@@ -81,68 +81,68 @@ def solve(F, converter=None, solver=None, n=1, target_variables=None, **kwds):
81
81
82
82
and pass it to a SAT solver::
83
83
84
- sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat
85
- sage: s = solve_sat(F) # optional - cryptominisat
86
- sage: F.subs(s[0]) # optional - cryptominisat
84
+ sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - pycryptosat
85
+ sage: s = solve_sat(F) # optional - pycryptosat
86
+ sage: F.subs(s[0]) # optional - pycryptosat
87
87
Polynomial Sequence with 36 Polynomials in 0 Variables
88
88
89
89
This time we pass a few options through to the converter and the solver::
90
90
91
- sage: s = solve_sat(F, s_verbosity=1, c_max_vars_sparse=4, c_cutting_number=8) # optional - cryptominisat
91
+ sage: s = solve_sat(F, s_verbosity=1, c_max_vars_sparse=4, c_cutting_number=8) # optional - pycryptosat
92
92
c ...
93
93
...
94
- sage: F.subs(s[0]) # optional - cryptominisat
94
+ sage: F.subs(s[0]) # optional - pycryptosat
95
95
Polynomial Sequence with 36 Polynomials in 0 Variables
96
96
97
97
We construct a very simple system with three solutions and ask for a specific number of solutions::
98
98
99
- sage: B.<a,b> = BooleanPolynomialRing() # optional - cryptominisat
100
- sage: f = a*b # optional - cryptominisat
101
- sage: l = solve_sat([f],n=1) # optional - cryptominisat
102
- sage: len(l) == 1, f.subs(l[0]) # optional - cryptominisat
99
+ sage: B.<a,b> = BooleanPolynomialRing() # optional - pycryptosat
100
+ sage: f = a*b # optional - pycryptosat
101
+ sage: l = solve_sat([f],n=1) # optional - pycryptosat
102
+ sage: len(l) == 1, f.subs(l[0]) # optional - pycryptosat
103
103
(True, 0)
104
104
105
- sage: l = solve_sat([a*b],n=2) # optional - cryptominisat
106
- sage: len(l) == 2, f.subs(l[0]), f.subs(l[1]) # optional - cryptominisat
105
+ sage: l = solve_sat([a*b],n=2) # optional - pycryptosat
106
+ sage: len(l) == 2, f.subs(l[0]), f.subs(l[1]) # optional - pycryptosat
107
107
(True, 0, 0)
108
108
109
- sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=3)) # optional - cryptominisat
109
+ sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=3)) # optional - pycryptosat
110
110
[(0, 0), (0, 1), (1, 0)]
111
- sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=4)) # optional - cryptominisat
111
+ sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=4)) # optional - pycryptosat
112
112
[(0, 0), (0, 1), (1, 0)]
113
- sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=infinity)) # optional - cryptominisat
113
+ sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=infinity)) # optional - pycryptosat
114
114
[(0, 0), (0, 1), (1, 0)]
115
115
116
116
In the next example we see how the ``target_variables`` parameter works::
117
117
118
- sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat
119
- sage: R.<a,b,c,d> = BooleanPolynomialRing() # optional - cryptominisat
120
- sage: F = [a+b,a+c+d] # optional - cryptominisat
118
+ sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - pycryptosat
119
+ sage: R.<a,b,c,d> = BooleanPolynomialRing() # optional - pycryptosat
120
+ sage: F = [a+b,a+c+d] # optional - pycryptosat
121
121
122
122
First the normal use case::
123
123
124
- sage: sorted((D[a], D[b], D[c], D[d]) for D in solve_sat(F,n=infinity)) # optional - cryptominisat
124
+ sage: sorted((D[a], D[b], D[c], D[d]) for D in solve_sat(F,n=infinity)) # optional - pycryptosat
125
125
[(0, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)]
126
126
127
127
Now we are only interested in the solutions of the variables a and b::
128
128
129
- sage: solve_sat(F,n=infinity,target_variables=[a,b]) # optional - cryptominisat
129
+ sage: solve_sat(F,n=infinity,target_variables=[a,b]) # optional - pycryptosat
130
130
[{b: 0, a: 0}, {b: 1, a: 1}]
131
131
132
132
Here, we generate and solve the cubic equations of the AES SBox (see :trac:`26676`)::
133
133
134
- sage: from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence # optional - cryptominisat , long time
135
- sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat , long time
136
- sage: sr = sage.crypto.mq.SR(1, 4, 4, 8, allow_zero_inversions = True) # optional - cryptominisat , long time
137
- sage: sb = sr.sbox() # optional - cryptominisat , long time
138
- sage: eqs = sb.polynomials(degree = 3) # optional - cryptominisat , long time
139
- sage: eqs = PolynomialSequence(eqs) # optional - cryptominisat , long time
140
- sage: variables = map(str, eqs.variables()) # optional - cryptominisat , long time
141
- sage: variables = ",".join(variables) # optional - cryptominisat , long time
142
- sage: R = BooleanPolynomialRing(16, variables) # optional - cryptominisat , long time
143
- sage: eqs = [R(eq) for eq in eqs] # optional - cryptominisat , long time
144
- sage: sls_aes = solve_sat(eqs, n = infinity) # optional - cryptominisat , long time
145
- sage: len(sls_aes) # optional - cryptominisat , long time
134
+ sage: from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence # optional - pycryptosat , long time
135
+ sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - pycryptosat , long time
136
+ sage: sr = sage.crypto.mq.SR(1, 4, 4, 8, allow_zero_inversions = True) # optional - pycryptosat , long time
137
+ sage: sb = sr.sbox() # optional - pycryptosat , long time
138
+ sage: eqs = sb.polynomials(degree = 3) # optional - pycryptosat , long time
139
+ sage: eqs = PolynomialSequence(eqs) # optional - pycryptosat , long time
140
+ sage: variables = map(str, eqs.variables()) # optional - pycryptosat , long time
141
+ sage: variables = ",".join(variables) # optional - pycryptosat , long time
142
+ sage: R = BooleanPolynomialRing(16, variables) # optional - pycryptosat , long time
143
+ sage: eqs = [R(eq) for eq in eqs] # optional - pycryptosat , long time
144
+ sage: sls_aes = solve_sat(eqs, n = infinity) # optional - pycryptosat , long time
145
+ sage: len(sls_aes) # optional - pycryptosat , long time
146
146
256
147
147
148
148
TESTS:
@@ -164,7 +164,7 @@ def solve(F, converter=None, solver=None, n=1, target_variables=None, **kwds):
164
164
....: k9 + k28,
165
165
....: k11 + k20]
166
166
sage: from sage.sat.boolean_polynomials import solve as solve_sat
167
- sage: solve_sat(keqs, n=1, solver=SAT('cryptominisat')) # optional - cryptominisat
167
+ sage: solve_sat(keqs, n=1, solver=SAT('cryptominisat')) # optional - pycryptosat
168
168
[{k28: 0,
169
169
k26: 1,
170
170
k24: 0,
@@ -338,15 +338,15 @@ def learn(F, converter=None, solver=None, max_learnt_length=3, interreduction=Fa
338
338
339
339
EXAMPLES::
340
340
341
- sage: from sage.sat.boolean_polynomials import learn as learn_sat # optional - cryptominisat
341
+ sage: from sage.sat.boolean_polynomials import learn as learn_sat # optional - pycryptosat
342
342
343
343
We construct a simple system and solve it::
344
344
345
- sage: set_random_seed(2300) # optional - cryptominisat
346
- sage: sr = mq.SR(1,2,2,4,gf2=True,polybori=True) # optional - cryptominisat
347
- sage: F,s = sr.polynomial_system() # optional - cryptominisat
348
- sage: H = learn_sat(F) # optional - cryptominisat
349
- sage: H[-1] # optional - cryptominisat
345
+ sage: set_random_seed(2300) # optional - pycryptosat
346
+ sage: sr = mq.SR(1,2,2,4,gf2=True,polybori=True) # optional - pycryptosat
347
+ sage: F,s = sr.polynomial_system() # optional - pycryptosat
348
+ sage: H = learn_sat(F) # optional - pycryptosat
349
+ sage: H[-1] # optional - pycryptosat
350
350
k033 + 1
351
351
"""
352
352
try :
0 commit comments