-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
485 lines (445 loc) · 22.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
'''Model implementation for 2l-dr: headline generation (take 2)
in Tensorflow, an encoder-decoder model with attention, using either
an RNN or QRNN
Based on Google Translate Tensorflow model
https://github.com/tensorflow/models/blob/master/tutorials/rnn/translate/
And CS 20SI assignment 3 starter code by Chip Huyen
https://github.com/chiphuyen/tf-stanford-tutorials/tree/master/assignments/chatbot
'''
import os
import time
import numpy as np
import tensorflow as tf
import config
import data
import utils
import rnn
from qrnn import init_encoder_and_decoder, seq2seq_f
class Summarizer(object):
def _seq_f(self, encoder_inputs, decoder_inputs, do_decode):
''' seq2seq function to pass into model_with_buckets()
implements an RNN and QRNN implementation '''
if self.model == 'rnn':
return rnn.seq2seq(
encoder_inputs,
decoder_inputs,
self.cell,
num_encoder_symbols=self.enc_vocab,
num_decoder_symbols=self.dec_vocab,
embedding_size=config.EMBED_SIZE,
embeddings=self.embeddings,
output_projection=self.output_projection,
feed_previous=do_decode)
enc_seq_length = len(encoder_inputs)
dec_seq_length = len(decoder_inputs)
encoder, decoder = init_encoder_and_decoder(self.enc_vocab,
self.dec_vocab,
enc_seq_length,
dec_seq_length,
config.EMBED_SIZE,
config.NUM_LAYERS,
config.CONV_SIZE,
config.HIDDEN_SIZE,
self.output_projection)
return seq2seq_f(encoder, decoder, encoder_inputs, decoder_inputs,
do_decode, self.embeddings, self.cell, self.center_conv)
def _construct_seq(self, output_logits):
'''Construct final sequence by taking argmax over the logits'''
output_logits = np.array(output_logits)
outputs = [int(np.argmax(logit)) for logit in output_logits]
# outputs = np.argmax(output_logits, axis=1).tolist()
# If there is an EOS symbol in outputs, cut them at that point.
if config.EOS_ID in outputs:
outputs = outputs[:outputs.index(config.EOS_ID)+1]
# Print out sentence corresponding to outputs.
return " ".join([tf.compat.as_str(self.inv_dec_dict[output])
for output in outputs])
def _setup_data(self):
'''Load datasets and vocabularies'''
print 'Setting up data...',
start = time.time()
with open(os.path.join(self.sess_dir, 'data_path'), 'w') as f:
f.write(self.data_path)
meta_data = data.load_data(self.data_path, config.BUCKETS)
self.train_data = meta_data[0]
self.dev_data = meta_data[1]
self.test_data = meta_data[2]
self.enc_dict = meta_data[3]
self.dec_dict = meta_data[4]
self.num_train_points = meta_data[5]
self.dev_headlines_path = meta_data[6]
self.test_headlines_path = meta_data[7]
self.inv_dec_dict = {v: k for k, v in self.dec_dict.iteritems()}
self.enc_vocab = len(self.enc_dict)
self.dec_vocab = len(self.dec_dict)
print 'Setting up data took', time.time() - start, 'seconds'
print 'Encoder vocab size:', len(self.enc_dict)
print 'Encoder vocab size:', len(self.dec_dict)
print 'Number of training samples', [len(x['dec_input']) for i, x in
self.train_data.iteritems()]
def _setup_sess_dir(self):
'''Set up session directory. All outputs from the program go here'''
print 'Setting up directory for session'
self.sess_dir = os.path.join('', self.sess_name)
data.make_dir(self.sess_dir)
def _setup_checkpoints(self):
'''Initialize path to checkpoints'''
print 'Setting up checkpoints directory'
self.checkpoint_path = os.path.join(self.sess_dir, 'checkpoint')
data.make_dir(self.checkpoint_path)
def _setup_results(self):
'''Initialize path to results'''
print 'Setting up results directory'
self.results_path = os.path.join(self.sess_dir, 'results')
data.make_dir(self.results_path)
def _create_placeholders(self):
'''Create placeholders for inputs and other parameters'''
print 'Creating placeholders... ',
start = time.time()
self.encoder_inputs = []
self.decoder_inputs = []
self.decoder_masks = []
self.feed_prev_placeholder = tf.placeholder(tf.bool, shape=[],
name='feed_prev')
# self.learning_rate = tf.placeholder(tf.float32, shape=[], name='lr')
for i in xrange(config.BUCKETS[-1][0]): # Last bucket is the biggest.
self.encoder_inputs.append(tf.placeholder(tf.int32, shape=[None],
name='encoder{}'.format(i)))
for i in xrange(config.BUCKETS[-1][1] + 1):
self.decoder_inputs.append(tf.placeholder(tf.int32, shape=[None],
name='decoder{}'.format(i)))
self.decoder_masks.append(tf.placeholder(tf.float32, shape=[None],
name='mask{}'.format(i)))
# Our targets are decoder inputs shifted by one (to ignore <s> symbol)
self.targets = [self.decoder_inputs[i + 1]
for i in xrange(len(self.decoder_inputs) - 1)]
print 'Took', time.time() - start, 'seconds'
def _create_loss(self):
''' Create loss, output projection, RNN cell, embeddings '''
print 'Creating loss... ',
start = time.time()
xavier = tf.contrib.layers.xavier_initializer()
# use output projection if we're using sampled softmax
if config.NUM_SAMPLES > 0 and config.NUM_SAMPLES < self.dec_vocab:
proj_w_size = config.HIDDEN_SIZE
w = tf.Variable(xavier([proj_w_size, self.dec_vocab]), name='w')
b = tf.Variable(xavier([self.dec_vocab]), name='b')
self.output_projection = (w, b)
def sampled_loss(inputs, labels):
labels = tf.reshape(labels, [-1, 1])
return tf.nn.sampled_softmax_loss(tf.transpose(w), b, inputs,
labels, config.NUM_SAMPLES,
self.dec_vocab)
self.softmax_loss = sampled_loss
single_cell = tf.nn.rnn_cell.GRUCell(config.HIDDEN_SIZE)
self.cell = tf.nn.rnn_cell.MultiRNNCell([single_cell] *
config.NUM_LAYERS)
if self.pretrained:
# set up variables for special tokens and concat with pretrained
pad = tf.zeros([1, config.EMBED_SIZE])
flags = tf.Variable(xavier([3, config.EMBED_SIZE],
dtype=tf.float32), name='flags')
embeddings = tf.constant(data.load_embeddings(self.data_path),
dtype=tf.float32)
self.embeddings = tf.concat(0, [pad, flags, embeddings])
else:
self.embeddings = tf.Variable(xavier([self.enc_vocab,
config.EMBED_SIZE]),
dtype=tf.float32)
feed_prev = self.feed_prev_placeholder
self.outputs, self.losses = tf.nn.seq2seq.model_with_buckets(
self.encoder_inputs,
self.decoder_inputs,
self.targets,
self.decoder_masks,
config.BUCKETS,
lambda x, y: self._seq_f(x, y, feed_prev),
softmax_loss_function=self.softmax_loss
)
# If we use output projection, we need to project outputs for decoding.
def project_outputs(cur, bucket):
if self.output_projection:
return [tf.matmul(output,
self.output_projection[0]) +
self.output_projection[1]
for output in self.outputs[bucket]]
return tf.constant(False)
for bucket in xrange(len(config.BUCKETS)):
cur = self.outputs[bucket]
self.outputs[bucket] = tf.cond(self.feed_prev_placeholder,
lambda: project_outputs(cur,
bucket),
lambda: cur)
print 'Took', time.time() - start, 'seconds'
def _create_optimizer(self):
''' Create optimizers and train ops for each bucket '''
print 'Creating optimizer... ',
start = time.time()
with tf.variable_scope('training'):
self.global_step = tf.Variable(0, dtype=tf.int32, trainable=False,
name='global_step')
self.bucket_step = tf.Variable(0, dtype=tf.int32, trainable=False,
name='bucket_step')
self.epoch = tf.Variable(0, dtype=tf.int32, trainable=False,
name='epoch')
self.bucket_index = tf.Variable(0, dtype=tf.int32, trainable=False,
name='bucket_index')
if self.create_opt:
self.optimizer = tf.train.AdamOptimizer(config.LR)
trainables = tf.trainable_variables()
self.gradient_norms = []
self.train_ops = []
for bucket in xrange(len(config.BUCKETS)):
grads = tf.gradients(self.losses[bucket], trainables)
max_g = config.MAX_GRAD_NORM
clipped_grads, norm = tf.clip_by_global_norm(grads, max_g)
self.gradient_norms.append(norm)
self.train_ops.append(self.optimizer.apply_gradients(
zip(clipped_grads,
trainables),
global_step=self.global_step))
print('Created opt for bucket {}'.format(bucket))
print 'Took', time.time() - start, 'seconds'
def __init__(self, data_path, create_opt, sess_name, model, pretrained,
center_conv=False):
self.data_path = data_path
self.create_opt = create_opt
self.sess_name = sess_name
self.model = model
self.pretrained = pretrained
self.center_conv = center_conv
# self.lr = config.LR
self.dev_loss = None
print '###Initializing', model, 'model'
self._setup_sess_dir()
self._setup_data()
self._setup_checkpoints()
self._setup_results()
self._create_placeholders()
self._create_loss()
self._create_optimizer()
def _check_restore_parameters(self, sess, saver):
''' Check if there are parameters to restore for this session '''
ckpt = tf.train.get_checkpoint_state(self.checkpoint_path)
if ckpt and ckpt.model_checkpoint_path:
print "Loading parameters"
saver.restore(sess, ckpt.model_checkpoint_path)
else:
print "Initializing fresh parameters"
def run_step(self, sess, encoder_inputs, decoder_inputs, decoder_masks,
batch_size, bucket_id, update_params):
''' Run the model on given inputs once '''
encoder_size, decoder_size = config.BUCKETS[bucket_id]
# set up input feed
input_feed = {}
# each placeholder holds a timestep
for step in xrange(encoder_size):
input_feed[self.encoder_inputs[step].name] = encoder_inputs[step]
for step in xrange(decoder_size):
input_feed[self.decoder_inputs[step].name] = decoder_inputs[step]
input_feed[self.decoder_masks[step].name] = decoder_masks[step]
last_target = self.decoder_inputs[decoder_size].name
input_feed[last_target] = np.zeros([batch_size], dtype=np.int32)
# input_feed[self.learning_rate] = self.lr
input_feed[self.feed_prev_placeholder] = not update_params
# output feed: depends on whether we do a backward step or not.
if update_params:
output_feed = [self.train_ops[bucket_id], # update that does SGD.
self.gradient_norms[bucket_id], # gradient norm.
self.losses[bucket_id]] # loss for this batch.
else:
output_feed = [self.losses[bucket_id]] # loss for this batch.
for step in xrange(decoder_size): # output logits.
output_feed.append(self.outputs[bucket_id][step])
outputs = sess.run(output_feed, input_feed)
if update_params:
return outputs[1], outputs[2], None # Grad norm, loss, no outputs.
else:
return None, outputs[0], outputs[1:] # No grad norm, loss, outputs
def evaluate(self, sess, train_losses, iteration, test=False):
''' Evaluate the model's current state on dev or test set '''
bucket_loss_texts = []
bucket_losses = []
summaries = []
eval_iter = 0
avg_loss = np.sum(train_losses) / len(train_losses)
print 'Average train loss', avg_loss
eval_start = time.time()
for bucket_index in xrange(len(config.BUCKETS)):
bucket_count = len(self.test_data[bucket_index]['enc_input'])
if bucket_count == 0:
print 'Test: empty bucket', bucket_index
continue
bucket_loss = []
while True:
# get data
eval_data = self.test_data if test else self.dev_data
batch_data = data.get_batch(eval_data, bucket_index,
config.BUCKETS, config.BATCH_SIZE,
eval_iter)
encoder_inputs = batch_data[0]
decoder_inputs = batch_data[1]
decoder_masks = batch_data[2]
done = batch_data[3]
# run model
_, step_loss, output_logits = self.run_step(sess,
encoder_inputs,
decoder_inputs,
decoder_masks,
config.BATCH_SIZE,
bucket_index,
False)
bucket_loss.append(step_loss)
output_logits = np.array(output_logits)
# get summaries
for i in xrange(config.BATCH_SIZE):
summaries.append(self._construct_seq(
output_logits[:, i, :]))
eval_iter += 1
if done:
eval_iter = 0
break
loss_text = 'Test bucket:', bucket_index, 'Avg Loss:', \
(sum(bucket_loss) / len(bucket_loss))
print loss_text
bucket_losses.append(sum(bucket_loss))
bucket_loss_texts.append(loss_text)
path = os.path.join(self.results_path,
'iter_' + str(iteration))
# adjust learning rate if dev loss increases
# if self.dev_loss is not None:
# if sum([self.dev_loss[i] < bucket_losses[i]
# for i in range(len(bucket_losses))]) > 0:
# self.lr /= 2
# print 'Learning rate adjusted'
self.dev_loss = bucket_losses
# log results
if test:
path += '_test'
data.make_dir(path)
gt_path = self.test_headlines_path if test else self.dev_headlines_path
utils.write_results(summaries, avg_loss, bucket_loss_texts,
path, gt_path)
print 'Wrote results to', path
print 'Evaluation took', time.time() - eval_start
def train(self):
''' train the model '''
def num_steps(bucket):
return int(np.ceil(len(bucket) / float(config.BATCH_SIZE)))
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
self._check_restore_parameters(sess, saver)
# get checkpoint save state
iteration = self.global_step.eval()
# get number of batches per bucket
bucket_sizes = [num_steps(v['dec_input']) for k, v
in self.train_data.iteritems()]
cur_epoch = self.epoch.eval()
bucket_index = self.bucket_index.eval()
step_iter = self.bucket_step.eval()
print 'Starting at iter:', iteration, 'epoch:', cur_epoch+1, \
'bucket index:', bucket_index, 'bucket step:', step_iter
for epoch in range(cur_epoch, config.NUM_EPOCHS):
epoch_start = time.time()
total_losses = []
sess.run(tf.assign(self.epoch, epoch))
print '\n', 'Epoch:', epoch+1
print 'Bucket sizes', bucket_sizes
# print 'Learning rate:', self.lr
# show progress bar if more than one batch
if sum(bucket_sizes) > 1:
prog = utils.Progbar(target=bucket_sizes[bucket_index])
end_while = False
while True:
# get data for iteration
batch_start = time.time()
batch_data = data.get_batch(self.train_data, bucket_index,
config.BUCKETS,
config.BATCH_SIZE,
step_iter)
encoder_inputs = batch_data[0]
decoder_inputs = batch_data[1]
decoder_masks = batch_data[2]
next_bucket = batch_data[3]
# run the model
_, step_loss, _ = self.run_step(sess, encoder_inputs,
decoder_inputs,
decoder_masks,
config.BATCH_SIZE,
bucket_index, True)
# reset iteration vars if done with the current bucket
if next_bucket:
step_iter = sess.run(tf.assign(self.bucket_step, 0))
bucket_index = sess.run(tf.assign(self.bucket_index,
bucket_index+1))
else:
step_iter = sess.run(tf.assign(self.bucket_step,
step_iter+1))
if bucket_index >= len(config.BUCKETS):
end_while = True
bucket_index = sess.run(tf.assign(self.bucket_index,
0))
if next_bucket and sum(bucket_sizes) > 1:
print # update progress
prog.update(bucket_sizes[bucket_index-1],
[("train loss", step_loss),
('batch runtime',
time.time() - batch_start)])
new_bucket = bucket_sizes[bucket_index]
prog = utils.Progbar(target=new_bucket)
total_losses.append(step_loss)
# when to evaluate and save state
if end_while or \
iteration == 200 or \
(iteration > 0 and iteration % 1000 == 0):
saver.save(sess, os.path.join(self.checkpoint_path,
'summarizer'),
global_step=iteration)
if iteration == 200 or end_while or epoch < 2 \
or iteration % 2000 == 0:
self.evaluate(sess, total_losses, iteration)
iteration += 1
if sum(bucket_sizes) == 1:
print 'Train loss', step_loss
if end_while:
print 'Epoch', epoch+1, 'took', time.time()-epoch_start
break
if sum(bucket_sizes) > 1:
prog.update(step_iter,
[("train loss", step_loss),
('batch runtime',
time.time() - batch_start)])
# eval on test set at the end
self.evaluate(sess, total_losses, iteration, test=True)
saver.save(sess, os.path.join(self.checkpoint_path,
'summarizer'),
global_step=iteration)
def summarize(self, inputs):
''' generate a headline for the given inputs '''
saver = tf.train.Saver()
with tf.Session() as sess:
summaries = []
sess.run(tf.global_variables_initializer())
self._check_restore_parameters(sess, saver)
# get data
bucket_index, input_data = data.process_input([inputs],
config.BUCKETS,
self.enc_dict,
self.dec_dict)
encoder_inputs = input_data[0]
decoder_inputs = input_data[1]
decoder_masks = input_data[2]
# run model
_, _, output_logits = self.run_step(sess, encoder_inputs,
decoder_inputs,
decoder_masks,
len(encoder_inputs[0]),
bucket_index, False)
# get summaries
output_logits = np.array(output_logits)
print output_logits.shape
for i in xrange(output_logits.shape[1]):
summaries.append(self._construct_seq(
output_logits[:, i, :]))
return summaries