|
275 | 275 | We declare the Riemann sphere `\CC^*` as a 1-dimensional differentiable
|
276 | 276 | manifold over `\CC`::
|
277 | 277 |
|
278 |
| - sage: M = Manifold(1, 'C*', field='complex'); M |
279 |
| - 1-dimensional complex manifold C* |
| 278 | + sage: M = Manifold(1, 'ℂ*', field='complex'); M |
| 279 | + 1-dimensional complex manifold ℂ* |
280 | 280 |
|
281 | 281 | We introduce a first open subset, which is actually
|
282 | 282 | `\CC = \CC^*\setminus\{\infty\}` if we interpret `\CC^*` as the Alexandroff
|
|
292 | 292 | The origin of the complex plane is the point of coordinate `z=0`::
|
293 | 293 |
|
294 | 294 | sage: O = U.point((0,), chart=Z, name='O'); O
|
295 |
| - Point O on the 1-dimensional complex manifold C* |
| 295 | + Point O on the 1-dimensional complex manifold ℂ* |
296 | 296 |
|
297 | 297 | Another open subset of `\CC^*` is `V = \CC^*\setminus\{O\}`::
|
298 | 298 |
|
|
305 | 305 | Chart (V, (w,))
|
306 | 306 | sage: inf = M.point((0,), chart=W, name='inf', latex_name=r'\infty')
|
307 | 307 | sage: inf
|
308 |
| - Point inf on the 1-dimensional complex manifold C* |
| 308 | + Point inf on the 1-dimensional complex manifold ℂ* |
309 | 309 |
|
310 | 310 | To fully construct the Riemann sphere, we declare that it is the union of `U`
|
311 | 311 | and `V`::
|
|
329 | 329 | Let consider the complex number `i` as a point of the Riemann sphere::
|
330 | 330 |
|
331 | 331 | sage: i = M((I,), chart=Z, name='i'); i
|
332 |
| - Point i on the 1-dimensional complex manifold C* |
| 332 | + Point i on the 1-dimensional complex manifold ℂ* |
333 | 333 |
|
334 | 334 | Its coordinates with respect to the charts ``Z`` and ``W`` are::
|
335 | 335 |
|
|
348 | 348 | The following subsets and charts have been defined::
|
349 | 349 |
|
350 | 350 | sage: M.subset_family()
|
351 |
| - Set {A, C*, U, V} of open subsets of the 1-dimensional complex manifold C* |
| 351 | + Set {A, U, V, ℂ*} of open subsets of the 1-dimensional complex manifold ℂ* |
352 | 352 | sage: M.atlas()
|
353 | 353 | [Chart (U, (z,)), Chart (V, (w,)), Chart (A, (z,)), Chart (A, (w,))]
|
354 | 354 |
|
355 | 355 | A constant map `\CC^* \rightarrow \CC`::
|
356 | 356 |
|
357 | 357 | sage: f = M.constant_scalar_field(3+2*I, name='f'); f
|
358 |
| - Scalar field f on the 1-dimensional complex manifold C* |
| 358 | + Scalar field f on the 1-dimensional complex manifold ℂ* |
359 | 359 | sage: f.display()
|
360 |
| - f: C* → ℂ |
| 360 | + f: ℂ* → ℂ |
361 | 361 | on U: z ↦ 2*I + 3
|
362 | 362 | on V: w ↦ 2*I + 3
|
363 | 363 | sage: f(O)
|
|
368 | 368 | 2*I + 3
|
369 | 369 | sage: f.parent()
|
370 | 370 | Algebra of differentiable scalar fields on the 1-dimensional complex
|
371 |
| - manifold C* |
| 371 | + manifold ℂ* |
372 | 372 | sage: f.parent().category()
|
373 | 373 | Category of commutative algebras over Symbolic Ring
|
374 | 374 |
|
|
382 | 382 | sage: v.display(W.frame())
|
383 | 383 | v = -∂/∂w
|
384 | 384 | sage: v.parent()
|
385 |
| - Module X(C*) of vector fields on the 1-dimensional complex manifold C* |
| 385 | + Module X(ℂ*) of vector fields on the 1-dimensional complex manifold ℂ* |
386 | 386 |
|
387 | 387 | The vector field `v` acting on the scalar field `f`::
|
388 | 388 |
|
389 | 389 | sage: v(f)
|
390 |
| - Scalar field zero on the 1-dimensional complex manifold C* |
| 390 | + Scalar field zero on the 1-dimensional complex manifold ℂ* |
391 | 391 |
|
392 | 392 | Since `f` is constant, `v(f)` is vanishing::
|
393 | 393 |
|
394 | 394 | sage: v(f).display()
|
395 |
| - zero: C* → ℂ |
| 395 | + zero: ℂ* → ℂ |
396 | 396 | on U: z ↦ 0
|
397 | 397 | on V: w ↦ 0
|
398 | 398 |
|
399 | 399 | The value of the vector field `v` at the point `\infty` is a vector tangent to
|
400 | 400 | the Riemann sphere::
|
401 | 401 |
|
402 | 402 | sage: v.at(inf)
|
403 |
| - Tangent vector v at Point inf on the 1-dimensional complex manifold C* |
| 403 | + Tangent vector v at Point inf on the 1-dimensional complex manifold ℂ* |
404 | 404 | sage: v.at(inf).display()
|
405 | 405 | v = -∂/∂w
|
406 | 406 | sage: v.at(inf).parent()
|
407 |
| - Tangent space at Point inf on the 1-dimensional complex manifold C* |
| 407 | + Tangent space at Point inf on the 1-dimensional complex manifold ℂ* |
408 | 408 |
|
409 | 409 | AUTHORS:
|
410 | 410 |
|
|
0 commit comments