@@ -741,7 +741,7 @@ def is_degenerate(self):
741
741
R = PP .coordinate_ring ()
742
742
PS = PP [0 ] #check for x fibers
743
743
vars = list (PS .gens ())
744
- R0 = PolynomialRing (K , 3 , vars ) #for dimension calculation to work,
744
+ R0 = PolynomialRing (K , 3 , PS . variable_names () ) #for dimension calculation to work,
745
745
#must be done with Polynomial ring over a field
746
746
#Degenerate is equivalent to a common zero, see Prop 1.4 in [CaSi]_
747
747
I = R .ideal (self .Gpoly (1 , 0 ), self .Gpoly (1 , 1 ), self .Gpoly (1 , 2 ), self .Hpoly (1 , 0 , 1 ),
@@ -752,8 +752,7 @@ def is_degenerate(self):
752
752
return True
753
753
754
754
PS = PP [1 ] #check for y fibers
755
- vars = list (PS .gens ())
756
- R0 = PolynomialRing (K ,3 ,vars ) #for dimension calculation to work,
755
+ R0 = PolynomialRing (K , 3 , PS .variable_names ()) #for dimension calculation to work,
757
756
#must be done with Polynomial ring over a field
758
757
#Degenerate is equivalent to a common zero, see Prop 1.4 in [CaSi]_
759
758
I = R .ideal (self .Gpoly (0 , 0 ), self .Gpoly (0 , 1 ), self .Gpoly (0 , 2 ), self .Hpoly (0 , 0 , 1 ),
@@ -824,15 +823,15 @@ def degenerate_fibers(self):
824
823
PSX = PP [0 ];
825
824
vars = list (PSX .gens ())
826
825
K = FractionField (PSX .base_ring ())
827
- R0 = PolynomialRing (K , 3 , vars )
826
+ R0 = PolynomialRing (K , 3 , PSX . variable_names () )
828
827
I = R .ideal (self .Gpoly (1 , 0 ), self .Gpoly (1 , 1 ), self .Gpoly (1 , 2 ), self .Hpoly (1 , 0 ,1 ), \
829
828
self .Hpoly (1 , 0 , 2 ), self .Hpoly (1 , 1 , 2 ))
830
- phi = R .hom (vars + [0 , 0 , 0 ], R0 )
829
+ phi = R .hom (list ( PSX . gens ()) + [0 , 0 , 0 ], R0 )
831
830
I = phi (I )
832
831
xFibers = []
833
832
#check affine charts
834
833
for n in range (3 ):
835
- affvars = list (R0 .gens ())
834
+ affvars = list (R0 .variable_names ())
836
835
del affvars [n ]
837
836
R1 = PolynomialRing (K , 2 , affvars , order = 'lex' )
838
837
mapvars = list (R1 .gens ())
@@ -853,17 +852,16 @@ def degenerate_fibers(self):
853
852
if MP not in xFibers :
854
853
xFibers .append (MP )
855
854
PSY = PP [1 ]
856
- vars = list (PSY .gens ())
857
855
K = FractionField (PSY .base_ring ())
858
- R0 = PolynomialRing (K , 3 , vars )
856
+ R0 = PolynomialRing (K , 3 , PSY . variable_names () )
859
857
I = R .ideal (self .Gpoly (0 , 0 ), self .Gpoly (0 , 1 ), self .Gpoly (0 , 2 ), self .Hpoly (0 , 0 , 1 ), \
860
858
self .Hpoly (0 , 0 , 2 ), self .Hpoly (0 , 1 , 2 ))
861
- phi = PP .coordinate_ring ().hom ([0 , 0 , 0 ] + vars , R0 )
859
+ phi = PP .coordinate_ring ().hom ([0 , 0 , 0 ] + list ( PSY . gens ()) , R0 )
862
860
I = phi (I )
863
861
yFibers = []
864
862
#check affine charts
865
863
for n in range (3 ):
866
- affvars = list (R0 .gens ())
864
+ affvars = list (R0 .variable_names ())
867
865
del affvars [n ]
868
866
R1 = PolynomialRing (K , 2 , affvars , order = 'lex' )
869
867
mapvars = list (R1 .gens ())
@@ -937,7 +935,7 @@ def degenerate_primes(self,check = True):
937
935
PSX = PP [0 ]
938
936
vars = list (PSX .gens ())
939
937
K = PSX .base_ring ()
940
- R = PolynomialRing (K , 3 , vars )
938
+ R = PolynomialRing (K , 3 , PSX . variable_names () )
941
939
I = RR .ideal (self .Gpoly (1 , 0 ), self .Gpoly (1 , 1 ), self .Gpoly (1 , 2 ), self .Hpoly (1 , 0 , 1 ),
942
940
self .Hpoly (1 , 0 , 2 ), self .Hpoly (1 , 1 , 2 ))
943
941
phi = PP .coordinate_ring ().hom (vars + [0 , 0 , 0 ], R )
@@ -946,7 +944,7 @@ def degenerate_primes(self,check = True):
946
944
947
945
#move the ideal to the ring of integers
948
946
if R .base_ring ().is_field ():
949
- S = PolynomialRing (R .base_ring ().ring_of_integers (),R .gens (),R .ngens ())
947
+ S = PolynomialRing (R .base_ring ().ring_of_integers (),R .variable_names (),R .ngens ())
950
948
I = S .ideal (I .gens ())
951
949
GB = I .groebner_basis ()
952
950
#get the primes dividing the coefficients of the monomials x_i^k_i
@@ -963,14 +961,14 @@ def degenerate_primes(self,check = True):
963
961
PSY = PP [1 ]
964
962
vars = list (PSY .gens ())
965
963
K = PSY .base_ring ()
966
- R = PolynomialRing (K , 3 , vars )
964
+ R = PolynomialRing (K , 3 , PSY . variable_names () )
967
965
I = RR .ideal (self .Gpoly (0 , 0 ), self .Gpoly (0 , 1 ), self .Gpoly (0 , 2 ), self .Hpoly (0 , 0 , 1 ),
968
966
self .Hpoly (0 , 0 , 2 ), self .Hpoly (0 , 1 , 2 ))
969
967
phi = PP .coordinate_ring ().hom ([0 , 0 , 0 ] + vars , R )
970
968
I = phi (I )
971
969
#move the ideal to the ring of integers
972
970
if R .base_ring ().is_field ():
973
- S = PolynomialRing (R .base_ring ().ring_of_integers (),R .gens (),R .ngens ())
971
+ S = PolynomialRing (R .base_ring ().ring_of_integers (),R .variable_names (),R .ngens ())
974
972
I = S .ideal (I .gens ())
975
973
GB = I .groebner_basis ()
976
974
#get the primes dividing the coefficients of the monomials x_i^k_i
0 commit comments