@@ -50,9 +50,6 @@ class ContinuousMap(Morphism):
50
50
where `M` and `N` are topological manifolds over the same topological
51
51
field `K`, `U` is an open subset of `M` and `V` is an open subset of `N`.
52
52
53
- In what follows, `M` is called the *start manifold* and
54
- `N` the *arrival manifold*.
55
-
56
53
Continuous maps are the *morphisms* of the *category* of
57
54
topological manifolds. The set of all continuous maps from
58
55
`U` to `V` is therefore the homset between `U` and `V` and is denoted
@@ -70,7 +67,7 @@ class is :class:`~sage.manifolds.manifold_homset.TopManifoldHomset`.
70
67
coordinates of the image expressed in terms of the coordinates of
71
68
the considered point) with the pairs of charts (chart1, chart2)
72
69
as keys (chart1 being a chart on `U` and chart2 a chart on `V`).
73
- If the dimension of the arrival manifold is 1, a single coordinate
70
+ If the dimension of the map's codomain is 1, a single coordinate
74
71
expression can be passed instead of a tuple with a single element
75
72
- ``name`` -- (default: ``None``) name given to the continuous map
76
73
- ``latex_name`` -- (default: ``None``) LaTeX symbol to denote the
@@ -214,7 +211,7 @@ class is :class:`~sage.manifolds.manifold_homset.TopManifoldHomset`.
214
211
on U: (x, y) |--> (xP, yP) = (x, y)
215
212
on V: (u, v) |--> (xP, yP) = (u/(u^2 + v^2), v/(u^2 + v^2))
216
213
217
- If the arrival manifold is 1-dimensional, a continuous map must be
214
+ If its codomain is 1-dimensional, a continuous map must be
218
215
defined by a single symbolic expression for each pair of charts, and not
219
216
by a list/tuple with a single element::
220
217
@@ -912,7 +909,7 @@ def display(self, chart1=None, chart2=None):
912
909
INPUT:
913
910
914
911
- ``chart1`` -- (default: ``None``) chart on the map's domain; if ``None``,
915
- the display is performed on all the charts on the start manifold
912
+ the display is performed on all the charts on the domain
916
913
in which the map is known or computable via some change of
917
914
coordinates
918
915
- ``chart2`` -- (default: ``None``) chart on the map's codomain; if
@@ -953,7 +950,7 @@ def display(self, chart1=None, chart2=None):
953
950
\begin{array}{llcl} \Phi:& S^2 & \longrightarrow & \RR^3 \\ \mbox{on}\ U : & \left(x, y\right) & \longmapsto & \left(X, Y, Z\right) = \left(\frac{2 \, x}{x^{2} + y^{2} + 1}, \frac{2 \, y}{x^{2} + y^{2} + 1}, \frac{x^{2} + y^{2} - 1}{x^{2} + y^{2} + 1}\right) \end{array}
954
951
955
952
If the argument ``chart2`` is not specified, the display is performed
956
- on all the charts on the arrival manifold in which the map is known
953
+ on all the charts on the codomain in which the map is known
957
954
or computable via some change of coordinates (here only one chart:
958
955
c_cart)::
959
956
@@ -962,7 +959,7 @@ def display(self, chart1=None, chart2=None):
962
959
on U: (x, y) |--> (X, Y, Z) = (2*x/(x^2 + y^2 + 1), 2*y/(x^2 + y^2 + 1), (x^2 + y^2 - 1)/(x^2 + y^2 + 1))
963
960
964
961
Similarly, if the argument ``chart1`` is omitted, the display is
965
- performed on all the charts on the start manifold in which the
962
+ performed on all the charts on the map's domain in which the
966
963
map is known or computable via some change of coordinates::
967
964
968
965
sage: Phi.display(chart2=c_cart)
@@ -1191,8 +1188,8 @@ def coord_functions(self, chart1=None, chart2=None):
1191
1188
change_arrival .append (ochart2 )
1192
1189
if chart2 == ochart2 :
1193
1190
change_start .append (ochart1 )
1194
- # 1/ Trying to make a change of chart only on the arrival domain :
1195
- # the arrival default chart is privileged:
1191
+ # 1/ Trying to make a change of chart only on the codomain :
1192
+ # the codomain's default chart is privileged:
1196
1193
sel_chart2 = None # selected chart2
1197
1194
if def_chart2 in change_arrival \
1198
1195
and (def_chart2 , chart2 ) in dom2 ._coord_changes :
@@ -1210,7 +1207,7 @@ def coord_functions(self, chart1=None, chart2=None):
1210
1207
return self ._coord_expression [(chart1 , chart2 )]
1211
1208
1212
1209
# 2/ Trying to make a change of chart only on the start domain:
1213
- # the start default chart is privileged:
1210
+ # the domain's default chart is privileged:
1214
1211
sel_chart1 = None # selected chart1
1215
1212
if def_chart1 in change_start \
1216
1213
and (chart1 , def_chart1 ) in dom1 ._coord_changes :
@@ -1358,7 +1355,7 @@ def set_expr(self, chart1, chart2, coord_functions):
1358
1355
- ``coord_functions`` -- the coordinate symbolic expression of the
1359
1356
map in the above charts: list (or tuple) of the coordinates of
1360
1357
the image expressed in terms of the coordinates of the considered
1361
- point; if the dimension of the arrival manifold is 1, a single
1358
+ point; if the dimension of the codomain is 1, a single
1362
1359
expression is expected (not a list with a single element)
1363
1360
1364
1361
EXAMPLES:
@@ -1450,7 +1447,7 @@ def add_expr(self, chart1, chart2, coord_functions):
1450
1447
- ``coord_functions`` -- the coordinate symbolic expression of the
1451
1448
map in the above charts: list (or tuple) of the coordinates of
1452
1449
the image expressed in terms of the coordinates of the considered
1453
- point; if the dimension of the arrival manifold is 1, a single
1450
+ point; if the dimension of the codomain is 1, a single
1454
1451
expression is expected (not a list with a single element)
1455
1452
1456
1453
.. WARNING::
@@ -1728,6 +1725,36 @@ def __invert__(self):
1728
1725
sage: ~rot is rot.inverse()
1729
1726
True
1730
1727
1728
+ An example with multiple charts: the equatorial symmetry on the
1729
+ 2-sphere::
1730
+
1731
+ sage: M = TopManifold(2, 'M') # the 2-dimensional sphere S^2
1732
+ sage: U = M.open_subset('U') # complement of the North pole
1733
+ sage: c_xy.<x,y> = U.chart() # stereographic coordinates from the North pole
1734
+ sage: V = M.open_subset('V') # complement of the South pole
1735
+ sage: c_uv.<u,v> = V.chart() # stereographic coordinates from the South pole
1736
+ sage: M.declare_union(U,V) # S^2 is the union of U and V
1737
+ sage: xy_to_uv = c_xy.transition_map(c_uv, (x/(x^2+y^2), y/(x^2+y^2)), \
1738
+ intersection_name='W', restrictions1= x^2+y^2!=0, \
1739
+ restrictions2= u^2+v^2!=0)
1740
+ sage: uv_to_xy = xy_to_uv.inverse()
1741
+ sage: s = M.homeomorphism(M, {(c_xy, c_uv): [x, y], (c_uv, c_xy): [u, v]}, name='s')
1742
+ sage: s.display()
1743
+ s: M --> M
1744
+ on U: (x, y) |--> (u, v) = (x, y)
1745
+ on V: (u, v) |--> (x, y) = (u, v)
1746
+ sage: si = s.inverse(); si
1747
+ Homeomorphism s^(-1) of the 2-dimensional topological manifold M
1748
+ sage: si.display()
1749
+ s^(-1): M --> M
1750
+ on U: (x, y) |--> (u, v) = (x, y)
1751
+ on V: (u, v) |--> (x, y) = (u, v)
1752
+
1753
+ The equatorial symmetry is of course an involution::
1754
+
1755
+ sage: si == s
1756
+ True
1757
+
1731
1758
"""
1732
1759
from sage .symbolic .ring import SR
1733
1760
from sage .symbolic .relation import solve
0 commit comments