Skip to content
This repository was archived by the owner on Jan 30, 2023. It is now read-only.

Commit cfcf33a

Browse files
committed
retag the tests: cryptominisat->pycryptosat
1 parent c17897c commit cfcf33a

File tree

7 files changed

+90
-90
lines changed

7 files changed

+90
-90
lines changed

build/pkgs/curl/spkg-install.in

+1-1
Original file line numberDiff line numberDiff line change
@@ -15,6 +15,6 @@ if [ "$UNAME" = "Darwin" ]; then
1515
fi
1616
fi
1717

18-
sdh_configure $CURL_CONFIGURE
18+
sdh_configure $CURL_CONFIGURE --with-openssl
1919
sdh_make
2020
sdh_make_install

src/doc/en/reference/sat/index.rst

+3-3
Original file line numberDiff line numberDiff line change
@@ -130,9 +130,9 @@ construct a very small-scale AES system of equations and pass it to a SAT solver
130130
....: break
131131
....: except ZeroDivisionError:
132132
....: pass
133-
sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat
134-
sage: s = solve_sat(F) # optional - cryptominisat
135-
sage: F.subs(s[0]) # optional - cryptominisat
133+
sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - pycryptosat
134+
sage: s = solve_sat(F) # optional - pycryptosat
135+
sage: F.subs(s[0]) # optional - pycryptosat
136136
Polynomial Sequence with 36 Polynomials in 0 Variables
137137

138138
Details on Specific Highlevel Interfaces

src/sage/combinat/matrices/dancing_links.pyx

+1-1
Original file line numberDiff line numberDiff line change
@@ -922,7 +922,7 @@ cdef class dancing_linksWrapper:
922922
923923
Using some optional SAT solvers::
924924
925-
sage: x.to_sat_solver('cryptominisat') # optional - cryptominisat
925+
sage: x.to_sat_solver('cryptominisat') # optional - pycryptosat
926926
CryptoMiniSat solver: 4 variables, 7 clauses.
927927
928928
"""

src/sage/rings/polynomial/multi_polynomial_sequence.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -1422,8 +1422,8 @@ def solve(self, algorithm='polybori', n=1, eliminate_linear_variables=True, ver
14221422
14231423
And we may use SAT-solvers if they are available::
14241424
1425-
sage: sol = S.solve(algorithm='sat') # optional - cryptominisat
1426-
sage: print(reproducible_repr(sol)) # optional - cryptominisat
1425+
sage: sol = S.solve(algorithm='sat') # optional - pycryptosat
1426+
sage: print(reproducible_repr(sol)) # optional - pycryptosat
14271427
[{x: 0, y: 1, z: 0}]
14281428
sage: S.subs( sol[0] )
14291429
[0, 0, 0]

src/sage/sat/boolean_polynomials.py

+38-38
Original file line numberDiff line numberDiff line change
@@ -81,68 +81,68 @@ def solve(F, converter=None, solver=None, n=1, target_variables=None, **kwds):
8181
8282
and pass it to a SAT solver::
8383
84-
sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat
85-
sage: s = solve_sat(F) # optional - cryptominisat
86-
sage: F.subs(s[0]) # optional - cryptominisat
84+
sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - pycryptosat
85+
sage: s = solve_sat(F) # optional - pycryptosat
86+
sage: F.subs(s[0]) # optional - pycryptosat
8787
Polynomial Sequence with 36 Polynomials in 0 Variables
8888
8989
This time we pass a few options through to the converter and the solver::
9090
91-
sage: s = solve_sat(F, s_verbosity=1, c_max_vars_sparse=4, c_cutting_number=8) # optional - cryptominisat
91+
sage: s = solve_sat(F, s_verbosity=1, c_max_vars_sparse=4, c_cutting_number=8) # optional - pycryptosat
9292
c ...
9393
...
94-
sage: F.subs(s[0]) # optional - cryptominisat
94+
sage: F.subs(s[0]) # optional - pycryptosat
9595
Polynomial Sequence with 36 Polynomials in 0 Variables
9696
9797
We construct a very simple system with three solutions and ask for a specific number of solutions::
9898
99-
sage: B.<a,b> = BooleanPolynomialRing() # optional - cryptominisat
100-
sage: f = a*b # optional - cryptominisat
101-
sage: l = solve_sat([f],n=1) # optional - cryptominisat
102-
sage: len(l) == 1, f.subs(l[0]) # optional - cryptominisat
99+
sage: B.<a,b> = BooleanPolynomialRing() # optional - pycryptosat
100+
sage: f = a*b # optional - pycryptosat
101+
sage: l = solve_sat([f],n=1) # optional - pycryptosat
102+
sage: len(l) == 1, f.subs(l[0]) # optional - pycryptosat
103103
(True, 0)
104104
105-
sage: l = solve_sat([a*b],n=2) # optional - cryptominisat
106-
sage: len(l) == 2, f.subs(l[0]), f.subs(l[1]) # optional - cryptominisat
105+
sage: l = solve_sat([a*b],n=2) # optional - pycryptosat
106+
sage: len(l) == 2, f.subs(l[0]), f.subs(l[1]) # optional - pycryptosat
107107
(True, 0, 0)
108108
109-
sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=3)) # optional - cryptominisat
109+
sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=3)) # optional - pycryptosat
110110
[(0, 0), (0, 1), (1, 0)]
111-
sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=4)) # optional - cryptominisat
111+
sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=4)) # optional - pycryptosat
112112
[(0, 0), (0, 1), (1, 0)]
113-
sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=infinity)) # optional - cryptominisat
113+
sage: sorted((d[a], d[b]) for d in solve_sat([a*b],n=infinity)) # optional - pycryptosat
114114
[(0, 0), (0, 1), (1, 0)]
115115
116116
In the next example we see how the ``target_variables`` parameter works::
117117
118-
sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat
119-
sage: R.<a,b,c,d> = BooleanPolynomialRing() # optional - cryptominisat
120-
sage: F = [a+b,a+c+d] # optional - cryptominisat
118+
sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - pycryptosat
119+
sage: R.<a,b,c,d> = BooleanPolynomialRing() # optional - pycryptosat
120+
sage: F = [a+b,a+c+d] # optional - pycryptosat
121121
122122
First the normal use case::
123123
124-
sage: sorted((D[a], D[b], D[c], D[d]) for D in solve_sat(F,n=infinity)) # optional - cryptominisat
124+
sage: sorted((D[a], D[b], D[c], D[d]) for D in solve_sat(F,n=infinity)) # optional - pycryptosat
125125
[(0, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)]
126126
127127
Now we are only interested in the solutions of the variables a and b::
128128
129-
sage: solve_sat(F,n=infinity,target_variables=[a,b]) # optional - cryptominisat
129+
sage: solve_sat(F,n=infinity,target_variables=[a,b]) # optional - pycryptosat
130130
[{b: 0, a: 0}, {b: 1, a: 1}]
131131
132132
Here, we generate and solve the cubic equations of the AES SBox (see :trac:`26676`)::
133133
134-
sage: from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence # optional - cryptominisat, long time
135-
sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - cryptominisat, long time
136-
sage: sr = sage.crypto.mq.SR(1, 4, 4, 8, allow_zero_inversions = True) # optional - cryptominisat, long time
137-
sage: sb = sr.sbox() # optional - cryptominisat, long time
138-
sage: eqs = sb.polynomials(degree = 3) # optional - cryptominisat, long time
139-
sage: eqs = PolynomialSequence(eqs) # optional - cryptominisat, long time
140-
sage: variables = map(str, eqs.variables()) # optional - cryptominisat, long time
141-
sage: variables = ",".join(variables) # optional - cryptominisat, long time
142-
sage: R = BooleanPolynomialRing(16, variables) # optional - cryptominisat, long time
143-
sage: eqs = [R(eq) for eq in eqs] # optional - cryptominisat, long time
144-
sage: sls_aes = solve_sat(eqs, n = infinity) # optional - cryptominisat, long time
145-
sage: len(sls_aes) # optional - cryptominisat, long time
134+
sage: from sage.rings.polynomial.multi_polynomial_sequence import PolynomialSequence # optional - pycryptosat, long time
135+
sage: from sage.sat.boolean_polynomials import solve as solve_sat # optional - pycryptosat, long time
136+
sage: sr = sage.crypto.mq.SR(1, 4, 4, 8, allow_zero_inversions = True) # optional - pycryptosat, long time
137+
sage: sb = sr.sbox() # optional - pycryptosat, long time
138+
sage: eqs = sb.polynomials(degree = 3) # optional - pycryptosat, long time
139+
sage: eqs = PolynomialSequence(eqs) # optional - pycryptosat, long time
140+
sage: variables = map(str, eqs.variables()) # optional - pycryptosat, long time
141+
sage: variables = ",".join(variables) # optional - pycryptosat, long time
142+
sage: R = BooleanPolynomialRing(16, variables) # optional - pycryptosat, long time
143+
sage: eqs = [R(eq) for eq in eqs] # optional - pycryptosat, long time
144+
sage: sls_aes = solve_sat(eqs, n = infinity) # optional - pycryptosat, long time
145+
sage: len(sls_aes) # optional - pycryptosat, long time
146146
256
147147
148148
TESTS:
@@ -164,7 +164,7 @@ def solve(F, converter=None, solver=None, n=1, target_variables=None, **kwds):
164164
....: k9 + k28,
165165
....: k11 + k20]
166166
sage: from sage.sat.boolean_polynomials import solve as solve_sat
167-
sage: solve_sat(keqs, n=1, solver=SAT('cryptominisat')) # optional - cryptominisat
167+
sage: solve_sat(keqs, n=1, solver=SAT('cryptominisat')) # optional - pycryptosat
168168
[{k28: 0,
169169
k26: 1,
170170
k24: 0,
@@ -338,15 +338,15 @@ def learn(F, converter=None, solver=None, max_learnt_length=3, interreduction=Fa
338338
339339
EXAMPLES::
340340
341-
sage: from sage.sat.boolean_polynomials import learn as learn_sat # optional - cryptominisat
341+
sage: from sage.sat.boolean_polynomials import learn as learn_sat # optional - pycryptosat
342342
343343
We construct a simple system and solve it::
344344
345-
sage: set_random_seed(2300) # optional - cryptominisat
346-
sage: sr = mq.SR(1,2,2,4,gf2=True,polybori=True) # optional - cryptominisat
347-
sage: F,s = sr.polynomial_system() # optional - cryptominisat
348-
sage: H = learn_sat(F) # optional - cryptominisat
349-
sage: H[-1] # optional - cryptominisat
345+
sage: set_random_seed(2300) # optional - pycryptosat
346+
sage: sr = mq.SR(1,2,2,4,gf2=True,polybori=True) # optional - pycryptosat
347+
sage: F,s = sr.polynomial_system() # optional - pycryptosat
348+
sage: H = learn_sat(F) # optional - pycryptosat
349+
sage: H[-1] # optional - pycryptosat
350350
k033 + 1
351351
"""
352352
try:

0 commit comments

Comments
 (0)