42
59
"""
43
- cdef unsigned long ret = 0
44
- cdef long elt = bitset_first(X._bitset)
45
- while elt >= 0 :
46
- ret += 1
47
- elt = bitset_next(X._bitset, elt + 1 )
48
- return ret
60
+ return bitset_len(X._bitset)
49
61
50
62
51
63
# TODO: Bring the exterior algebra elements as a cdef class and make f know its type!
52
- cdef inline FrozenBitset leading_supp(f):
64
+ cdef inline FrozenBitset leading_supp(CliffordAlgebraElement f):
53
65
"""
54
66
Return the leading support of the exterior algebra element ``f``.
55
67
"""
@@ -70,16 +82,17 @@ cpdef tuple get_leading_supports(tuple I):
70
82
- ``I`` -- a tuple of elements of an exterior algebra
71
83
"""
72
84
# We filter out any elements that are 0
85
+ cdef CliffordAlgebraElement f
73
86
return tuple (set ([leading_supp(f) for f in I if f._monomial_coefficients]))
74
87
75
88
76
- cdef inline build_monomial(E, supp):
89
+ cdef inline build_monomial(Parent E, FrozenBitset supp):
77
90
"""
78
91
Helper function for the fastest way to build a monomial.
79
92
"""
80
- return E.element_class(E, {supp: ( < Parent > E) ._base.one()})
93
+ return E.element_class(E, {supp: E ._base.one()})
81
94
82
- cdef inline partial_S_poly(f, g, E, int side):
95
+ cdef inline partial_S_poly(CliffordAlgebraElement f, CliffordAlgebraElement g, Parent E, int side):
83
96
"""
84
97
Compute one half of the `S`-polynomial for ``f`` and ``g``.
85
98
@@ -98,11 +111,12 @@ cdef inline partial_S_poly(f, g, E, int side):
98
111
ret = f * build_monomial(E, D)
99
112
return ret * (~ ret[lmf._union(lmg)])
100
113
101
- cdef inline set preprocessing(list P, list G, E, int side):
114
+ cdef inline set preprocessing(list P, list G, Parent E, int side):
102
115
"""
103
116
Perform the preprocessing step.
104
117
"""
105
118
# print("Start preprocessing:", P)
119
+ cdef CliffordAlgebraElement f
106
120
cdef set L = set (partial_S_poly(f0, f1, E, side) for f0,f1 in P)
107
121
L.update(partial_S_poly(f1, f0, E, side) for f0,f1 in P)
108
122
if side == 2 :
@@ -123,26 +137,28 @@ cdef inline set preprocessing(list P, list G, E, int side):
123
137
for g in G:
124
138
lm = leading_supp(g)
125
139
if lm <= m:
126
- f = build_monomial(E, m.difference(lm)) * g
140
+ f = build_monomial(E, < FrozenBitset > m.difference(lm)) * g
127
141
if f in L:
128
142
break
129
- monL.update(set (f.support() ) - done)
143
+ monL.update(set (f._monomial_coefficients ) - done)
130
144
L.add(f)
131
145
break
132
146
# print("preprocessing:", L)
133
147
return L
134
148
135
- cdef inline list reduction(list P, list G, E, int side):
149
+ cdef inline list reduction(list P, list G, Parent E, int side):
136
150
"""
137
151
Perform the reduction of ``P`` mod ``G`` in ``E``.
138
152
"""
139
153
cdef set L = preprocessing(P, G, E, side)
140
154
cdef Py_ssize_t i
141
155
from sage.matrix.constructor import matrix
142
- M = matrix({(i, bitset_to_int(< FrozenBitset> m)): c for i,f in enumerate (L) for m,c in f._monomial_coefficients.items()},
156
+ M = matrix({(i, bitset_to_int(< FrozenBitset> m)): c
157
+ for i,f in enumerate (L)
158
+ for m,c in (< CliffordAlgebraElement> f)._monomial_coefficients.items()},
143
159
sparse = True )
144
160
M.echelonize() # Do this in place
145
- lead_supports = set (leading_supp(f) for f in L)
161
+ lead_supports = set (leading_supp(< CliffordAlgebraElement > f) for f in L)
146
162
return [E.element_class(E, {int_to_bitset(Integer(j)): c for j,c in M[i].iteritems()})
147
163
for i,p in enumerate (M.pivots())
148
164
if int_to_bitset(Integer(p)) not in lead_supports]
@@ -157,9 +173,9 @@ def compute_groebner(I, side):
157
173
- ``side`` -- integer; the side of the ideal: ``0`` for left, ``1`` for
158
174
right, and ``2`` for two-sided
159
175
"""
160
- E = I.ring()
176
+ cdef Parent E = I.ring()
161
177
cdef FrozenBitset p0, p1
162
- cdef unsigned long deg
178
+ cdef long deg
163
179
cdef Py_ssize_t i, j, k
164
180
165
181
cdef list G = [f for f in I.gens() if f] # Remove 0s TODO: We should make this unnecessary here
0 commit comments