Skip to content
This repository was archived by the owner on Jan 30, 2023. It is now read-only.

Commit 76c2fd5

Browse files
committed
Use Unicode symbol for the Riemann sphere example
1 parent 5d096f1 commit 76c2fd5

File tree

2 files changed

+23
-23
lines changed

2 files changed

+23
-23
lines changed

src/sage/manifolds/differentiable/manifold.py

+14-14
Original file line numberDiff line numberDiff line change
@@ -275,8 +275,8 @@
275275
We declare the Riemann sphere `\CC^*` as a 1-dimensional differentiable
276276
manifold over `\CC`::
277277
278-
sage: M = Manifold(1, 'C*', field='complex'); M
279-
1-dimensional complex manifold C*
278+
sage: M = Manifold(1, '*', field='complex'); M
279+
1-dimensional complex manifold *
280280
281281
We introduce a first open subset, which is actually
282282
`\CC = \CC^*\setminus\{\infty\}` if we interpret `\CC^*` as the Alexandroff
@@ -292,7 +292,7 @@
292292
The origin of the complex plane is the point of coordinate `z=0`::
293293
294294
sage: O = U.point((0,), chart=Z, name='O'); O
295-
Point O on the 1-dimensional complex manifold C*
295+
Point O on the 1-dimensional complex manifold *
296296
297297
Another open subset of `\CC^*` is `V = \CC^*\setminus\{O\}`::
298298
@@ -305,7 +305,7 @@
305305
Chart (V, (w,))
306306
sage: inf = M.point((0,), chart=W, name='inf', latex_name=r'\infty')
307307
sage: inf
308-
Point inf on the 1-dimensional complex manifold C*
308+
Point inf on the 1-dimensional complex manifold *
309309
310310
To fully construct the Riemann sphere, we declare that it is the union of `U`
311311
and `V`::
@@ -329,7 +329,7 @@
329329
Let consider the complex number `i` as a point of the Riemann sphere::
330330
331331
sage: i = M((I,), chart=Z, name='i'); i
332-
Point i on the 1-dimensional complex manifold C*
332+
Point i on the 1-dimensional complex manifold *
333333
334334
Its coordinates with respect to the charts ``Z`` and ``W`` are::
335335
@@ -348,16 +348,16 @@
348348
The following subsets and charts have been defined::
349349
350350
sage: M.subset_family()
351-
Set {A, C*, U, V} of open subsets of the 1-dimensional complex manifold C*
351+
Set {A, U, V, ℂ*} of open subsets of the 1-dimensional complex manifold *
352352
sage: M.atlas()
353353
[Chart (U, (z,)), Chart (V, (w,)), Chart (A, (z,)), Chart (A, (w,))]
354354
355355
A constant map `\CC^* \rightarrow \CC`::
356356
357357
sage: f = M.constant_scalar_field(3+2*I, name='f'); f
358-
Scalar field f on the 1-dimensional complex manifold C*
358+
Scalar field f on the 1-dimensional complex manifold *
359359
sage: f.display()
360-
f: C* → ℂ
360+
f: * → ℂ
361361
on U: z ↦ 2*I + 3
362362
on V: w ↦ 2*I + 3
363363
sage: f(O)
@@ -368,7 +368,7 @@
368368
2*I + 3
369369
sage: f.parent()
370370
Algebra of differentiable scalar fields on the 1-dimensional complex
371-
manifold C*
371+
manifold *
372372
sage: f.parent().category()
373373
Category of commutative algebras over Symbolic Ring
374374
@@ -382,29 +382,29 @@
382382
sage: v.display(W.frame())
383383
v = -∂/∂w
384384
sage: v.parent()
385-
Module X(C*) of vector fields on the 1-dimensional complex manifold C*
385+
Module X(*) of vector fields on the 1-dimensional complex manifold *
386386
387387
The vector field `v` acting on the scalar field `f`::
388388
389389
sage: v(f)
390-
Scalar field zero on the 1-dimensional complex manifold C*
390+
Scalar field zero on the 1-dimensional complex manifold *
391391
392392
Since `f` is constant, `v(f)` is vanishing::
393393
394394
sage: v(f).display()
395-
zero: C* → ℂ
395+
zero: * → ℂ
396396
on U: z ↦ 0
397397
on V: w ↦ 0
398398
399399
The value of the vector field `v` at the point `\infty` is a vector tangent to
400400
the Riemann sphere::
401401
402402
sage: v.at(inf)
403-
Tangent vector v at Point inf on the 1-dimensional complex manifold C*
403+
Tangent vector v at Point inf on the 1-dimensional complex manifold *
404404
sage: v.at(inf).display()
405405
v = -∂/∂w
406406
sage: v.at(inf).parent()
407-
Tangent space at Point inf on the 1-dimensional complex manifold C*
407+
Tangent space at Point inf on the 1-dimensional complex manifold *
408408
409409
AUTHORS:
410410

src/sage/manifolds/manifold.py

+9-9
Original file line numberDiff line numberDiff line change
@@ -194,8 +194,8 @@
194194
We declare the Riemann sphere `\CC^*` as a 1-dimensional topological manifold
195195
over `\CC`::
196196
197-
sage: M = Manifold(1, 'C*', structure='topological', field='complex'); M
198-
Complex 1-dimensional topological manifold C*
197+
sage: M = Manifold(1, '*', structure='topological', field='complex'); M
198+
Complex 1-dimensional topological manifold *
199199
200200
We introduce a first open subset, which is actually
201201
`\CC = \CC^*\setminus\{\infty\}` if we interpret `\CC^*` as the
@@ -211,7 +211,7 @@
211211
The origin of the complex plane is the point of coordinate `z = 0`::
212212
213213
sage: O = U.point((0,), chart=Z, name='O'); O
214-
Point O on the Complex 1-dimensional topological manifold C*
214+
Point O on the Complex 1-dimensional topological manifold *
215215
216216
Another open subset of `\CC^*` is `V = \CC^*\setminus\{O\}`::
217217
@@ -224,7 +224,7 @@
224224
Chart (V, (w,))
225225
sage: inf = M.point((0,), chart=W, name='inf', latex_name=r'\infty')
226226
sage: inf
227-
Point inf on the Complex 1-dimensional topological manifold C*
227+
Point inf on the Complex 1-dimensional topological manifold *
228228
229229
To fully construct the Riemann sphere, we declare that it is the union
230230
of `U` and `V`::
@@ -248,7 +248,7 @@
248248
Let consider the complex number `i` as a point of the Riemann sphere::
249249
250250
sage: i = M((I,), chart=Z, name='i'); i
251-
Point i on the Complex 1-dimensional topological manifold C*
251+
Point i on the Complex 1-dimensional topological manifold *
252252
253253
Its coordinates w.r.t. the charts ``Z`` and ``W`` are::
254254
@@ -267,16 +267,16 @@
267267
The following subsets and charts have been defined::
268268
269269
sage: M.subset_family()
270-
Set {A, C*, U, V} of open subsets of the Complex 1-dimensional topological manifold C*
270+
Set {A, U, V, ℂ*} of open subsets of the Complex 1-dimensional topological manifold *
271271
sage: M.atlas()
272272
[Chart (U, (z,)), Chart (V, (w,)), Chart (A, (z,)), Chart (A, (w,))]
273273
274274
A constant map `\CC^* \rightarrow \CC`::
275275
276276
sage: f = M.constant_scalar_field(3+2*I, name='f'); f
277-
Scalar field f on the Complex 1-dimensional topological manifold C*
277+
Scalar field f on the Complex 1-dimensional topological manifold *
278278
sage: f.display()
279-
f: C* → ℂ
279+
f: * → ℂ
280280
on U: z ↦ 2*I + 3
281281
on V: w ↦ 2*I + 3
282282
sage: f(O)
@@ -287,7 +287,7 @@
287287
2*I + 3
288288
sage: f.parent()
289289
Algebra of scalar fields on the Complex 1-dimensional topological
290-
manifold C*
290+
manifold *
291291
sage: f.parent().category()
292292
Category of commutative algebras over Symbolic Ring
293293

0 commit comments

Comments
 (0)