Skip to content
This repository was archived by the owner on Jan 30, 2023. It is now read-only.

Commit e7e84b7

Browse files
committed
Special casing multiplication by a term.
1 parent b227973 commit e7e84b7

File tree

3 files changed

+322
-22
lines changed

3 files changed

+322
-22
lines changed

src/sage/algebras/clifford_algebra_element.pxd

+3-1
Original file line numberDiff line numberDiff line change
@@ -3,9 +3,11 @@ Clifford algebra elements
33
"""
44

55
from sage.modules.with_basis.indexed_element cimport IndexedFreeModuleElement
6+
from sage.data_structures.bitset cimport FrozenBitset
67

78
cdef class CliffordAlgebraElement(IndexedFreeModuleElement):
8-
pass
9+
cdef CliffordAlgebraElement _mul_self_term(self, FrozenBitset supp, coeff)
10+
cdef CliffordAlgebraElement _mul_term_self(self, FrozenBitset supp, coeff)
911

1012
cdef class ExteriorAlgebraElement(CliffordAlgebraElement):
1113
pass

src/sage/algebras/clifford_algebra_element.pyx

+301-10
Original file line numberDiff line numberDiff line change
@@ -19,8 +19,9 @@ AUTHORS:
1919
#*****************************************************************************
2020

2121
from sage.structure.parent cimport Parent
22-
from sage.data_structures.bitset cimport FrozenBitset, Bitset
22+
from sage.data_structures.bitset cimport Bitset
2323
from sage.algebras.weyl_algebra import repr_from_monomials
24+
from sage.data_structures.blas_dict cimport scal
2425
from copy import copy
2526

2627
cdef class CliffordAlgebraElement(IndexedFreeModuleElement):
@@ -95,8 +96,25 @@ cdef class CliffordAlgebraElement(IndexedFreeModuleElement):
9596
cdef dict next_level, cur, d = {}
9697
cdef FrozenBitset ml, mr, t
9798
cdef Py_ssize_t i, j
99+
cdef CliffordAlgebraElement rhs = <CliffordAlgebraElement> other
98100

99-
for ml,cl in self:
101+
# Special case when multiplying by 0
102+
if not self._monomial_coefficients:
103+
return self
104+
if not rhs._monomial_coefficients:
105+
return rhs
106+
107+
# Special case when multiplying by an element of the base ring
108+
if len(self._monomial_coefficients) == 1:
109+
ml, cl = next(iter(self._monomial_coefficients.items()))
110+
if ml.isempty():
111+
return rhs._mul_term_self(ml, cl)
112+
if len(rhs._monomial_coefficients) == 1:
113+
mr, cr = next(iter(self._monomial_coefficients.items()))
114+
if mr.isempty():
115+
return self._mul_self_term(mr, cr)
116+
117+
for ml, cl in self:
100118
# Distribute the current term ``cl`` * ``ml`` over ``other``.
101119
cur = copy(other._monomial_coefficients) # The current distribution of the term
102120
for i in reversed(ml):
@@ -150,6 +168,76 @@ cdef class CliffordAlgebraElement(IndexedFreeModuleElement):
150168

151169
return self.__class__(self.parent(), d)
152170

171+
cdef CliffordAlgebraElement _mul_self_term(self, FrozenBitset supp, coeff):
172+
r"""
173+
Multiply ``self * term`` with the ``term`` having support ``supp``
174+
and coefficient ``coeff``.
175+
176+
EXAMPLES::
177+
178+
sage: E.<x,y,z> = ExteriorAlgebra(QQ)
179+
sage: r = sum(E.basis())
180+
sage: x * y # indirect doctest
181+
x*y
182+
sage: y * x # indirect doctest
183+
-x*y
184+
sage: r * x # indirect doctest
185+
x*y*z - x*y - x*z + x
186+
sage: r * -x # indirect doctest
187+
-x*y*z + x*y + x*z - x
188+
sage: r * (2*x) # indirect doctest
189+
2*x*y*z - 2*x*y - 2*x*z + 2*x
190+
sage: r * y # indirect doctest
191+
-x*y*z + x*y - y*z + y
192+
sage: r * z # indirect doctest
193+
x*y*z + x*z + y*z + z
194+
sage: r * (x*y) # indirect doctest
195+
x*y*z + x*y
196+
sage: r * (-x*y) # indirect doctest
197+
-x*y*z - x*y
198+
sage: r * (x*y*z) # indirect doctest
199+
x*y*z
200+
sage: r * 1 == r # indirect doctest
201+
True
202+
sage: r * -1 == -r # indirect doctest
203+
True
204+
sage: r * 2 # indirect doctest
205+
2*x*y*z + 2*x*y + 2*x*z + 2*y*z + 2*x + 2*y + 2*z + 2
206+
"""
207+
cdef dict d
208+
cdef list to_remove
209+
cdef Py_ssize_t num_cross, tot_cross, i, j
210+
cdef FrozenBitset ml
211+
212+
if supp.isempty(): # Multiplication by a base ring element
213+
if coeff == self._parent._base.one():
214+
return self
215+
if coeff == -self._parent._base.one():
216+
return self._neg_()
217+
218+
return type(self)(self._parent,
219+
scal(coeff, self._monomial_coefficients,
220+
factor_on_left=False))
221+
222+
return type(self)(self._parent, {supp: coeff}) * self
223+
224+
cdef CliffordAlgebraElement _mul_term_self(self, FrozenBitset supp, coeff):
225+
r"""
226+
Multiply ``term * self`` with the ``term`` having support ``supp``
227+
and coefficient ``coeff``.
228+
"""
229+
if supp.isempty(): # Multiplication by a base ring element
230+
if coeff == self._parent._base.one():
231+
return self
232+
if coeff == -self._parent._base.one():
233+
return self._neg_()
234+
235+
return type(self)(self._parent,
236+
scal(coeff, self._monomial_coefficients,
237+
factor_on_left=True))
238+
239+
return type(self)(self._parent, {supp: coeff}) * self
240+
153241
def list(self):
154242
"""
155243
Return the list of monomials and their coefficients in ``self``
@@ -352,15 +440,30 @@ cdef class ExteriorAlgebraElement(CliffordAlgebraElement):
352440
cdef Parent P = self._parent
353441
zero = P._base.zero()
354442
cdef dict d
355-
cdef Py_ssize_t n = P.ngens()
356443
cdef ExteriorAlgebraElement rhs = <ExteriorAlgebraElement> other
357444
cdef list to_remove
358445

359446
cdef FrozenBitset ml, mr, t
360-
cdef Py_ssize_t num_cross, tot_cross, i, j
447+
cdef Py_ssize_t n, num_cross, tot_cross, i, j
361448

362-
ml = FrozenBitset()
449+
# Special case: one of them is zero
450+
if not self._monomial_coefficients:
451+
return self
452+
if not rhs._monomial_coefficients:
453+
return rhs
454+
455+
# Special case: other is a single term
456+
if len(rhs._monomial_coefficients) == 1:
457+
mr, cr = next(iter(rhs._monomial_coefficients.items()))
458+
return self._mul_self_term(mr, cr)
363459

460+
# Special case: self is a single term
461+
if len(self._monomial_coefficients) == 1:
462+
ml, cl = next(iter(self._monomial_coefficients.items()))
463+
return rhs._mul_term_self(ml, cl)
464+
465+
# Do some special processing for the constant monomial in ml
466+
ml = FrozenBitset()
364467
if ml in self._monomial_coefficients:
365468
const_coeff = self._monomial_coefficients[ml]
366469
d = dict(rhs._monomial_coefficients) # Make a shallow copy
@@ -375,11 +478,12 @@ cdef class ExteriorAlgebraElement(CliffordAlgebraElement):
375478
else:
376479
d = {}
377480

378-
for ml,cl in self._monomial_coefficients.items(): # ml for "monomial on the left"
379-
if not ml: # We already handled the trivial element
481+
n = P.ngens()
482+
for ml, cl in self._monomial_coefficients.items(): # ml for "monomial on the left"
483+
if ml.isempty(): # We already handled the trivial element
380484
continue
381485
for mr,cr in rhs._monomial_coefficients.items(): # mr for "monomial on the right"
382-
if not mr:
486+
if mr.isempty():
383487
t = ml
384488
else:
385489
if not ml.isdisjoint(mr):
@@ -402,12 +506,199 @@ cdef class ExteriorAlgebraElement(CliffordAlgebraElement):
402506
if tot_cross % 2:
403507
cr = -cr
404508

405-
d[t] = d.get(t, zero) + cl * cr
406-
if not d[t]:
509+
val = d.get(t, zero) + cl * cr
510+
if not val:
407511
del d[t]
512+
else:
513+
d[t] = val
408514

409515
return self.__class__(P, d)
410516

517+
cdef CliffordAlgebraElement _mul_self_term(self, FrozenBitset supp, coeff):
518+
r"""
519+
Multiply ``self * term`` with the ``term`` having support ``supp``
520+
and coefficient ``coeff``.
521+
522+
EXAMPLES::
523+
524+
sage: E.<x,y,z> = ExteriorAlgebra(QQ)
525+
sage: r = sum(E.basis())
526+
sage: x * y # indirect doctest
527+
x*y
528+
sage: y * x # indirect doctest
529+
-x*y
530+
sage: r * x # indirect doctest
531+
x*y*z - x*y - x*z + x
532+
sage: r * -x # indirect doctest
533+
-x*y*z + x*y + x*z - x
534+
sage: r * (2*x) # indirect doctest
535+
2*x*y*z - 2*x*y - 2*x*z + 2*x
536+
sage: r * y # indirect doctest
537+
-x*y*z + x*y - y*z + y
538+
sage: r * z # indirect doctest
539+
x*y*z + x*z + y*z + z
540+
sage: r * (x*y) # indirect doctest
541+
x*y*z + x*y
542+
sage: r * (-x*y) # indirect doctest
543+
-x*y*z - x*y
544+
sage: r * (x*y*z) # indirect doctest
545+
x*y*z
546+
sage: r * 1 == r # indirect doctest
547+
True
548+
sage: r * -1 == -r # indirect doctest
549+
True
550+
sage: r * 2 # indirect doctest
551+
2*x*y*z + 2*x*y + 2*x*z + 2*y*z + 2*x + 2*y + 2*z + 2
552+
"""
553+
cdef dict d
554+
cdef list to_remove
555+
cdef Py_ssize_t num_cross, tot_cross, i, j
556+
cdef FrozenBitset ml
557+
558+
if supp.isempty(): # Multiplication by a base ring element
559+
if coeff == self._parent._base.one():
560+
return self
561+
if coeff == -self._parent._base.one():
562+
return self._neg_()
563+
564+
return type(self)(self._parent,
565+
scal(coeff, self._monomial_coefficients,
566+
factor_on_left=False))
567+
568+
n = self._parent.ngens()
569+
d = {}
570+
for ml, cl in self._monomial_coefficients.items(): # ml for "monomial on the left"
571+
if not ml.isdisjoint(supp):
572+
# if they intersect nontrivially, move along.
573+
continue
574+
t = <FrozenBitset> ml._union(supp)
575+
it = iter(supp)
576+
j = next(it)
577+
578+
num_cross = 0 # keep track of the number of signs
579+
tot_cross = 0
580+
for i in ml:
581+
while i > j:
582+
num_cross += 1
583+
try:
584+
j = next(it)
585+
except StopIteration:
586+
j = n + 1
587+
tot_cross += num_cross
588+
if tot_cross % 2:
589+
d[t] = -cl
590+
else:
591+
d[t] = cl
592+
593+
if coeff == -self._parent._base.one():
594+
for k in d:
595+
d[k] = -d[k]
596+
elif coeff != self._parent._base.one():
597+
to_remove = []
598+
for k in d:
599+
d[k] *= coeff
600+
if not d[k]: # there might be zero divisors
601+
to_remove.append(k)
602+
for k in to_remove:
603+
del d[k]
604+
return type(self)(self._parent, d)
605+
606+
cdef CliffordAlgebraElement _mul_term_self(self, FrozenBitset supp, coeff):
607+
r"""
608+
Multiply ``term * self`` with the ``term`` having support ``supp``
609+
and coefficient ``coeff``.
610+
611+
EXAMPLES::
612+
613+
sage: E.<x,y,z> = ExteriorAlgebra(QQ)
614+
sage: r = sum(E.basis())
615+
sage: x * r # indirect doctest
616+
x*y*z + x*y + x*z + x
617+
sage: (-x) * r # indirect doctest
618+
-x*y*z - x*y - x*z - x
619+
sage: (2*x) * r # indirect doctest
620+
2*x*y*z + 2*x*y + 2*x*z + 2*x
621+
sage: y * r # indirect doctest
622+
-x*y*z - x*y + y*z + y
623+
sage: z * r # indirect doctest
624+
x*y*z - x*z - y*z + z
625+
sage: (x*y) * r # indirect doctest
626+
x*y*z + x*y
627+
sage: (-x*y) * r # indirect doctest
628+
-x*y*z - x*y
629+
sage: (x*y*z) * r # indirect doctest
630+
x*y*z
631+
sage: 1 * r == r # indirect doctest
632+
True
633+
sage: -1 * r == -r # indirect doctest
634+
True
635+
sage: 2 * r # indirect doctest
636+
2*x*y*z + 2*x*y + 2*x*z + 2*y*z + 2*x + 2*y + 2*z + 2
637+
"""
638+
cdef dict d
639+
cdef list to_remove
640+
cdef Py_ssize_t n, num_cross, tot_cross, i, j
641+
cdef FrozenBitset mr, t
642+
643+
if supp.isempty(): # Multiplication by a base ring element
644+
if coeff == self._parent._base.one():
645+
return self
646+
if coeff == -self._parent._base.one():
647+
return self._neg_()
648+
649+
return type(self)(self._parent,
650+
scal(coeff, self._monomial_coefficients,
651+
factor_on_left=True))
652+
653+
n = self._parent.ngens()
654+
d = {}
655+
mr = FrozenBitset()
656+
# We need to special case the constant coefficient
657+
const_coeff = None
658+
if mr in self._monomial_coefficients:
659+
const_coeff = self._monomial_coefficients.pop(mr)
660+
d[supp] = const_coeff
661+
662+
for mr, cr in self._monomial_coefficients.items(): # mr for "monomial on the right"
663+
if not supp.isdisjoint(mr):
664+
# if they intersect nontrivially, move along.
665+
continue
666+
t = <FrozenBitset> supp._union(mr)
667+
it = iter(mr)
668+
j = next(it) # We assume mr is non-empty here
669+
670+
num_cross = 0 # keep track of the number of signs
671+
tot_cross = 0
672+
for i in supp:
673+
while i > j:
674+
num_cross += 1
675+
try:
676+
j = next(it)
677+
except StopIteration:
678+
j = n + 1
679+
tot_cross += num_cross
680+
if tot_cross % 2:
681+
d[t] = -cr
682+
else:
683+
d[t] = cr
684+
685+
if coeff == -self._parent._base.one():
686+
for k in d:
687+
d[k] = -d[k]
688+
elif coeff != self._parent._base.one():
689+
to_remove = []
690+
for k in d:
691+
d[k] = coeff * d[k] # This will work for non-commutative base rings
692+
if not d[k]: # there might be zero divisors
693+
to_remove.append(k)
694+
for k in to_remove:
695+
del d[k]
696+
697+
# Add back the constant coefficient since we removed it for the special case
698+
if const_coeff is not None:
699+
self._monomial_coefficients[FrozenBitset()] = const_coeff
700+
return type(self)(self._parent, d)
701+
411702
def reduce(self, I, left=True):
412703
r"""
413704
Reduce ``self`` with respect to the elements in ``I``.

0 commit comments

Comments
 (0)