|
30 | 30 | lazy_import('PyNormaliz', ['NmzResult', 'NmzCompute', 'NmzCone', 'NmzConeCopy'],
|
31 | 31 | feature=sage.features.normaliz.PyNormaliz())
|
32 | 32 |
|
33 |
| -from sage.rings.all import ZZ, QQ, QQbar |
34 |
| -from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing |
| 33 | +from sage.rings.integer_ring import ZZ |
| 34 | +from sage.rings.rational_field import QQ |
35 | 35 | from sage.arith.functions import LCM_list
|
36 | 36 | from sage.misc.functional import denominator
|
37 | 37 | from sage.matrix.constructor import vector
|
@@ -1082,10 +1082,11 @@ def _number_field_triple(normaliz_field):
|
1082 | 1082 | sage: Pn._number_field_triple(QuadraticField(5)) # optional - sage.rings.number_field
|
1083 | 1083 | ['a^2 - 5', 'a', '[2.236067977499789 +/- 8.06e-16]']
|
1084 | 1084 | """
|
1085 |
| - from sage.rings.real_arb import RealBallField |
1086 | 1085 | R = normaliz_field
|
1087 | 1086 | if R is QQ:
|
1088 | 1087 | return None
|
| 1088 | + from sage.rings.real_arb import RealBallField |
| 1089 | + from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing |
1089 | 1090 | emb = RealBallField(53)(R.gen(0))
|
1090 | 1091 | gen = 'a'
|
1091 | 1092 | R_a = PolynomialRing(QQ, gen)
|
@@ -2336,7 +2337,7 @@ class functions.
|
2336 | 2337 | ((t^4 + 3*t^3 + 8*t^2 + 3*t + 1)/(t + 1), (3*t^3 + 2*t^2 + 3*t)/(t + 1))
|
2337 | 2338 | """
|
2338 | 2339 | from sage.groups.conjugacy_classes import ConjugacyClassGAP
|
2339 |
| - from sage.rings.all import CyclotomicField |
| 2340 | + from sage.rings.all import CyclotomicField, QQbar |
2340 | 2341 | from sage.matrix.all import MatrixSpace
|
2341 | 2342 | from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
|
2342 | 2343 | from sage.matrix.special import identity_matrix
|
|
0 commit comments