@@ -306,20 +306,21 @@ def rootfind_roth_ruckenstein(Q, maxd=None, precision=None):
306
306
r"""
307
307
Returns the list of roots of a bivariate polynomial ``Q``.
308
308
309
- Uses the Roth-Ruckenstein algorithm to find roots or roots
310
- modulo-up-to-some-precision of a `Q \in \mathbb{F}[x][y]` where `\mathbb{F}` is a field.
309
+ Uses the Roth-Ruckenstein algorithm to find roots or modular roots of a `Q
310
+ \in \mathbb{F}[x][y]` where `\mathbb{F}` is a field.
311
311
312
- If ``precision = None`` then actual roots will be found, i.e. all `f \in \mathbb{F}[x]`
313
- such that `Q(f) = 0`. This will be returned as a list of `\mathbb{F}[x]` elements.
312
+ If ``precision = None`` then actual roots will be found, i.e. all `f \in
313
+ \mathbb{F}[x]` such that `Q(f) = 0`. This will be returned as a list of
314
+ `\mathbb{F}[x]` elements.
314
315
315
- If ``precision = k `` for some integer ``k ``, then all `f \in \mathbb{F}[x]` such that
316
- `Q(f) \equiv 0 \mod x^k ` will be returned. This set is infinite, and so it
317
- will be returned as a list of pairs in `\mathbb{F}[x] \times \mathbb{Z}_+`, where
318
- ` (f, d)` denotes that `Q(f + x^d h) \equiv 0 \mod x^k` for any `h \in
319
- \mathbb{F}[x]`.
316
+ If ``precision = d `` for some integer ``d ``, then all `f \in \mathbb{F}[x]`
317
+ such that `Q(f) \equiv 0 \mod x^d ` will be returned. This set is infinite,
318
+ and so it will be returned as a list of pairs in `\mathbb{F}[x] \times
319
+ \mathbb{Z}_+`, where ` (f, d)` denotes that `Q(f + x^d h) \equiv 0 \mod x^d`
320
+ for any `h \in \mathbb{F}[x]`.
320
321
321
322
If ``maxd`` is given, then find only `f` with `deg f \leq maxd`. In case
322
- `precision=k ` setting `maxd` means to only find the roots up to precision
323
+ `precision=d ` setting `maxd` means to only find the roots up to precision
323
324
`maxd`; otherwise, the precision will be `precision-1`.
324
325
325
326
INPUT:
0 commit comments