@@ -2781,7 +2781,7 @@ def semidirect_product(self, N, mapping, check=True):
2781
2781
from sage .categories .finite_permutation_groups import FinitePermutationGroups
2782
2782
if N not in FinitePermutationGroups ():
2783
2783
raise TypeError ("{0} is not a permutation group" .format (N ))
2784
- if not PermutationGroup (gens = mapping [0 ]) == self :
2784
+ if not PermutationGroup (gens = mapping [0 ]) == self :
2785
2785
msg = 'the generator list must generate the calling group, {0} does not generate {1}'
2786
2786
raise ValueError (msg .format (mapping [0 ], self ._repr_ ()))
2787
2787
if len (mapping [0 ]) != len (mapping [1 ]):
@@ -3159,7 +3159,7 @@ def commutator(self, other=None):
3159
3159
return PermutationGroup (gap_group = gap_group )
3160
3160
3161
3161
@hap_decorator
3162
- def cohomology (self , n , p = 0 ):
3162
+ def cohomology (self , n , p = 0 ):
3163
3163
r"""
3164
3164
Computes the group cohomology `H^n(G, F)`, where `F = \ZZ`
3165
3165
if `p=0` and `F = \ZZ / p \ZZ` if `p > 0` is a prime.
@@ -3208,7 +3208,7 @@ def cohomology(self, n, p = 0):
3208
3208
return AbelianGroup (len (L ), L )
3209
3209
3210
3210
@hap_decorator
3211
- def cohomology_part (self , n , p = 0 ):
3211
+ def cohomology_part (self , n , p = 0 ):
3212
3212
r"""
3213
3213
Compute the p-part of the group cohomology `H^n(G, F)`,
3214
3214
where `F = \ZZ` if `p=0` and `F = \ZZ / p \ZZ` if
@@ -3244,7 +3244,7 @@ def cohomology_part(self, n, p = 0):
3244
3244
return AbelianGroup (len (L ), L )
3245
3245
3246
3246
@hap_decorator
3247
- def homology (self , n , p = 0 ):
3247
+ def homology (self , n , p = 0 ):
3248
3248
r"""
3249
3249
Computes the group homology `H_n(G, F)`, where
3250
3250
`F = \ZZ` if `p=0` and `F = \ZZ / p \ZZ` if
@@ -3292,7 +3292,7 @@ def homology(self, n, p = 0):
3292
3292
return AbelianGroup (len (L ), L )
3293
3293
3294
3294
@hap_decorator
3295
- def homology_part (self , n , p = 0 ):
3295
+ def homology_part (self , n , p = 0 ):
3296
3296
r"""
3297
3297
Computes the `p`-part of the group homology
3298
3298
`H_n(G, F)`, where `F = \ZZ` if `p=0` and
@@ -3616,7 +3616,7 @@ def _regular_subgroup_gap(self):
3616
3616
return C
3617
3617
3618
3618
@cached_method
3619
- def has_regular_subgroup (self , return_group = False ):
3619
+ def has_regular_subgroup (self , return_group = False ):
3620
3620
r"""
3621
3621
Return whether the group contains a regular subgroup.
3622
3622
@@ -3656,12 +3656,10 @@ def has_regular_subgroup(self, return_group = False):
3656
3656
b = (C is not None )
3657
3657
if b and return_group :
3658
3658
G = self .subgroup (gap_group = C .Representative ())
3659
- if return_group :
3660
- return G
3661
- else :
3662
- return b
3663
3659
3664
- def blocks_all (self , representatives = True ):
3660
+ return G if return_group else b
3661
+
3662
+ def blocks_all (self , representatives = True ):
3665
3663
r"""
3666
3664
Return the list of block systems of imprimitivity.
3667
3665
0 commit comments