Skip to content
This repository was archived by the owner on Jan 30, 2023. It is now read-only.

Commit 902908b

Browse files
committed
Revert to UniqueRepresentation for topological manifolds and charts, with the possibility to reuse manifold names.
1 parent f342e03 commit 902908b

File tree

3 files changed

+78
-306
lines changed

3 files changed

+78
-306
lines changed

src/sage/manifolds/chart.py

+3-128
Original file line numberDiff line numberDiff line change
@@ -33,14 +33,15 @@
3333
#*****************************************************************************
3434

3535
from sage.structure.sage_object import SageObject
36+
from sage.structure.unique_representation import UniqueRepresentation
3637
from sage.symbolic.ring import SR
3738
from sage.rings.all import CC
3839
from sage.rings.real_mpfr import RR
3940
from sage.rings.infinity import Infinity
4041
from sage.misc.latex import latex
4142
from sage.manifolds.manifold import TopologicalManifold
4243

43-
class Chart(SageObject):
44+
class Chart(UniqueRepresentation, SageObject):
4445
r"""
4546
Chart on a topological manifold.
4647
@@ -251,7 +252,6 @@ def __init__(self, domain, coordinates='', names=None):
251252
if coordinates == '':
252253
for x in names:
253254
coordinates += x + ' '
254-
self._coordinate_string = coordinates[:-1] # for pickling (cf. __reduce__)
255255
self._manifold = domain.manifold()
256256
self._domain = domain
257257
# Treatment of the coordinates:
@@ -391,131 +391,6 @@ def _first_ngens(self, n):
391391
"""
392392
return self[:]
393393

394-
def __hash__(self):
395-
r"""
396-
Hash function.
397-
398-
TEST::
399-
400-
sage: M = Manifold(2, 'M', type='topological')
401-
sage: X.<x,y> = M.chart()
402-
sage: X.__hash__() # random
403-
-4817665684801967664
404-
405-
"""
406-
return hash((self._domain,) + self._xx)
407-
408-
def __eq__(self, other):
409-
r"""
410-
Compare ``self`` with ``other``.
411-
412-
TESTS::
413-
414-
sage: M = Manifold(2, 'M', type='topological')
415-
sage: X.<x,y> = M.chart()
416-
sage: Y.<u,v> = M.chart()
417-
sage: X.__eq__(Y)
418-
False
419-
sage: X.__eq__(X)
420-
True
421-
sage: U = M.open_subset('U', coord_def={X: x>0})
422-
sage: XU = X.restrict(U)
423-
sage: XU.__eq__(X)
424-
False
425-
426-
"""
427-
if not isinstance(other, Chart):
428-
return False
429-
return (self._domain == other._domain) and (self._xx == other._xx)
430-
431-
def __ne__(self, other):
432-
r"""
433-
Non-equality operator.
434-
435-
TESTS::
436-
437-
sage: M = Manifold(2, 'M', type='topological')
438-
sage: X.<x,y> = M.chart()
439-
sage: Y.<u,v> = M.chart()
440-
sage: X.__ne__(Y)
441-
True
442-
sage: X.__ne__(X)
443-
False
444-
445-
"""
446-
return not self.__eq__(other)
447-
448-
def __reduce__(self):
449-
r"""
450-
Reduction function for the pickle protocole.
451-
452-
TESTS::
453-
454-
sage: M = Manifold(2, 'M', type='topological')
455-
sage: X.<x,y> = M.chart()
456-
sage: X.__reduce__()
457-
(<class 'sage.manifolds.chart.RealChart'>,
458-
(2-dimensional topological manifold M, 'x y'),
459-
[])
460-
sage: X.add_restrictions(x^2 + y^2 < 1)
461-
sage: X.__reduce__()
462-
(<class 'sage.manifolds.chart.RealChart'>,
463-
(2-dimensional topological manifold M, 'x y'),
464-
[x^2 + y^2 < 1])
465-
466-
Test of pickling::
467-
468-
sage: loads(dumps(X)) == X
469-
True
470-
471-
"""
472-
return (self.__class__, (self._domain, self._coordinate_string),
473-
self.__getstate__())
474-
475-
def __getstate__(self):
476-
r"""
477-
Return the attributes of ``self`` that have been set after
478-
the construction of the object.
479-
480-
This is used in pickling, to handle the coordinate restrictions,
481-
since the latter have been defined by calls to
482-
``self.add_restrictions()`` and not at the object construction.
483-
484-
TESTS::
485-
486-
sage: M = Manifold(2, 'M', type='topological')
487-
sage: X.<x,y> = M.chart()
488-
sage: X.__getstate__()
489-
[]
490-
sage: X.add_restrictions(x^2 + y^2 < 1)
491-
sage: X.__getstate__()
492-
[x^2 + y^2 < 1]
493-
494-
"""
495-
return self._restrictions
496-
497-
def __setstate__(self, coord_restrictions):
498-
r"""
499-
Set the attributes of ``self`` that are not initialized at the object
500-
construction.
501-
502-
This is used in unpickling, to handle the coordinate restrictions,
503-
since the latter have been defined by calls to
504-
``self.add_restrictions()`` and not at the object construction.
505-
506-
TESTS::
507-
508-
sage: M = Manifold(2, 'M', type='topological')
509-
sage: X.<x,y> = M.chart()
510-
sage: X._restrictions
511-
[]
512-
sage: X.__setstate__([x^2+y^2<1])
513-
sage: X._restrictions
514-
[x^2 + y^2 < 1]
515-
516-
"""
517-
self._restrictions = coord_restrictions
518-
519394
def __getitem__(self, i):
520395
r"""
521396
Access to the coordinates.
@@ -898,7 +773,7 @@ def transition_map(self, other, transformations, intersection_name=None,
898773
[2-dimensional topological manifold R^2,
899774
Open subset U of the 2-dimensional topological manifold R^2]
900775
901-
... but a new chart has been created: `(U, (x, y))`::
776+
but a new chart has been created: `(U, (x, y))`::
902777
903778
sage: M.atlas()
904779
[Chart (R^2, (x, y)), Chart (U, (r, phi)), Chart (U, (x, y))]

src/sage/manifolds/manifold.py

+73-103
Original file line numberDiff line numberDiff line change
@@ -322,6 +322,14 @@ class being :class:`~sage.manifolds.point.TopologicalManifoldPoint`.
322322
- ``ambient_manifold`` -- (default: ``None``) if not ``None``, the created
323323
object is considered as an open subset of the topological manifold
324324
``ambient_manifold``
325+
- ``unique_tag`` -- (default: ``None``) tag used to force the construction
326+
of a new object when all the other arguments have been used previously
327+
(without ``unique_tag``, the
328+
:class:`~sage.structure.unique_representation.UniqueRepresentation`
329+
behavior inherited from
330+
:class:`~sage.manifolds.subset.TopologicalManifoldSubset`
331+
would return the previously constructed object corresponding to these
332+
arguments).
325333
326334
EXAMPLES:
327335
@@ -423,7 +431,7 @@ class being :class:`~sage.manifolds.point.TopologicalManifoldPoint`.
423431
424432
"""
425433
def __init__(self, n, name, latex_name=None, field='real', start_index=0,
426-
category=None, ambient_manifold=None):
434+
category=None, ambient_manifold=None, unique_tag=None):
427435
r"""
428436
Construct a topological manifold.
429437
@@ -543,106 +551,6 @@ def _latex_(self):
543551
"""
544552
return self._latex_name
545553

546-
def __hash__(self):
547-
r"""
548-
Hash function.
549-
550-
TESTS::
551-
552-
sage: M = Manifold(3, 'M', type='topological')
553-
sage: M.__hash__() # random
554-
9122374470132259666
555-
556-
"""
557-
return hash((self._dim, self._field, self._name))
558-
559-
def __eq__(self, other):
560-
r"""
561-
Compare ``self`` with ``other``.
562-
563-
TESTS::
564-
565-
sage: M = Manifold(3, 'M', type='topological')
566-
sage: N = Manifold(3, 'M', type='topological')
567-
sage: M.__eq__(N)
568-
True
569-
sage: N = Manifold(3, 'N', type='topological') # change the name
570-
sage: M.__eq__(N)
571-
False
572-
sage: N = Manifold(2, 'M', type='topological') # change the dimension
573-
sage: M.__eq__(N)
574-
False
575-
sage: N = Manifold(3, 'M', type='topological', field='complex') # change the base field
576-
sage: M.__eq__(N)
577-
False
578-
579-
"""
580-
if not isinstance(other, TopologicalManifold):
581-
return False
582-
return (self._dim == other._dim) and (self._field == other._field) \
583-
and (self._name == other._name)
584-
#!# this is rather primitive: the atlases should be compared as well...
585-
586-
def __ne__(self, other):
587-
r"""
588-
Non-equality operator.
589-
590-
TESTS::
591-
592-
sage: M = Manifold(3, 'M', type='topological')
593-
sage: N = Manifold(3, 'M', type='topological')
594-
sage: M.__ne__(N)
595-
False
596-
sage: N = Manifold(3, 'N', type='topological') # change the name
597-
sage: M.__ne__(N)
598-
True
599-
600-
"""
601-
return not self.__eq__(other)
602-
603-
def __reduce__(self):
604-
r"""
605-
Reduction function for the pickle protocole.
606-
607-
TESTS::
608-
609-
sage: M = Manifold(3, 'M', type='topological')
610-
sage: M.__reduce__()
611-
(<class 'sage.manifolds.manifold.TopologicalManifold'>,
612-
(3,
613-
'M',
614-
'M',
615-
Real Field with 53 bits of precision,
616-
0,
617-
Category of manifolds over Real Field with 53 bits of precision,
618-
None))
619-
sage: U = M.open_subset('U')
620-
sage: U.__reduce__()
621-
(<class 'sage.manifolds.manifold.TopologicalManifold'>,
622-
(3,
623-
'U',
624-
'U',
625-
Real Field with 53 bits of precision,
626-
0,
627-
Category of facade manifolds over Real Field with 53 bits of precision,
628-
3-dimensional topological manifold M))
629-
630-
Tests of pickling::
631-
632-
sage: loads(dumps(M)) == M
633-
True
634-
sage: loads(dumps(U)) == U
635-
True
636-
637-
"""
638-
if self._manifold is self:
639-
ambient_manifold = None
640-
else:
641-
ambient_manifold = self._manifold
642-
return (TopologicalManifold, (self._dim, self._name, self._latex_name,
643-
self._field, self._sindex,
644-
self.category(), ambient_manifold))
645-
646554
def _an_element_(self):
647555
r"""
648556
Construct some point on the manifold.
@@ -1491,7 +1399,7 @@ def Manifold(dim, name, latex_name=None, field='real', type='smooth',
14911399
- ``start_index`` -- (default: 0) integer; lower value of the range of
14921400
indices used for "indexed objects" on the manifold, e.g. coordinates
14931401
in a chart
1494-
- ``extra_kwds`` -- keywords meaningful only for specific types of
1402+
- ``extra_kwds`` -- keywords meaningful only for some specific types of
14951403
manifolds
14961404
14971405
OUTPUT:
@@ -1527,10 +1435,72 @@ def Manifold(dim, name, latex_name=None, field='real', type='smooth',
15271435
:class:`~sage.manifolds.manifold.TopologicalManifold` for more
15281436
detailed examples.
15291437
1438+
.. RUBRIC:: Reusability of the manifold name
1439+
1440+
Suppose we construct a manifold named `M`::
1441+
1442+
sage: M = Manifold(2, 'M', type='topological')
1443+
sage: X.<x,y> = M.chart()
1444+
1445+
At some point, we change our mind and would like to restart with a new
1446+
manifold, using the same name `M` and keeping the previous manifold for
1447+
reference::
1448+
1449+
sage: M_old = M # for reference
1450+
sage: M = Manifold(2, 'M', type='topological')
1451+
1452+
This results in a brand new object::
1453+
1454+
sage: M.atlas()
1455+
[]
1456+
1457+
The object ``M_old`` is intact::
1458+
1459+
sage: M_old.atlas()
1460+
[Chart (M, (x, y))]
1461+
1462+
Both objects have the same display::
1463+
1464+
sage: M
1465+
2-dimensional topological manifold M
1466+
sage: M_old
1467+
2-dimensional topological manifold M
1468+
1469+
but they are different::
1470+
1471+
sage: M != M_old
1472+
True
1473+
1474+
Let us introduce a chart on ``M``, using the same coordinate symbols as
1475+
for ``M_old``::
1476+
1477+
sage: X.<x,y> = M.chart()
1478+
1479+
The charts are displayed in the same way::
1480+
1481+
sage: M.atlas()
1482+
[Chart (M, (x, y))]
1483+
sage: M_old.atlas()
1484+
[Chart (M, (x, y))]
1485+
1486+
but they are actually different::
1487+
1488+
sage: M.atlas()[0] != M_old.atlas()[0]
1489+
True
1490+
1491+
The pickling works for both objects::
1492+
1493+
sage: loads(dumps(M)) == M
1494+
True
1495+
sage: loads(dumps(M_old)) == M_old
1496+
True
1497+
15301498
"""
1499+
from time import time
15311500
type_ = type # in case the built-in function type is to be restored...
15321501
if type_ in ['topological', 'top']:
15331502
return TopologicalManifold(dim, name, latex_name=latex_name,
1534-
field=field, start_index=start_index)
1503+
field=field, start_index=start_index,
1504+
unique_tag=time())
15351505
raise NotImplementedError("manifolds of type {} are not ".format(type_) +
15361506
"implemented")

0 commit comments

Comments
 (0)