@@ -322,6 +322,14 @@ class being :class:`~sage.manifolds.point.TopologicalManifoldPoint`.
322
322
- ``ambient_manifold`` -- (default: ``None``) if not ``None``, the created
323
323
object is considered as an open subset of the topological manifold
324
324
``ambient_manifold``
325
+ - ``unique_tag`` -- (default: ``None``) tag used to force the construction
326
+ of a new object when all the other arguments have been used previously
327
+ (without ``unique_tag``, the
328
+ :class:`~sage.structure.unique_representation.UniqueRepresentation`
329
+ behavior inherited from
330
+ :class:`~sage.manifolds.subset.TopologicalManifoldSubset`
331
+ would return the previously constructed object corresponding to these
332
+ arguments).
325
333
326
334
EXAMPLES:
327
335
@@ -423,7 +431,7 @@ class being :class:`~sage.manifolds.point.TopologicalManifoldPoint`.
423
431
424
432
"""
425
433
def __init__ (self , n , name , latex_name = None , field = 'real' , start_index = 0 ,
426
- category = None , ambient_manifold = None ):
434
+ category = None , ambient_manifold = None , unique_tag = None ):
427
435
r"""
428
436
Construct a topological manifold.
429
437
@@ -543,106 +551,6 @@ def _latex_(self):
543
551
"""
544
552
return self ._latex_name
545
553
546
- def __hash__ (self ):
547
- r"""
548
- Hash function.
549
-
550
- TESTS::
551
-
552
- sage: M = Manifold(3, 'M', type='topological')
553
- sage: M.__hash__() # random
554
- 9122374470132259666
555
-
556
- """
557
- return hash ((self ._dim , self ._field , self ._name ))
558
-
559
- def __eq__ (self , other ):
560
- r"""
561
- Compare ``self`` with ``other``.
562
-
563
- TESTS::
564
-
565
- sage: M = Manifold(3, 'M', type='topological')
566
- sage: N = Manifold(3, 'M', type='topological')
567
- sage: M.__eq__(N)
568
- True
569
- sage: N = Manifold(3, 'N', type='topological') # change the name
570
- sage: M.__eq__(N)
571
- False
572
- sage: N = Manifold(2, 'M', type='topological') # change the dimension
573
- sage: M.__eq__(N)
574
- False
575
- sage: N = Manifold(3, 'M', type='topological', field='complex') # change the base field
576
- sage: M.__eq__(N)
577
- False
578
-
579
- """
580
- if not isinstance (other , TopologicalManifold ):
581
- return False
582
- return (self ._dim == other ._dim ) and (self ._field == other ._field ) \
583
- and (self ._name == other ._name )
584
- #!# this is rather primitive: the atlases should be compared as well...
585
-
586
- def __ne__ (self , other ):
587
- r"""
588
- Non-equality operator.
589
-
590
- TESTS::
591
-
592
- sage: M = Manifold(3, 'M', type='topological')
593
- sage: N = Manifold(3, 'M', type='topological')
594
- sage: M.__ne__(N)
595
- False
596
- sage: N = Manifold(3, 'N', type='topological') # change the name
597
- sage: M.__ne__(N)
598
- True
599
-
600
- """
601
- return not self .__eq__ (other )
602
-
603
- def __reduce__ (self ):
604
- r"""
605
- Reduction function for the pickle protocole.
606
-
607
- TESTS::
608
-
609
- sage: M = Manifold(3, 'M', type='topological')
610
- sage: M.__reduce__()
611
- (<class 'sage.manifolds.manifold.TopologicalManifold'>,
612
- (3,
613
- 'M',
614
- 'M',
615
- Real Field with 53 bits of precision,
616
- 0,
617
- Category of manifolds over Real Field with 53 bits of precision,
618
- None))
619
- sage: U = M.open_subset('U')
620
- sage: U.__reduce__()
621
- (<class 'sage.manifolds.manifold.TopologicalManifold'>,
622
- (3,
623
- 'U',
624
- 'U',
625
- Real Field with 53 bits of precision,
626
- 0,
627
- Category of facade manifolds over Real Field with 53 bits of precision,
628
- 3-dimensional topological manifold M))
629
-
630
- Tests of pickling::
631
-
632
- sage: loads(dumps(M)) == M
633
- True
634
- sage: loads(dumps(U)) == U
635
- True
636
-
637
- """
638
- if self ._manifold is self :
639
- ambient_manifold = None
640
- else :
641
- ambient_manifold = self ._manifold
642
- return (TopologicalManifold , (self ._dim , self ._name , self ._latex_name ,
643
- self ._field , self ._sindex ,
644
- self .category (), ambient_manifold ))
645
-
646
554
def _an_element_ (self ):
647
555
r"""
648
556
Construct some point on the manifold.
@@ -1491,7 +1399,7 @@ def Manifold(dim, name, latex_name=None, field='real', type='smooth',
1491
1399
- ``start_index`` -- (default: 0) integer; lower value of the range of
1492
1400
indices used for "indexed objects" on the manifold, e.g. coordinates
1493
1401
in a chart
1494
- - ``extra_kwds`` -- keywords meaningful only for specific types of
1402
+ - ``extra_kwds`` -- keywords meaningful only for some specific types of
1495
1403
manifolds
1496
1404
1497
1405
OUTPUT:
@@ -1527,10 +1435,72 @@ def Manifold(dim, name, latex_name=None, field='real', type='smooth',
1527
1435
:class:`~sage.manifolds.manifold.TopologicalManifold` for more
1528
1436
detailed examples.
1529
1437
1438
+ .. RUBRIC:: Reusability of the manifold name
1439
+
1440
+ Suppose we construct a manifold named `M`::
1441
+
1442
+ sage: M = Manifold(2, 'M', type='topological')
1443
+ sage: X.<x,y> = M.chart()
1444
+
1445
+ At some point, we change our mind and would like to restart with a new
1446
+ manifold, using the same name `M` and keeping the previous manifold for
1447
+ reference::
1448
+
1449
+ sage: M_old = M # for reference
1450
+ sage: M = Manifold(2, 'M', type='topological')
1451
+
1452
+ This results in a brand new object::
1453
+
1454
+ sage: M.atlas()
1455
+ []
1456
+
1457
+ The object ``M_old`` is intact::
1458
+
1459
+ sage: M_old.atlas()
1460
+ [Chart (M, (x, y))]
1461
+
1462
+ Both objects have the same display::
1463
+
1464
+ sage: M
1465
+ 2-dimensional topological manifold M
1466
+ sage: M_old
1467
+ 2-dimensional topological manifold M
1468
+
1469
+ but they are different::
1470
+
1471
+ sage: M != M_old
1472
+ True
1473
+
1474
+ Let us introduce a chart on ``M``, using the same coordinate symbols as
1475
+ for ``M_old``::
1476
+
1477
+ sage: X.<x,y> = M.chart()
1478
+
1479
+ The charts are displayed in the same way::
1480
+
1481
+ sage: M.atlas()
1482
+ [Chart (M, (x, y))]
1483
+ sage: M_old.atlas()
1484
+ [Chart (M, (x, y))]
1485
+
1486
+ but they are actually different::
1487
+
1488
+ sage: M.atlas()[0] != M_old.atlas()[0]
1489
+ True
1490
+
1491
+ The pickling works for both objects::
1492
+
1493
+ sage: loads(dumps(M)) == M
1494
+ True
1495
+ sage: loads(dumps(M_old)) == M_old
1496
+ True
1497
+
1530
1498
"""
1499
+ from time import time
1531
1500
type_ = type # in case the built-in function type is to be restored...
1532
1501
if type_ in ['topological' , 'top' ]:
1533
1502
return TopologicalManifold (dim , name , latex_name = latex_name ,
1534
- field = field , start_index = start_index )
1503
+ field = field , start_index = start_index ,
1504
+ unique_tag = time ())
1535
1505
raise NotImplementedError ("manifolds of type {} are not " .format (type_ ) +
1536
1506
"implemented" )
0 commit comments