-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathlerc_quip.py
66 lines (54 loc) · 2.49 KB
/
lerc_quip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
"""
* Copyright (c) 2022, salesforce.com, inc.
* All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
* For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
from typing import Dict, List, Set
from qaeval.scoring.scorers.scorer import Scorer
from transformers import AutoModelForSequenceClassification, AutoTokenizer
def predict(our_model, our_tokenizer, batch_sentences, device):
inputs = our_tokenizer(batch_sentences, max_length=512, truncation=True, \
padding="max_length", return_tensors="pt")
outputs = our_model(input_ids=inputs["input_ids"].to(device), \
attention_mask=inputs["attention_mask"].to(device))
outputs = [x[0] for x in outputs[0].cpu().tolist()]
outputs = [{"pred_score": x} for x in outputs]
return outputs
class LERCQuipScorer(Scorer):
def __init__(self, lerc_quip_path: str, cuda_device: int, batch_size: int = 8) -> None:
self.device = cuda_device
self.predictor = AutoModelForSequenceClassification.from_pretrained(lerc_quip_path).to(self.device)
self.predictor.eval()
self.tokenizer = AutoTokenizer.from_pretrained(lerc_quip_path)
self.batch_size = batch_size
def keys(self) -> Set[str]:
return {'lerc_quip'}
def _score_single_ref(
self,
context: str,
questions: List[str],
answers: List[str],
predictions: List[str],
probabilities: List[float],
null_probabilities: List[float]
) -> List[Dict[str, float]]:
input_dicts = []
indices = []
for i, (answer, question, prediction, probability, null_probability) in \
enumerate(zip(answers, questions, predictions,
probabilities, null_probabilities)):
if probability > null_probability:
sentence1 = f"{question} <q> {answer} <r> {prediction} <c> {context}"
input_dicts.append(sentence1)
indices.append(i)
output_dicts = []
for i in range(0, len(input_dicts), self.batch_size):
batch = input_dicts[i:i + self.batch_size]
output_dicts.extend(predict(self.predictor, self.tokenizer, batch, self.device))
assert len(output_dicts) == len(input_dicts)
scores = [0.0] * len(questions)
for i, output_dict in zip(indices, output_dicts):
scores[i] = output_dict['pred_score']
scores = [{'lerc_quip': s} for s in scores]
return scores