Skip to content
This repository was archived by the owner on Jan 30, 2023. It is now read-only.

Commit 74490ce

Browse files
committed
Adding more type declarations and renaming the Groebner file.
1 parent b0f66e3 commit 74490ce

4 files changed

+61
-43
lines changed

src/sage/algebras/clifford_algebra.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -2541,7 +2541,7 @@ def groebner_basis(self):
25412541
-a*b*d + a*b*e - a*d*e + b*d*e,
25422542
-a*b*c + a*b*e - a*c*e + b*c*e)
25432543
"""
2544-
from sage.algebras.exterior_algebra_cython import compute_groebner
2544+
from sage.algebras.exterior_algebra_groebner import compute_groebner
25452545
side = 2
25462546
if self.side() == "left":
25472547
side = 0

src/sage/algebras/exterior_algebra_cython.pxd

-19
This file was deleted.
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,21 @@
1+
"""
2+
Exterior algebras Gröbner bases
3+
"""
4+
5+
from sage.data_structures.bitset cimport FrozenBitset
6+
from sage.rings.integer cimport Integer
7+
from sage.algebras.clifford_algebra_element cimport CliffordAlgebraElement
8+
from sage.structure.parent cimport Parent
9+
10+
cdef Integer bitset_to_int(FrozenBitset X)
11+
cdef FrozenBitset int_to_bitset(Integer n)
12+
cdef long degree(FrozenBitset X)
13+
cdef FrozenBitset leading_supp(CliffordAlgebraElement f)
14+
cpdef tuple get_leading_supports(tuple I)
15+
16+
# Grobner basis functions
17+
cdef build_monomial(Parent E, FrozenBitset supp)
18+
cdef partial_S_poly(CliffordAlgebraElement f, CliffordAlgebraElement g, Parent E, int side)
19+
cdef set preprocessing(list P, list G, Parent E, int side)
20+
cdef list reduction(list P, list G, Parent E, int side)
21+

src/sage/algebras/exterior_algebra_cython.pyx src/sage/algebras/exterior_algebra_groebner.pyx

+39-23
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,28 @@
11
"""
2-
Exterior algebras backend
2+
Exterior algebras Gröbner bases
33
4-
This contains the backend implementations in Cython for the exterior algebra.
4+
This contains the backend implementations in Cython for the Gröbner bases
5+
of exterior algebra.
6+
7+
AUTHORS:
8+
9+
- Trevor Karn, Travis Scrimshaw (July 2022): Initial implementation
510
"""
611

12+
#*****************************************************************************
13+
# Copyright (C) 2022 Trevor Karn <karnx018 at umn.edu>
14+
# (C) 2022 Travis Scrimshaw <tcscrims at gmail.com>
15+
#
16+
# This program is free software: you can redistribute it and/or modify
17+
# it under the terms of the GNU General Public License as published by
18+
# the Free Software Foundation, either version 2 of the License, or
19+
# (at your option) any later version.
20+
# http://www.gnu.org/licenses/
21+
#*****************************************************************************
22+
723
from sage.libs.gmp.mpz cimport mpz_sizeinbase, mpz_setbit, mpz_tstbit, mpz_cmp_si, mpz_sgn
8-
from sage.data_structures.bitset_base cimport bitset_t, bitset_init, bitset_first, bitset_next, bitset_set_to
24+
from sage.data_structures.bitset_base cimport (bitset_t, bitset_init, bitset_first,
25+
bitset_next, bitset_set_to, bitset_len)
926
from sage.structure.parent cimport Parent
1027

1128
cdef inline Integer bitset_to_int(FrozenBitset X):
@@ -23,7 +40,7 @@ cdef inline FrozenBitset int_to_bitset(Integer n):
2340
"""
2441
Convert a nonnegative integer ``n`` to a :class:`FrozenBitset`.
2542
"""
26-
cdef unsigned long i
43+
cdef Py_ssize_t i
2744

2845
if mpz_sgn(n.value) == 0:
2946
return FrozenBitset()
@@ -36,20 +53,15 @@ cdef inline FrozenBitset int_to_bitset(Integer n):
3653
return ret
3754

3855

39-
cdef inline unsigned long degree(FrozenBitset X):
56+
cdef inline long degree(FrozenBitset X):
4057
"""
4158
Compute the degree of ``X``.
4259
"""
43-
cdef unsigned long ret = 0
44-
cdef long elt = bitset_first(X._bitset)
45-
while elt >= 0:
46-
ret += 1
47-
elt = bitset_next(X._bitset, elt + 1)
48-
return ret
60+
return bitset_len(X._bitset)
4961

5062

5163
#TODO: Bring the exterior algebra elements as a cdef class and make f know its type!
52-
cdef inline FrozenBitset leading_supp(f):
64+
cdef inline FrozenBitset leading_supp(CliffordAlgebraElement f):
5365
"""
5466
Return the leading support of the exterior algebra element ``f``.
5567
"""
@@ -70,16 +82,17 @@ cpdef tuple get_leading_supports(tuple I):
7082
- ``I`` -- a tuple of elements of an exterior algebra
7183
"""
7284
# We filter out any elements that are 0
85+
cdef CliffordAlgebraElement f
7386
return tuple(set([leading_supp(f) for f in I if f._monomial_coefficients]))
7487

7588

76-
cdef inline build_monomial(E, supp):
89+
cdef inline build_monomial(Parent E, FrozenBitset supp):
7790
"""
7891
Helper function for the fastest way to build a monomial.
7992
"""
80-
return E.element_class(E, {supp: (<Parent> E)._base.one()})
93+
return E.element_class(E, {supp: E._base.one()})
8194

82-
cdef inline partial_S_poly(f, g, E, int side):
95+
cdef inline partial_S_poly(CliffordAlgebraElement f, CliffordAlgebraElement g, Parent E, int side):
8396
"""
8497
Compute one half of the `S`-polynomial for ``f`` and ``g``.
8598
@@ -98,11 +111,12 @@ cdef inline partial_S_poly(f, g, E, int side):
98111
ret = f * build_monomial(E, D)
99112
return ret * (~ret[lmf._union(lmg)])
100113

101-
cdef inline set preprocessing(list P, list G, E, int side):
114+
cdef inline set preprocessing(list P, list G, Parent E, int side):
102115
"""
103116
Perform the preprocessing step.
104117
"""
105118
#print("Start preprocessing:", P)
119+
cdef CliffordAlgebraElement f
106120
cdef set L = set(partial_S_poly(f0, f1, E, side) for f0,f1 in P)
107121
L.update(partial_S_poly(f1, f0, E, side) for f0,f1 in P)
108122
if side == 2:
@@ -123,26 +137,28 @@ cdef inline set preprocessing(list P, list G, E, int side):
123137
for g in G:
124138
lm = leading_supp(g)
125139
if lm <= m:
126-
f = build_monomial(E, m.difference(lm)) * g
140+
f = build_monomial(E, <FrozenBitset> m.difference(lm)) * g
127141
if f in L:
128142
break
129-
monL.update(set(f.support()) - done)
143+
monL.update(set(f._monomial_coefficients) - done)
130144
L.add(f)
131145
break
132146
#print("preprocessing:", L)
133147
return L
134148

135-
cdef inline list reduction(list P, list G, E, int side):
149+
cdef inline list reduction(list P, list G, Parent E, int side):
136150
"""
137151
Perform the reduction of ``P`` mod ``G`` in ``E``.
138152
"""
139153
cdef set L = preprocessing(P, G, E, side)
140154
cdef Py_ssize_t i
141155
from sage.matrix.constructor import matrix
142-
M = matrix({(i, bitset_to_int(<FrozenBitset> m)): c for i,f in enumerate(L) for m,c in f._monomial_coefficients.items()},
156+
M = matrix({(i, bitset_to_int(<FrozenBitset> m)): c
157+
for i,f in enumerate(L)
158+
for m,c in (<CliffordAlgebraElement> f)._monomial_coefficients.items()},
143159
sparse=True)
144160
M.echelonize() # Do this in place
145-
lead_supports = set(leading_supp(f) for f in L)
161+
lead_supports = set(leading_supp(<CliffordAlgebraElement> f) for f in L)
146162
return [E.element_class(E, {int_to_bitset(Integer(j)): c for j,c in M[i].iteritems()})
147163
for i,p in enumerate(M.pivots())
148164
if int_to_bitset(Integer(p)) not in lead_supports]
@@ -157,9 +173,9 @@ def compute_groebner(I, side):
157173
- ``side`` -- integer; the side of the ideal: ``0`` for left, ``1`` for
158174
right, and ``2`` for two-sided
159175
"""
160-
E = I.ring()
176+
cdef Parent E = I.ring()
161177
cdef FrozenBitset p0, p1
162-
cdef unsigned long deg
178+
cdef long deg
163179
cdef Py_ssize_t i, j, k
164180

165181
cdef list G = [f for f in I.gens() if f] # Remove 0s TODO: We should make this unnecessary here

0 commit comments

Comments
 (0)