@@ -620,8 +620,9 @@ def spherical_hankel2(n,x):
620
620
621
621
class SphericalHarmonic (BuiltinFunction ):
622
622
r"""
623
- Returns the spherical harmonic function `Y_n^m(\theta, \varphi)`. For
624
- integers `n > -1`, `|m|\leq n`, simplification is done automatically.
623
+ Returns the spherical harmonic function `Y_n^m(\theta, \varphi)`.
624
+
625
+ For integers `n > -1`, `|m| \leq n`, simplification is done automatically.
625
626
Numeric evaluation is supported for complex `n` and `m`.
626
627
627
628
Reference: Merzbacher 9.64
@@ -647,7 +648,7 @@ def __init__(self):
647
648
sage: n, m, theta, phi = var('n m theta phi')
648
649
sage: spherical_harmonic(n, m, theta, phi)._sympy_()
649
650
Ynm(n, m, theta, phi)
650
- """
651
+ """
651
652
BuiltinFunction .__init__ (self , 'spherical_harmonic' , nargs = 4 ,
652
653
conversions = dict (
653
654
maple = 'SphericalY' ,
@@ -703,8 +704,8 @@ def _derivative_(self, n, m, theta, phi, diff_param):
703
704
704
705
sage: n, m, theta, phi = var('n m theta phi')
705
706
sage: spherical_harmonic(n, m, theta, phi).diff(theta)
706
- m*cot(theta)*spherical_harmonic(n, m, theta, phi) +...
707
- sqrt(-(m + n + 1)*(m - n))*e^(-I*phi)*spherical_harmonic(n, m + 1, theta, phi)
707
+ m*cot(theta)*spherical_harmonic(n, m, theta, phi)
708
+ + sqrt(-(m + n + 1)*(m - n))*e^(-I*phi)*spherical_harmonic(n, m + 1, theta, phi)
708
709
sage: spherical_harmonic(n, m, theta, phi).diff(phi)
709
710
I*m*spherical_harmonic(n, m, theta, phi)
710
711
"""
@@ -714,9 +715,9 @@ def _derivative_(self, n, m, theta, phi, diff_param):
714
715
spherical_harmonic (n , m + 1 , theta , phi ))
715
716
if diff_param == 3 :
716
717
return I * m * spherical_harmonic (n , m , theta , phi )
717
- else :
718
- raise ValueError ('only derivative with respect to theta or phi '
719
- ' supported. ' )
718
+
719
+ raise ValueError ('only derivative with respect to theta or phi'
720
+ ' supported' )
720
721
721
722
def _latex_ (self ):
722
723
r"""
@@ -736,7 +737,7 @@ def _print_latex_(self, n, m, theta, phi):
736
737
Y_{3}^{2}\left(x, y\right)
737
738
"""
738
739
return r"Y_{{{}}}^{{{}}}\left({}, {}\right)" .format (
739
- latex (n ), latex (m ), latex (theta ), latex (phi ))
740
+ latex (n ), latex (m ), latex (theta ), latex (phi ))
740
741
741
742
spherical_harmonic = SphericalHarmonic ()
742
743
0 commit comments