@@ -152,13 +152,13 @@ class NilpotentLieGroup(Group, DifferentiableManifold):
152
152
sage: exp1_frame = G.chart_exp1().frame()
153
153
sage: exp2_frame = G.chart_exp2().frame()
154
154
sage: X[0].display(exp1_frame)
155
- X_0 = d/dx_0 - 1/2*x_1 d/dx_2
155
+ X_0 = ∂/∂x_0 - 1/2*x_1 ∂/∂x_2
156
156
sage: X[0].display(exp2_frame)
157
- X_0 = d/dy_0
157
+ X_0 = ∂/∂y_0
158
158
sage: X[1].display(exp1_frame)
159
- X_1 = d/dx_1 + 1/2*x_0 d/dx_2
159
+ X_1 = ∂/∂x_1 + 1/2*x_0 ∂/∂x_2
160
160
sage: X[1].display(exp2_frame)
161
- X_1 = d/dy_1 + x_0 d/dy_2
161
+ X_1 = ∂/∂y_1 + x_0 ∂/∂y_2
162
162
163
163
Defining a left translation by a generic point::
164
164
@@ -167,11 +167,13 @@ class NilpotentLieGroup(Group, DifferentiableManifold):
167
167
sage: L_g = G.left_translation(g); L_g
168
168
Diffeomorphism of the Lie group G of Heisenberg algebra of rank 1 over Rational Field
169
169
sage: L_g.display()
170
- G --> G
171
- (x_0, x_1, x_2) |--> (a + x_0, b + x_1, -1/2*b*x_0 + 1/2*a*x_1 + c + x_2)
172
- (x_0, x_1, x_2) |--> (y_0, y_1, y_2) = (a + x_0, b + x_1, 1/2*a*b + 1/2*(2*a + x_0)*x_1 + c + x_2)
173
- (y_0, y_1, y_2) |--> (x_0, x_1, x_2) = (a + y_0, b + y_1, -1/2*b*y_0 + 1/2*(a - y_0)*y_1 + c + y_2)
174
- (y_0, y_1, y_2) |--> (a + y_0, b + y_1, 1/2*a*b + a*y_1 + c + y_2)
170
+ G → G
171
+ (x_0, x_1, x_2) ↦ (a + x_0, b + x_1, -1/2*b*x_0 + 1/2*a*x_1 + c + x_2)
172
+ (x_0, x_1, x_2) ↦ (y_0, y_1, y_2) = (a + x_0, b + x_1,
173
+ 1/2*a*b + 1/2*(2*a + x_0)*x_1 + c + x_2)
174
+ (y_0, y_1, y_2) ↦ (x_0, x_1, x_2) = (a + y_0, b + y_1,
175
+ -1/2*b*y_0 + 1/2*(a - y_0)*y_1 + c + y_2)
176
+ (y_0, y_1, y_2) ↦ (a + y_0, b + y_1, 1/2*a*b + a*y_1 + c + y_2)
175
177
176
178
Verifying the left-invariance of the left-invariant frame::
177
179
@@ -189,10 +191,10 @@ class NilpotentLieGroup(Group, DifferentiableManifold):
189
191
sage: X_L = G.left_invariant_extension(p + 3*q); X_L
190
192
Vector field p1 + 3*q1 on the Lie group G of Heisenberg algebra of rank 1 over Rational Field
191
193
sage: X_L.display(exp1_frame)
192
- p1 + 3*q1 = d/dx_0 + 3 d/dx_1 + (3/2*x_0 - 1/2*x_1) d/dx_2
194
+ p1 + 3*q1 = ∂/∂x_0 + 3 ∂/∂x_1 + (3/2*x_0 - 1/2*x_1) ∂/∂x_2
193
195
sage: X_R = G.right_invariant_extension(p + 3*q)
194
196
sage: X_R.display(exp1_frame)
195
- p1 + 3*q1 = d/dx_0 + 3 d/dx_1 + (-3/2*x_0 + 1/2*x_1) d/dx_2
197
+ p1 + 3*q1 = ∂/∂x_0 + 3 ∂/∂x_1 + (-3/2*x_0 + 1/2*x_1) ∂/∂x_2
196
198
197
199
The nilpotency step of the Lie group is the nilpotency step of its algebra.
198
200
Nilpotency for Lie groups means that group commutators that are longer than
@@ -503,16 +505,16 @@ def left_translation(self, g):
503
505
sage: L_g = G.left_translation(g); L_g
504
506
Diffeomorphism of the Lie group G of Heisenberg algebra of rank 1 over Rational Field
505
507
sage: L_g.display(chart1=G.chart_exp1(), chart2=G.chart_exp1())
506
- G --> G
507
- (x_0, x_1, x_2) |--> (x_0 + 1, x_1, 1/2*x_1 + x_2)
508
+ G → G
509
+ (x_0, x_1, x_2) ↦ (x_0 + 1, x_1, 1/2*x_1 + x_2)
508
510
509
511
Left translation by a generic element::
510
512
511
513
sage: h = G.point([var('a'), var('b'), var('c')])
512
514
sage: L_h = G.left_translation(h)
513
515
sage: L_h.display(chart1=G.chart_exp1(), chart2=G.chart_exp1())
514
- G --> G
515
- (x_0, x_1, x_2) |--> (a + x_0, b + x_1, -1/2*b*x_0 + 1/2*a*x_1 + c + x_2)
516
+ G → G
517
+ (x_0, x_1, x_2) ↦ (a + x_0, b + x_1, -1/2*b*x_0 + 1/2*a*x_1 + c + x_2)
516
518
"""
517
519
chart = self .default_chart ()
518
520
x = self .point (chart [:])
@@ -537,11 +539,11 @@ def left_invariant_frame(self, **kwds):
537
539
Vector frame (G, (X_1,X_2,X_12))
538
540
sage: coord_frame = G.chart_exp1().frame()
539
541
sage: livf[0].display(coord_frame)
540
- X_1 = d/dx_1 - 1/2*x_2 d/dx_12
542
+ X_1 = ∂/∂x_1 - 1/2*x_2 ∂/∂x_12
541
543
sage: livf[1].display(coord_frame)
542
- X_2 = d/dx_2 + 1/2*x_1 d/dx_12
544
+ X_2 = ∂/∂x_2 + 1/2*x_1 ∂/∂x_12
543
545
sage: livf[2].display(coord_frame)
544
- X_12 = d/dx_12
546
+ X_12 = ∂/∂x_12
545
547
546
548
Examples of custom labeling for the frame::
547
549
@@ -583,7 +585,7 @@ def left_invariant_extension(self, X, name=None):
583
585
sage: X = H.left_invariant_extension(p); X
584
586
Vector field p1 on the Lie group H of Heisenberg algebra of rank 1 over Rational Field
585
587
sage: X.display(H.chart_exp1().frame())
586
- p1 = d/dx_0 - 1/2*x_1 d/dx_2
588
+ p1 = ∂/∂x_0 - 1/2*x_1 ∂/∂x_2
587
589
588
590
Default vs. custom naming for the invariant vector field::
589
591
@@ -625,16 +627,16 @@ def right_translation(self, g):
625
627
sage: R_g = G.right_translation(g); R_g
626
628
Diffeomorphism of the Lie group G of Heisenberg algebra of rank 1 over Rational Field
627
629
sage: R_g.display(chart1=G.chart_exp1(), chart2=G.chart_exp1())
628
- G --> G
629
- (x_0, x_1, x_2) |--> (x_0 + 1, x_1, -1/2*x_1 + x_2)
630
+ G → G
631
+ (x_0, x_1, x_2) ↦ (x_0 + 1, x_1, -1/2*x_1 + x_2)
630
632
631
633
Right translation by a generic element::
632
634
633
635
sage: h = G.point([var('a'), var('b'), var('c')])
634
636
sage: R_h = G.right_translation(h)
635
637
sage: R_h.display(chart1=G.chart_exp1(), chart2=G.chart_exp1())
636
- G --> G
637
- (x_0, x_1, x_2) |--> (a + x_0, b + x_1, 1/2*b*x_0 - 1/2*a*x_1 + c + x_2)
638
+ G → G
639
+ (x_0, x_1, x_2) ↦ (a + x_0, b + x_1, 1/2*b*x_0 - 1/2*a*x_1 + c + x_2)
638
640
"""
639
641
chart = self .default_chart ()
640
642
x = self .point (chart [:])
@@ -659,11 +661,11 @@ def right_invariant_frame(self, **kwds):
659
661
Vector frame (G, (XR_1,XR_2,XR_12))
660
662
sage: coord_frame = G.chart_exp1().frame()
661
663
sage: rivf[0].display(coord_frame)
662
- XR_1 = d/dx_1 + 1/2*x_2 d/dx_12
664
+ XR_1 = ∂/∂x_1 + 1/2*x_2 ∂/∂x_12
663
665
sage: rivf[1].display(coord_frame)
664
- XR_2 = d/dx_2 - 1/2*x_1 d/dx_12
666
+ XR_2 = ∂/∂x_2 - 1/2*x_1 ∂/∂x_12
665
667
sage: rivf[2].display(coord_frame)
666
- XR_12 = d/dx_12
668
+ XR_12 = ∂/∂x_12
667
669
668
670
Examples of custom labeling for the frame::
669
671
@@ -705,7 +707,7 @@ def right_invariant_extension(self, X, name=None):
705
707
sage: X = H.right_invariant_extension(p); X
706
708
Vector field p1 on the Lie group H of Heisenberg algebra of rank 1 over Rational Field
707
709
sage: X.display(H.chart_exp1().frame())
708
- p1 = d/dx_0 + 1/2*x_1 d/dx_2
710
+ p1 = ∂/∂x_0 + 1/2*x_1 ∂/∂x_2
709
711
710
712
Default vs. custom naming for the invariant vector field::
711
713
@@ -747,8 +749,8 @@ def conjugation(self, g):
747
749
sage: C_g = G.conjugation(g); C_g
748
750
Diffeomorphism of the Lie group G of Heisenberg algebra of rank 1 over Rational Field
749
751
sage: C_g.display(chart1=G.chart_exp1(), chart2=G.chart_exp1())
750
- G --> G
751
- (x_0, x_1, x_2) |--> (x_0, x_1, -b*x_0 + a*x_1 + x_2)
752
+ G → G
753
+ (x_0, x_1, x_2) ↦ (x_0, x_1, -b*x_0 + a*x_1 + x_2)
752
754
"""
753
755
chart = self .default_chart ()
754
756
x = self .point (chart [:])
0 commit comments