Skip to content
This repository was archived by the owner on Jan 30, 2023. It is now read-only.

Commit 8f2ce97

Browse files
Reflow doc-string
1 parent 5f03b11 commit 8f2ce97

File tree

1 file changed

+11
-10
lines changed

1 file changed

+11
-10
lines changed

src/sage/coding/guruswami_sudan/rootfinding.py

+11-10
Original file line numberDiff line numberDiff line change
@@ -306,20 +306,21 @@ def rootfind_roth_ruckenstein(Q, maxd=None, precision=None):
306306
r"""
307307
Returns the list of roots of a bivariate polynomial ``Q``.
308308
309-
Uses the Roth-Ruckenstein algorithm to find roots or roots
310-
modulo-up-to-some-precision of a `Q \in \mathbb{F}[x][y]` where `\mathbb{F}` is a field.
309+
Uses the Roth-Ruckenstein algorithm to find roots or modular roots of a `Q
310+
\in \mathbb{F}[x][y]` where `\mathbb{F}` is a field.
311311
312-
If ``precision = None`` then actual roots will be found, i.e. all `f \in \mathbb{F}[x]`
313-
such that `Q(f) = 0`. This will be returned as a list of `\mathbb{F}[x]` elements.
312+
If ``precision = None`` then actual roots will be found, i.e. all `f \in
313+
\mathbb{F}[x]` such that `Q(f) = 0`. This will be returned as a list of
314+
`\mathbb{F}[x]` elements.
314315
315-
If ``precision = k`` for some integer ``k``, then all `f \in \mathbb{F}[x]` such that
316-
`Q(f) \equiv 0 \mod x^k` will be returned. This set is infinite, and so it
317-
will be returned as a list of pairs in `\mathbb{F}[x] \times \mathbb{Z}_+`, where
318-
`(f, d)` denotes that `Q(f + x^d h) \equiv 0 \mod x^k` for any `h \in
319-
\mathbb{F}[x]`.
316+
If ``precision = d`` for some integer ``d``, then all `f \in \mathbb{F}[x]`
317+
such that `Q(f) \equiv 0 \mod x^d` will be returned. This set is infinite,
318+
and so it will be returned as a list of pairs in `\mathbb{F}[x] \times
319+
\mathbb{Z}_+`, where `(f, d)` denotes that `Q(f + x^d h) \equiv 0 \mod x^d`
320+
for any `h \in \mathbb{F}[x]`.
320321
321322
If ``maxd`` is given, then find only `f` with `deg f \leq maxd`. In case
322-
`precision=k` setting `maxd` means to only find the roots up to precision
323+
`precision=d` setting `maxd` means to only find the roots up to precision
323324
`maxd`; otherwise, the precision will be `precision-1`.
324325
325326
INPUT:

0 commit comments

Comments
 (0)