-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathtf_sentimentmain.py
134 lines (97 loc) · 3.1 KB
/
tf_sentimentmain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import tf_data_utils as utils
import os
import sys
import numpy as np
import tensorflow as tf
import random
import pickle
import tf_seq_lstm
import tf_tree_lstm
DIR = './project_data/sst/'
GLOVE_DIR ='./'
import pdb
import time
#from tf_data_utils import extract_tree_data,load_sentiment_treebank
class Config(object):
num_emb=None
emb_dim = 300
hidden_dim = 150
output_dim=None
degree = 2
num_epochs = 1
early_stopping = 2
dropout = 0.5
lr = 0.05
emb_lr = 0.1
reg=0.0001
batch_size = 5
#num_steps = 10
maxseqlen = None
maxnodesize = None
fine_grained=False
trainable_embeddings=True
nonroot_labels=True
#dependency=True not supported
def train(restore=False):
config=Config()
data,vocab = utils.load_sentiment_treebank(DIR,config.fine_grained)
train_set, dev_set, test_set = data['train'], data['dev'], data['test']
print 'train', len(train_set)
print 'dev', len(dev_set)
print 'test', len(test_set)
num_emb = len(vocab)
num_labels = 5 if config.fine_grained else 3
for _, dataset in data.items():
labels = [label for _, label in dataset]
assert set(labels) <= set(xrange(num_labels)), set(labels)
print 'num emb', num_emb
print 'num labels', num_labels
config.num_emb=num_emb
config.output_dim = num_labels
config.maxseqlen=utils.get_max_len_data(data)
config.maxnodesize=utils.get_max_node_size(data)
print config.maxnodesize,config.maxseqlen ," maxsize"
#return
random.seed()
np.random.seed()
with tf.Graph().as_default():
#model = tf_seq_lstm.tf_seqLSTM(config)
model = tf_tree_lstm.tf_NarytreeLSTM(config)
init=tf.initialize_all_variables()
saver = tf.train.Saver()
best_valid_score=0.0
best_valid_epoch=0
dev_score=0.0
test_score=0.0
with tf.Session() as sess:
sess.run(init)
start_time=time.time()
if restore:saver.restore(sess,'./ckpt/tree_rnn_weights')
for epoch in range(config.num_epochs):
print 'epoch', epoch
avg_loss=0.0
avg_loss = train_epoch(model, train_set,sess)
print 'avg loss', avg_loss
dev_score=evaluate(model,dev_set,sess)
print 'dev-scoer', dev_score
if dev_score > best_valid_score:
best_valid_score=dev_score
best_valid_epoch=epoch
saver.save(sess,'./ckpt/tree_rnn_weights')
if epoch -best_valid_epoch > config.early_stopping:
break
print "time per epochis {0}".format(
time.time()-start_time)
test_score = evaluate(model,test_set,sess)
print test_score,'test_score'
def train_epoch(model,data,sess):
loss=model.train(data,sess)
return loss
def evaluate(model,data,sess):
acc=model.evaluate(data,sess)
return acc
if __name__ == '__main__':
if len(sys.argv) > 1:
restore=True
else:restore=False
train(restore)