@@ -62,7 +62,7 @@ def transport(self, perm):
62
62
f , gs = self ._list
63
63
pi = self ._partition .transport (perm )
64
64
f = f .change_labels (pi ._list )
65
- g = [g .change_labels (part ) for g , part in zip (gs , pi )] # BUG HERE ?
65
+ _ = [g .change_labels (part ) for g , part in zip (gs , pi )] # TODO: BUG HERE ?
66
66
return self .__class__ (self , self ._labels , pi , f , gs )
67
67
68
68
def change_labels (self , labels ):
@@ -105,7 +105,7 @@ def __init__(self, F, G, min=None, max=None, weight=None):
105
105
sage: E = species.SetSpecies()
106
106
sage: C = species.CycleSpecies()
107
107
sage: S = E(C)
108
- sage: S.generating_series().coefficients(5)
108
+ sage: S.generating_series()[:5]
109
109
[1, 1, 1, 1, 1]
110
110
sage: E(C) is S
111
111
True
@@ -114,7 +114,7 @@ def __init__(self, F, G, min=None, max=None, weight=None):
114
114
115
115
sage: E = species.SetSpecies(); C = species.CycleSpecies()
116
116
sage: L = E(C)
117
- sage: c = L.generating_series().coefficients(3)
117
+ sage: c = L.generating_series()[:3]
118
118
sage: L._check() #False due to isomorphism types not being implemented
119
119
False
120
120
sage: L == loads(dumps(L))
@@ -193,7 +193,7 @@ def _gs(self, series_ring, base_ring):
193
193
194
194
sage: E = species.SetSpecies(); C = species.CycleSpecies()
195
195
sage: L = E(C)
196
- sage: L.generating_series().coefficients(5)
196
+ sage: L.generating_series()[:5]
197
197
[1, 1, 1, 1, 1]
198
198
"""
199
199
return self ._F .generating_series (base_ring )(self ._G .generating_series (base_ring ))
@@ -204,7 +204,7 @@ def _itgs(self, series_ring, base_ring):
204
204
205
205
sage: E = species.SetSpecies(); C = species.CycleSpecies()
206
206
sage: L = E(C)
207
- sage: L.isotype_generating_series().coefficients(10)
207
+ sage: L.isotype_generating_series()[:10]
208
208
[1, 1, 2, 3, 5, 7, 11, 15, 22, 30]
209
209
"""
210
210
cis = self .cycle_index_series (base_ring )
@@ -216,7 +216,7 @@ def _cis(self, series_ring, base_ring):
216
216
217
217
sage: E = species.SetSpecies(); C = species.CycleSpecies()
218
218
sage: L = E(C)
219
- sage: L.cycle_index_series().coefficients(5)
219
+ sage: L.cycle_index_series()[:5]
220
220
[p[],
221
221
p[1],
222
222
p[1, 1] + p[2],
@@ -233,7 +233,7 @@ def _cis(self, series_ring, base_ring):
233
233
sage: E = species.SetSpecies()
234
234
sage: C = species.CycleSpecies(weight=t)
235
235
sage: S = E(C)
236
- sage: S.isotype_generating_series().coefficients(5) #indirect
236
+ sage: S.isotype_generating_series()[:5] #indirect
237
237
[1, t, t^2 + t, t^3 + t^2 + t, t^4 + t^3 + 2*t^2 + t]
238
238
239
239
We do the same thing with set partitions weighted by the number of
@@ -245,17 +245,11 @@ def _cis(self, series_ring, base_ring):
245
245
sage: E = species.SetSpecies()
246
246
sage: E_t = species.SetSpecies(min=1,weight=t)
247
247
sage: Par = E(E_t)
248
- sage: Par.isotype_generating_series().coefficients(5)
248
+ sage: Par.isotype_generating_series()[:5]
249
249
[1, t, t^2 + t, t^3 + t^2 + t, t^4 + t^3 + 2*t^2 + t]
250
250
"""
251
251
f_cis = self ._F .cycle_index_series (base_ring )
252
252
g_cis = self ._G .cycle_index_series (base_ring )
253
-
254
- #If G is a weighted species, then we can't use the default
255
- #algorithm for the composition of the cycle index series
256
- #since we must raise the weighting to the power.
257
- if self ._G .is_weighted ():
258
- return f_cis .weighted_composition (self ._G )
259
253
return f_cis (g_cis )
260
254
261
255
def weight_ring (self ):
0 commit comments