Skip to content
This repository was archived by the owner on Jan 31, 2023. It is now read-only.

Commit a3c5b46

Browse files
author
Matthias Koeppe
committed
Convert from Trac wiki using trac-to-github @ ada812633758ef31883beedebb9ad7a1c8687890 (#34)
1 parent bee0a21 commit a3c5b46

5 files changed

+21
-21
lines changed

QuantumDividedPowerAlgebra.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
1-
The [QuantumDividedPowerAlgebra](QuantumDividedPowerAlgebra) is a graded algebra over a ring R[q]. The component in degree n is the free R[q]-module with basis x^n^. The multiplication is defined on basis elements by x^r^.x^s^ = [r+s,r]_q x^r+s^ where [r+s,r]_q is the quantum binomial coefficient.
1+
The [QuantumDividedPowerAlgebra](QuantumDividedPowerAlgebra) is a graded algebra over a ring R[q]. The component in degree n is the free R[q]-module with basis x<sup>n</sup>. The multiplication is defined on basis elements by x<sup>r</sup>.x<sup>s</sup> = [r+s,r]_q x<sup>r+s</sup> where [r+s,r]_q is the quantum binomial coefficient.
22

3-
The [DividedPowerAlgebra](http://trac.sagemath.org/sage_trac/search/opensearch?q=wiki%3AQuantumDividedPowerAlgebra) is a graded algebra over a ring R. The component in degree n is the free R-module with basis x^n^. The multiplication is defined on basis elements by x^r^.x^s^ = [r+s,r]_q x^r+s^ where [r+s,r] is the binomial coefficient.
3+
The [DividedPowerAlgebra](http://trac.sagemath.org/sage_trac/search/opensearch?q=wiki%3AQuantumDividedPowerAlgebra) is a graded algebra over a ring R. The component in degree n is the free R-module with basis x<sup>n</sup>. The multiplication is defined on basis elements by x<sup>r</sup>.x<sup>s</sup> = [r+s,r]_q x<sup>r+s</sup> where [r+s,r] is the binomial coefficient.
44

5-
The divided power algebra is a Hopf algebra and is the dual Hopf algebra to R[x]. The coproduct on the divided power Hopf algebra is x^k^ |--> x^k^ x 1 + x^k-1^ x x + ... 1 x x^k^ (where I have used x as an indeterminate and as a tensor product symbol).
5+
The divided power algebra is a Hopf algebra and is the dual Hopf algebra to R[x]. The coproduct on the divided power Hopf algebra is x<sup>k</sup> |--> x<sup>k</sup> x 1 + x<sup>k-1</sup> x x + ... 1 x x<sup>k</sup> (where I have used x as an indeterminate and as a tensor product symbol).
66

77
See ticket [#11979](https://trac.sagemath.org/ticket/11979)
88
---

ReleaseTours sage-9.6.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -546,7 +546,7 @@ There is a new thematic tutorial providing many details and examples.
546546
### Miscellaneous improvements
547547

548548
* Ideal membership over quotient rings can now be decided (by reducing to ideal membership in the parent ring). [#33237](https://trac.sagemath.org/ticket/33237)
549-
* Iterating over (some) infinite modules (including ℤ_^n^_) now enumerates the entire module, in a "natural" order. [#33287](https://trac.sagemath.org/ticket/33287)
549+
* Iterating over (some) infinite modules (including ℤ_<sup>n</sup>_) now enumerates the entire module, in a "natural" order. [#33287](https://trac.sagemath.org/ticket/33287)
550550
* `BinaryQF.solve_integer()` now also works for quadratic forms of square discriminant. [#33026](https://trac.sagemath.org/ticket/33026)
551551
* `Quaternion fractional ideals` (including orders) now support the usual operations (e.g., `a*I`, `I*a`, `I+J`). [#32264](https://trac.sagemath.org/ticket/32264)
552552
* `AdditiveAbelianGroupWrapper` now exposes `.discrete_log()` for (multi-dimensional) logarithms in finite abelian groups. [#32384](https://trac.sagemath.org/ticket/32384)

SageCodingRoadMap.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ The following is some wishes:
4646

4747
* Information set decoder [#20138](https://trac.sagemath.org/ticket/20138)
4848
* Non-guava implementation for `covering_radius` [#19913](https://trac.sagemath.org/ticket/19913)
49-
* Bounds and optimal codes: Not very easy, no support yet. What to do with [http://codetables.de](http://codetables.de)(http://codetables.de)?
49+
* Bounds and optimal codes: Not very easy, no support yet. What to do with [http://codetables.de](http://codetables.de)?
5050
* Representing automorphisms of codes.
5151
Sage is reasonably good at computing automorphisms of codes with the methods
5252
`automorphisms_group_gens`, ` permutation_automorphism_group`, and the related

SageMath.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,3 @@
11
"SageMath":
2-
The full name of the formally and now nicknamed software wiki: [sage](sage).
3-
The full (formal) name of the software that is nicknamed wiki: [sage](sage).
2+
The full name of the formally and now nicknamed software [sage](sage).
3+
The full (formal) name of the software that is nicknamed [sage](sage).

symbolics.md

+14-14
Original file line numberDiff line numberDiff line change
@@ -100,12 +100,12 @@ This page gives an overview of open symbolics issues. If you notice a symbolics
100100
* [#16905](https://trac.sagemath.org/ticket/16905) - really long intervals for integration
101101
* [#17606](https://trac.sagemath.org/ticket/17606) - Calculation involving nintegral works with Sage 6.3 but not with Sage 6.4
102102
* [#18059](https://trac.sagemath.org/ticket/18059) - runaway 'unable to simplify to float approximation'
103-
* [#18599](https://trac.sagemath.org/ticket/18599) - sqrt(cot^2^)
103+
* [#18599](https://trac.sagemath.org/ticket/18599) - sqrt(cot<sup>2</sup>)
104104
* [#18821](https://trac.sagemath.org/ticket/18821) - sqrt(cos)*sin
105-
* [#20467](https://trac.sagemath.org/ticket/20467) - stackoverflow in sin(k*x)/x*erf(x^2^)
105+
* [#20467](https://trac.sagemath.org/ticket/20467) - stackoverflow in sin(k*x)/x*erf(x<sup>2</sup>)
106106
* [#21440](https://trac.sagemath.org/ticket/21440) - cos(2*pi*x)
107107
* [#22567](https://trac.sagemath.org/ticket/22567) - GSL: Unevaluated integrals to infinity have nonsense numeric value
108-
* [#22671](https://trac.sagemath.org/ticket/22671) - ((1+x)^(1/5)^/(1-x)).integrate(x,2.,3.)
108+
* [#22671](https://trac.sagemath.org/ticket/22671) - ((1+x)<sup>(1/5)</sup>/(1-x)).integrate(x,2.,3.)
109109
* [#22676](https://trac.sagemath.org/ticket/22676) - Different results from definite integral methods
110110
* [#24008](https://trac.sagemath.org/ticket/24008) - exponential integral of arccos
111111
* [#24587](https://trac.sagemath.org/ticket/24587) - integral(sqrt(1-cos(x)), x, 0, 2*pi)
@@ -141,7 +141,7 @@ This page gives an overview of open symbolics issues. If you notice a symbolics
141141
* [#21307](https://trac.sagemath.org/ticket/21307) - Maxima crash: `TypeError` when simplifying factorial ratio
142142
* [#21335](https://trac.sagemath.org/ticket/21335) - Extend normalize() and use it instead of Maxima in simplify_rational()
143143
* [#21574](https://trac.sagemath.org/ticket/21574) - simplify_log() does not
144-
* [#22027](https://trac.sagemath.org/ticket/22027) - Simplifying 0^x^ gives 0, with no assumptions on x
144+
* [#22027](https://trac.sagemath.org/ticket/22027) - Simplifying 0<sup>x</sup> gives 0, with no assumptions on x
145145
* [#22467](https://trac.sagemath.org/ticket/22467), [#22495](https://trac.sagemath.org/ticket/22495) - simplify_hypergeometric bug
146146
* [#22607](https://trac.sagemath.org/ticket/22607) - Add reduce_trig() to applied "full simplify" methods
147147
* [#22621](https://trac.sagemath.org/ticket/22621) - Improve sqrt products simplification
@@ -183,7 +183,7 @@ This page gives an overview of open symbolics issues. If you notice a symbolics
183183
* [#9555](https://trac.sagemath.org/ticket/9555) - Series expansions at singularities don't work
184184
* [#12589](https://trac.sagemath.org/ticket/12589) - series yields wrong result
185185
* [#15830](https://trac.sagemath.org/ticket/15830) - extracting coefficient x-1 out of symbolic series wrong
186-
* [#15854](https://trac.sagemath.org/ticket/15854) - series of x^s^, when s is symbolic
186+
* [#15854](https://trac.sagemath.org/ticket/15854) - series of x<sup>s</sup>, when s is symbolic
187187
* [#17400](https://trac.sagemath.org/ticket/17400) - simplify_full returns odd result from symbolic series input
188188
* [#18500](https://trac.sagemath.org/ticket/18500) - coercion of Laurent series to SR
189189
* [#19149](https://trac.sagemath.org/ticket/19149) - Sister Celine's method for hypergeometric series
@@ -300,7 +300,7 @@ This page gives an overview of open symbolics issues. If you notice a symbolics
300300
## Maxima interface
301301
* [#6862](https://trac.sagemath.org/ticket/6862) - Maxima default domain is real, not complex
302302
* [#9825](https://trac.sagemath.org/ticket/9825) - interpret Maxima's temporary variables
303-
* [#11651](https://trac.sagemath.org/ticket/11651) - Decide what to do with e^(y=x)^
303+
* [#11651](https://trac.sagemath.org/ticket/11651) - Decide what to do with e<sup>(y=x)</sup>
304304
* [#12032](https://trac.sagemath.org/ticket/12032) - Symbolics code passes ungrammatical expressions to maxima
305305
* [#12809](https://trac.sagemath.org/ticket/12809) - Solve does not give consistent results when a dummy variable is involved
306306
* [#13071](https://trac.sagemath.org/ticket/13071) - maxima interface integration problem
@@ -314,8 +314,8 @@ This page gives an overview of open symbolics issues. If you notice a symbolics
314314
* [#20846](https://trac.sagemath.org/ticket/20846) - Maxima does not handle symbolic series
315315
* [#21444](https://trac.sagemath.org/ticket/21444) - SR.wild and maxima don't mix
316316
* [#21907](https://trac.sagemath.org/ticket/21907) - Bug in Maxima interface wrt polylog
317-
* [#21974](https://trac.sagemath.org/ticket/21974) - Assuming x==0, x^x^ raises a non-informative error from Maxima
318-
* [#22027](https://trac.sagemath.org/ticket/22027) - Simplifying 0^x^ gives 0, with no assumptions on x
317+
* [#21974](https://trac.sagemath.org/ticket/21974) - Assuming x==0, x<sup>x</sup> raises a non-informative error from Maxima
318+
* [#22027](https://trac.sagemath.org/ticket/22027) - Simplifying 0<sup>x</sup> gives 0, with no assumptions on x
319319
* [#22763](https://trac.sagemath.org/ticket/22763) - Assumptions on symbols not preserved with some unevaluated integrals
320320
* [#22850](https://trac.sagemath.org/ticket/22850) - Change specific heaviside() interface to Maxima
321321
* [#22857](https://trac.sagemath.org/ticket/22857) - Using symbolic variables in domain 'positive' makes Sage crash
@@ -383,7 +383,7 @@ This page gives an overview of open symbolics issues. If you notice a symbolics
383383
* [#22566](https://trac.sagemath.org/ticket/22566) - SymPy's ceiling() is not translated to Sage
384384
* [#23923](https://trac.sagemath.org/ticket/23923) - Interface cases function with SymPy's piecewise
385385
* [#10035](https://trac.sagemath.org/ticket/10035) - Create hold context
386-
* [#18970](https://trac.sagemath.org/ticket/18970) - always simplify log(a^m^,a) to m for any a,m coercible to Integer
386+
* [#18970](https://trac.sagemath.org/ticket/18970) - always simplify log(a<sup>m</sup>,a) to m for any a,m coercible to Integer
387387
* [#21391](https://trac.sagemath.org/ticket/21391) - Disallow mixing of pos.char.ring elements and symbolic variables
388388
* [#20204](https://trac.sagemath.org/ticket/20204) - problems with constructing or converting to SymPy expressions
389389
* [#14305](https://trac.sagemath.org/ticket/14305) - Clarify assumptions and domains in Maxima
@@ -397,14 +397,14 @@ This page gives an overview of open symbolics issues. If you notice a symbolics
397397
* [#23135](https://trac.sagemath.org/ticket/23135) - Conjugate does not distribute over a sum
398398
* [#23496](https://trac.sagemath.org/ticket/23496) - sympy patch for abstract function
399399
* [#22709](https://trac.sagemath.org/ticket/22709) - to_poly_solve=True actually raises exception
400-
* [#17968](https://trac.sagemath.org/ticket/17968) - exp(x^3^) from 1 to 2
401-
* [#22672](https://trac.sagemath.org/ticket/22672) - Definite integral of (1-x)^(1/5)^/sqrt(x) crashes with both GSL and Maxima
400+
* [#17968](https://trac.sagemath.org/ticket/17968) - exp(x<sup>3</sup>) from 1 to 2
401+
* [#22672](https://trac.sagemath.org/ticket/22672) - Definite integral of (1-x)<sup>(1/5)</sup>/sqrt(x) crashes with both GSL and Maxima
402402
* [#22915](https://trac.sagemath.org/ticket/22915) - Distribute symbolic sums over the terms of their first (sum) argument
403403
* [#22733](https://trac.sagemath.org/ticket/22733) - Bug with first call to ex.series()
404404
* [#20179](https://trac.sagemath.org/ticket/20179) - add a free_variables() method
405405
* [#22026](https://trac.sagemath.org/ticket/22026) - Even reals are integers
406406
* [#22894](https://trac.sagemath.org/ticket/22894) - Symbolic expression.is_exact()
407-
* [#22005](https://trac.sagemath.org/ticket/22005) - sum(1/((2*n+1)^2^-4)^2^, n, 0, oo, algorithm='maxima') is wrong
407+
* [#22005](https://trac.sagemath.org/ticket/22005) - sum(1/((2*n+1)<sup>2</sup>-4)<sup>2</sup>, n, 0, oo, algorithm='maxima') is wrong
408408
* [#20084](https://trac.sagemath.org/ticket/20084) - residue: mathematically wrong output
409409
* [#22833](https://trac.sagemath.org/ticket/22833) - fix a calculus doctest (giac, laplace, integration)
410410
* [#22909](https://trac.sagemath.org/ticket/22909) - Indexed SR variables
@@ -426,7 +426,7 @@ This page gives an overview of open symbolics issues. If you notice a symbolics
426426
* [#10284](https://trac.sagemath.org/ticket/10284) - Infinite loop in gcd() via pynac-0.2.1
427427
* [#20089](https://trac.sagemath.org/ticket/20089) - let pynac.pyx use mpmath for arccos
428428
* [#20455](https://trac.sagemath.org/ticket/20455) - rewrite buggy Expression.coefficients() without Maxima
429-
* [#15605](https://trac.sagemath.org/ticket/15605) - (-1)^(2/3)^ evaluates to 1
429+
* [#15605](https://trac.sagemath.org/ticket/15605) - (-1)<sup>(2/3)</sup> evaluates to 1
430430
* [#21428](https://trac.sagemath.org/ticket/21428) - AssertionError plotting real part of complex function with float coefficients
431431
* [#14878](https://trac.sagemath.org/ticket/14878) - very slow taylor expansion for composite functions
432432
* [#21730](https://trac.sagemath.org/ticket/21730) - Add dedicated symbolic series tests
@@ -486,7 +486,7 @@ This page gives an overview of open symbolics issues. If you notice a symbolics
486486
* [#16643](https://trac.sagemath.org/ticket/16643) integrate() infinite loop
487487
* [#15346](https://trac.sagemath.org/ticket/15346) - implement simplify_sum and call it from full_simplify
488488
* [#15571](https://trac.sagemath.org/ticket/15571) - Incorrect zero test of complex symbolic expressions
489-
* [#10629](https://trac.sagemath.org/ticket/10629) - performance of checking if (c/d)^(a/b)^ is rational
489+
* [#10629](https://trac.sagemath.org/ticket/10629) - performance of checking if (c/d)<sup>(a/b)</sup> is rational
490490
* [#12922](https://trac.sagemath.org/ticket/12922) - add implicit derivative
491491
* [#9824](https://trac.sagemath.org/ticket/9824) - improve desolve system documentation for initial conditions
492492
* [#14630](https://trac.sagemath.org/ticket/14630) - add `simplify_real`

0 commit comments

Comments
 (0)