-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathredcap_to_casesdir.py
668 lines (552 loc) · 30.2 KB
/
redcap_to_casesdir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
from __future__ import print_function
from builtins import zip
from builtins import str
from builtins import range
from builtins import object
import os
import re
import ast
import glob
import hashlib
from pathlib import Path
from typing import Union
import pandas
import numpy as np
import datetime
import subprocess
from ast import literal_eval as make_tuple
import sibispy
from sibispy import sibislogger as slog
from sibispy import utils as sutils
from sibispy import config_file_parser as cfg_parser
from sibispy.cluster_util import SlurmScheduler
class redcap_to_casesdir(object):
def __init__(self):
self.__import_forms = dict()
self.__export_forms = dict()
self.__export_rename = dict()
# Make lookup dicts for mapping radio/dropdown codes to labels
self.__code_to_label_dict = dict()
self.__metadata_dict = dict()
self.__event_dict = dict()
self.__demographic_event_skips = list()
self.__forms_dir = None
self.__sibis_defs = None
self.__scanner_dict = None
def configure(self, sessionObj, redcap_metadata):
# Make sure it was set up correctly
if not sessionObj.get_ordered_config_load() :
slog.info('recap_to_cases_dir.configure',"ERROR: session has to be configured with ordered_config_load set to True")
return False
# reading script specific settings
(cfgParser,err_msg) = sessionObj.get_config_sys_parser()
if err_msg:
slog.info('recap_to_cases_dir.configure',str(err_msg))
return False
self.__sibis_defs = cfgParser.get_category('redcap_to_casesdir')
self.__scanner_dict = self.__sibis_defs['scanner_dict']
for TYPE in list(self.__scanner_dict.keys()) :
self.__scanner_dict[TYPE] = self.__scanner_dict[TYPE].split(",")
# Reading in events
self.__event_dict = self.__transform_dict_string_into_tuple__('event_dictionary')
if not self.__event_dict:
return False
# Reading in which events to skip demographics generation for (i.e. midyears)
self.__demographic_event_skips = self.__sibis_defs['skip_demographics_for']
# reading in all forms and variables that should be exported to cases_dir
self.__forms_dir = os.path.join(sessionObj.get_operations_dir(),'redcap_to_casesdir')
if not os.path.exists(self.__forms_dir) :
slog.info('redcap_to_casesdir.configure','ERROR: ' + str(self.__forms_dir) + " does not exist!")
return False
exports_files = glob.glob(os.path.join(self.__forms_dir, '*.txt'))
for f in exports_files:
file = open(f, 'r')
contents = [line.strip() for line in file.readlines()]
file.close()
export_name = re.sub('\.txt$', '', os.path.basename(f))
import_form = re.sub('\n', '', contents[0])
self.__import_forms[export_name] = import_form
self.__export_forms[export_name] = [re.sub('\[.*\]', '', field) for field in contents[1:]] + ['%s_complete' % import_form]
self.__export_rename[export_name] = dict()
for field in contents[1:]:
match = re.match('^(.+)\[(.+)\]$', field)
if match:
self.__export_rename[export_name][match.group(1)] = match.group(2)
return self.__organize_metadata__(redcap_metadata)
def __transform_dict_string_into_tuple__(self,dict_name):
dict_str = self.__sibis_defs[dict_name]
dict_keys = list(dict_str.keys())
if not len(dict_keys):
slog.info('redcap_to_casesdir.configure',"ERROR: Cannot find '" + dict_name + "'' in config file!")
return None
dict_tup = dict()
for key in dict_keys:
# turn string into tuple
dict_tup[key] = make_tuple("(" + dict_str[key] +")")
return dict_tup
# Organize REDCap metadata (data dictionary)
def __organize_metadata__(self,redcap_metadata):
# turn metadata into easily digested dict
for field in redcap_metadata:
field_tuple = (field['field_type'],
field['text_validation_type_or_show_slider_number'],
field['field_label'],
field['text_validation_min'],
field['text_validation_max'],
field['select_choices_or_calculations'])
self.__metadata_dict[field['field_name']] = field_tuple
meta_data_dict = self.__transform_dict_string_into_tuple__('general_datadict')
if not meta_data_dict :
return False
self.__metadata_dict.update(meta_data_dict)
if not self.__check_all_forms__():
return False
self.__make_code_label_dict__(redcap_metadata)
return True
# Filter confidential fields from all forms
def __check_all_forms__(self):
# Filter each form
text_list = list()
non_redcap_list = list()
empty_line_list = list()
for export_name in list(self.__export_forms.keys()):
(form_text_list, form_non_redcap_list) = self.__check_form__(export_name)
if form_text_list :
text_list += form_text_list
if form_non_redcap_list:
if form_non_redcap_list[0][1] == '' :
empty_line_list += [form_non_redcap_list[0][0]]
else :
non_redcap_list += form_non_redcap_list
if text_list:
slog.info('redcap_to_casesdir.__check_all_forms__.' + hashlib.sha1(str(text_list).encode()).hexdigest()[0:6],
"ERROR: The txt file(s) in '" + str(self.__forms_dir) + "' list non-numeric redcap variable names!",
form_variable_list = str(text_list),
info = "Remove it from form file or modify definition in REDCap")
if non_redcap_list :
slog.info('redcap_to_casesdir.__check_all_forms__.' + hashlib.sha1(str(text_list).encode()).hexdigest()[0:6],
"ERROR: The txt file(s) in '" + str(self.__forms_dir) + "' list variables that do not exist in redcap!",
form_variable_list = str(non_redcap_list),
info = "Remove it from form or modify definition REDCap")
if empty_line_list :
slog.info('redcap_to_casesdir.__check_all_forms__.' + hashlib.sha1(str(text_list).encode()).hexdigest()[0:6],
"ERROR: The txt file(s) in '" + str(self.__forms_dir) + "' contain more than one empty line!",
empty_line_list = str(empty_line_list),
info = "Remove all empty lines form the text file. Make sure the last variable in the text file ends with a Carriage return!")
if non_redcap_list or text_list or empty_line_list:
return False
return True
# Filter potentially confidential fields out of given list, based on project
# metadata
def __check_form__(self, export_name):
text_list = list()
non_redcap_list = list()
for field_name in self.__export_forms[export_name]:
try:
(field_type, field_validation, field_label, text_val_min,
text_val_max, choices) = self.__metadata_dict[re.sub('___.*', '', field_name)]
if (field_type != 'text' and field_type != 'notes') or (field_validation in ['number', 'integer', 'time']):
pass
else:
text_list.append([export_name,field_name, field_type, field_validation])
except:
if '_complete' not in field_name:
non_redcap_list.append([export_name,field_name])
return (text_list,non_redcap_list)
def __make_code_label_dict__(self,redcap_metadata):
# First turn metadata into easily digested dict
for field in redcap_metadata:
if field['field_type'] in ['radio', 'dropdown']:
field_dict = {'': ''}
choices = field['select_choices_or_calculations']
for choice in choices.split('|'):
code_label = [c.strip() for c in choice.split(',')]
field_dict[code_label[0]] = ', '.join(code_label[1:])
self.__code_to_label_dict[field['field_name']] = field_dict
# used to be get_export_form_names
def get_export_names_of_forms(self):
return list(self.__export_forms.keys())
def create_datadict(self, export_name, datadict_dir):
if export_name not in self.__export_forms.keys() :
slog.info('redcap_to_casesdir.create_datadict',"ERROR: could not create data dictionary for form " + export_name)
return None
export_form_entry_list = self.__export_forms[export_name]
size_entry_list = len(export_form_entry_list)
export_form_list = [export_name] * size_entry_list
return self.__create_datadicts_general__(datadict_dir, export_name, export_form_list,export_form_entry_list)
# defining entry_list only makes sense if export_forms_list only consists of one
# entry !
def create_all_datadicts(self, datadict_dir):
for export_name in self.get_export_names_of_forms():
self.create_datadict(export_name,datadict_dir)
self.create_demographic_datadict(datadict_dir)
# Create custom form for demographics
def create_demographic_datadict(self, datadict_dir):
meta_data_dict = self.__transform_dict_string_into_tuple__('demographic_datadict')
if not meta_data_dict:
return False
self.__metadata_dict.update(meta_data_dict)
dict_str = self.__sibis_defs['demographic_datadict']
export_entry_list = list(dict_str.keys())
export_form_list = ['demographics'] * len(export_entry_list)
return self.__create_datadicts_general__(datadict_dir, 'demographics', export_form_list,export_entry_list)
# for each entry in the form list you have to define a variable
def __create_datadicts_general__(self,datadict_dir, datadict_base_file,export_forms_list, variable_list):
redcap_datadict_columns = ["Variable / Field Name", "Form Name",
"Section Header", "Field Type", "Field Label",
"Choices, Calculations, OR Slider Labels",
"Field Note",
"Text Validation Type OR Show Slider Number",
"Text Validation Min", "Text Validation Max",
"Identifier?",
"Branching Logic (Show field only if...)",
"Required Field?", "Custom Alignment",
"Question Number (surveys only)",
"Matrix Group Name", "Matrix Ranking?"]
# Insert standard set of data elements into each datadict.
for i in range(3):
elements = ['subject', 'arm', 'visit']
export_forms_list.insert(i, export_forms_list[0])
variable_list.insert(i, elements[i])
if not os.path.exists(datadict_dir):
os.makedirs(datadict_dir)
ddict = pandas.DataFrame(index=variable_list,columns=redcap_datadict_columns)
for name_of_form, var in zip(export_forms_list, variable_list):
field_name = re.sub('___.*', '', var)
ddict["Variable / Field Name"][var] = field_name
ddict["Form Name"][var] = name_of_form
# Check if var is in data dict ('FORM_complete' fields are NOT)
if field_name in list(self.__metadata_dict.keys()):
ddict["Field Type"][var] = self.__metadata_dict[field_name][0]
# need to transfer to utf-8 code otherwise can create problems when
# writing dictionary to file it just is a text field so it should not matter
# .encode('utf-8')
# Not needed in Python 3 anymore
ddict["Field Label"][var] = self.__metadata_dict[field_name][2]
ddict["Text Validation Type OR Show Slider Number"][var] = self.__metadata_dict[field_name][1]
ddict["Text Validation Min"][var] = self.__metadata_dict[field_name][3]
ddict["Text Validation Max"][var] = self.__metadata_dict[field_name][4]
#.encode('utf-8')
ddict["Choices, Calculations, OR Slider Labels"][var] = self.__metadata_dict[field_name][5]
# Finally, write the data dictionary to a CSV file
dicFileName = os.path.join(datadict_dir,datadict_base_file + '_datadict.csv')
try:
sutils.safe_dataframe_to_csv(ddict,dicFileName)
return dicFileName
except Exception as err_msg:
slog.info('redcap_to_casesdir.__create_datadicts_general__',"ERROR: could not export dictionary" + dicFileName,
err_msg = str(err_msg))
return None
# Truncate age to 2 digits for increased identity protection
def __truncate_age__(self, age_in):
matched = re.match('([0-9]*\.[0-9]*)', str(age_in))
if matched:
return round(float(matched.group(1)), 2)
else:
return age_in
def __get_scanner_mfg_and_model__(self, mri_scanner, expid):
if mri_scanner == 'nan' :
return ["",""]
mri_scanner= mri_scanner.upper()
for TYPE in list(self.__scanner_dict.keys()) :
if TYPE in mri_scanner :
return self.__scanner_dict[TYPE]
slog.info(expid, "Error: Do not know scanner type", script='redcap_to_casesdir.py', mri_scanner = mri_scanner)
return ["",""]
# NCANDA SPECIFIC - Generalize later
# Create "demographics" file "by hand" - this includes some text fields
def export_subject_demographics(
self,
subject,
subject_code,
arm_code,
visit_code,
site,
visit_age,
subject_data,
visit_data,
exceeds_criteria_baseline,
siblings_enrolled_yn_corrected,
siblings_id_first_corrected,
measures_dir,
conditional=False,
verbose=False,
):
target_path = os.path.join(measures_dir, 'demographics.csv')
# this is done so that midyear visit does not ovewrite the main visit demographic file
if conditional and os.path.exists(target_path):
if verbose :
print("Skipping updating demographics based on midyear visit: " + target_path)
return 0
# Latino and race coding arrives here as floating point numbers; make
# int strings from that (cannot use "int()" because it would fail for
# missing data
hispanic_code = re.sub('(.0)|(nan)', '', str(subject_data['hispanic']))
race_code = re.sub('(.0)|(nan)', '', str(subject_data['race']))
# scanner manufacturer map
scanner_mfg, scanner_model = self.__get_scanner_mfg_and_model__(str(visit_data['mri_scanner']), subject + "-" + visit_code)
# Definig enroll_exception_drinking_2
if exceeds_criteria_baseline < 0 :
exceeds_criteria_baseline=int(subject_data['enroll_exception___drinking'])
if siblings_enrolled_yn_corrected < 0:
siblings_enrolled_yn_corrected=subject_data['siblings_enrolled___true']
# No sibling than by default it is the subject itself
if siblings_enrolled_yn_corrected == 0 :
siblings_id_first_corrected = subject_code
elif siblings_id_first_corrected == None :
# if there is a sibling and if not a special case, then use default
siblings_id_first_corrected=subject_data['siblings_id1']
# unless not defined either -> then it must be the first subject
if type(siblings_id_first_corrected) is not str or siblings_id_first_corrected == "" :
siblings_id_first_corrected = subject_code
# if you add a line pe
if race_code == '6':
# if other race is specified, mark race label with manually curated
# race code
race_label=subject_data['race_other_code']
else :
race_label=self.__code_to_label_dict['race'][race_code]
if pandas.isnull(subject_data['family_id']):
family_id = ""
else:
family_id = str(int(subject_data['family_id']))
if conditional:
visit_age = ''
else:
visit_age = self.__truncate_age__(visit_age)
# define ndar values
if pandas.isnull(subject_data['ndar_guid_id']):
if pandas.isnull(subject_data['ndar_guid_pseudo_id']):
ndar_guid_id = ""
else:
ndar_guid_id = subject_data['ndar_guid_pseudo_id']
else:
ndar_guid_id = subject_data['ndar_guid_id']
ndar_consent = re.sub(r'\.0$|nan', '', str(subject_data['ndar_consent']))
ndar_guid_anomaly = re.sub(r'\.0$|nan', '', str(subject_data['ndar_guid_anomaly']))
ndar_guid_anomaly_visit = re.sub(r'\.0$|nan', '', str(subject_data['ndar_guid_anomaly_visit']))
ndar_guid_aud_dx_followup = re.sub(r'\.0$|nan', '', str(subject_data['ndar_guid_aud_dx_followup']))
ndar_guid_aud_dx_initial = re.sub(r'\.0$|nan', '', str(subject_data['ndar_guid_aud_dx_initial']))
# convert visit date from YYYY-MM-DD to MM/YYYY
if pandas.isnull(visit_data['visit_date']):
visit_date = ""
else:
visit_date = datetime.datetime.strptime(visit_data['visit_date'], "%Y-%m-%d").strftime("%m/%Y")
demographics = [
['subject', subject_code],
['arm', arm_code],
['visit', visit_code],
['site', site],
['sex', subject[8]],
['visit_age', visit_age],
['mri_structural_age', self.__truncate_age__(visit_data['mri_t1_age'])],
['mri_diffusion_age', self.__truncate_age__(visit_data['mri_dti_age'])],
['mri_restingstate_age', self.__truncate_age__(visit_data['mri_rsfmri_age'])],
['exceeds_bl_drinking',
'NY'[int(subject_data['enroll_exception___drinking'])]],
['exceeds_bl_drinking_2',exceeds_criteria_baseline],
['siblings_enrolled_yn',
'NY'[int(subject_data['siblings_enrolled___true'])]],
['siblings_id_first', subject_data['siblings_id1']],
['siblings_enrolled_yn_2',
'NY'[int(siblings_enrolled_yn_corrected)]],
# ['siblings_id_first_2', siblings_id_first_corrected],
['family_id', family_id],
['hispanic', self.__code_to_label_dict['hispanic'][hispanic_code][0:1]],
['race', race_code],
['race_label', race_label],
['participant_id', subject],
['scanner', scanner_mfg],
['scanner_model', scanner_model],
['visit_date', visit_date],
['ndar_guid_id', ndar_guid_id],
['ndar_consent', ndar_consent],
['ndar_guid_anomaly', ndar_guid_anomaly],
['ndar_guid_anomaly_visit', ndar_guid_anomaly_visit],
['ndar_guid_aud_dx_followup', ndar_guid_aud_dx_followup],
['ndar_guid_aud_dx_initial', ndar_guid_aud_dx_initial],
]
series = pandas.Series()
for (key, value) in demographics:
series.at[key] = value
# write/update export_measures_log
self.update_export_log(measures_dir)
return sutils.safe_dataframe_to_csv(pandas.DataFrame(series).T,
target_path,
verbose=verbose)
def update_export_log(self, measures_dir):
"""
Update the export_measures.log file with the current datetime whenever
a demographics form is updated for a subject.
"""
# create the export_meaures.log file if it doesn't exit
measures_path = Path(measures_dir)
log_path = measures_path / "export_measures.log"
try:
with open(log_path, 'w') as file:
current_datetime = str(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
file.write(f"{current_datetime}\n")
except IOError:
print(f"Warning: Unable to write log file {log_path}")
return
def export_subject_form(self, export_name, subject, subject_code, arm_code, visit_code, all_records, measures_dir,verbose = False):
# Remove the complete field from the list of forms
complete = '{}_complete'.format(self.__import_forms.get(export_name))
fields = [column for column in self.__export_forms.get(export_name)
if column != complete]
# Select data for this form - "reindex" is necessary to put
# fields in listed order - REDCap returns them lexicographically sorted
fields = [i for i in fields if i not in ['subject', 'arm', 'visit']]
record = all_records[fields].reindex(fields, axis=1)
# if I read it correctly then this statement is not possible
if len(record) > 1:
slog.info(subject + "-" + visit_code, "ERROR: muliple records for that visit found for form '" + export_name + "'!" )
return None
# Nothing to do
if not len(record):
if verbose :
slog.info(subject + "-" + visit_code, "Info: visit data did not contain records of form '" + export_name + "'!" )
return None
# First, add the three index columns
record.insert(0, 'subject', subject_code)
record.insert(1, 'arm', arm_code)
record.insert(2, 'visit', visit_code)
field_idx = 0
output_fields = []
for field in record.columns:
# Rename field for output if necessary
if field in list(self.__export_rename[export_name].keys()):
output_field = self.__export_rename[export_name][field]
else:
output_field = field
output_fields.append(output_field)
# If this is an "age" field, truncate to 2 digits for privacy
if re.match('.*_age$', field):
record[field] = record[field].apply(self.__truncate_age__)
# If this is a radio or dropdown field
# (except "FORM_[missing_]why"), add a separate column for the
# coded label
if field in list(self.__code_to_label_dict.keys()) and not re.match('.*_why$', field):
code = str(record[field].iloc[0])
label = ''
if code in list(self.__code_to_label_dict[field].keys()):
label = self.__code_to_label_dict[field][code]
col_name = output_field + '_label'
if col_name in record.columns:
slog.info("redcap_to_casesdir.export_subject_form", f"ERROR: duplicate variable '{output_field}' in {export_name}.")
return None
else:
field_idx += 1
record.insert(field_idx, col_name, label)
output_fields.append(col_name)
field_idx += 1
# Apply renaming to columns
record.columns = output_fields
# Figure out path for CSV file and export this record
return sutils.safe_dataframe_to_csv(record,os.path.join(measures_dir, export_name + '.csv'),verbose=verbose)
# First get data for all fields across all forms in this event - this
# speeds up transfers over getting each form separately
def get_subject_specific_form_data(self,subject,event,forms_this_event, redcap_project,select_exports=None):
# define fields and forms to export
all_fields = ['study_id']
forbidden_export_fields = ['subject', 'visit', 'arm']
export_list = []
for export_name in list(self.__export_forms.keys()):
if export_name in forbidden_export_fields:
continue
if (self.__import_forms[export_name] in forms_this_event):
if (not select_exports or export_name in select_exports):
all_fields += [re.sub('___.*', '', field_name) for field_name in self.__export_forms[export_name]]
export_list.append(export_name)
# Remove the fields we are forbidden to export from REDCap
all_fields = np.setdiff1d(all_fields, forbidden_export_fields).tolist()
# Get data
all_records = redcap_project.export_records(fields=all_fields,records=[subject], events=[event],format='df')
# return results
return (all_records,export_list)
# Export selected REDCap data to cases dir
def export_subject_all_forms(self,redcap_project, site, subject, event, subject_data, visit_age, visit_data, arm_code, visit_code, subject_code, subject_datadir,forms_this_event, exceeds_criteria_baseline, siblings_enrolled_yn_corrected,siblings_id_first_corrected, select_exports=None, force_demo_flag=False, verbose=False):
measures_dir = os.path.join(subject_datadir, 'measures')
if not os.path.exists(measures_dir):
os.makedirs(measures_dir)
# Export demographics (if selected)
if force_demo_flag :
conditional = False
else :
conditional = event in self.__demographic_event_skips
if not select_exports or 'demographics' in select_exports:
self.export_subject_demographics(
subject=subject,
subject_code=subject_code,
arm_code=arm_code,
visit_code=visit_code,
site=site,
visit_age=visit_age,
subject_data=subject_data,
visit_data=visit_data,
exceeds_criteria_baseline=exceeds_criteria_baseline,
siblings_enrolled_yn_corrected=siblings_enrolled_yn_corrected,
siblings_id_first_corrected=siblings_id_first_corrected,
measures_dir=measures_dir,
conditional=conditional,
verbose=verbose)
(all_records,export_list) = self.get_subject_specific_form_data(subject,event,forms_this_event, redcap_project, select_exports)
# Now go form by form and export data
for export_name in export_list:
self.export_subject_form(export_name, subject, subject_code, arm_code, visit_code, all_records, measures_dir, verbose)
# What Arm and Visit of the study is this event?
def translate_subject_and_event( self, subject_code, event_label):
if event_label in list(self.__event_dict.keys()):
(arm_code,visit_code) = self.__event_dict[event_label]
else:
slog.info(str(subject_code),"ERROR: Cannot determine study Arm and Visit from event %s" % event_label )
return (None,None,None)
pipeline_workdir_rel = os.path.join( subject_code, arm_code, visit_code )
return (arm_code,visit_code,pipeline_workdir_rel)
def days_between_dates( self, date_from_str, date_to_str, date_format_ymd=sutils.date_format_ymd):
return (datetime.datetime.strptime( date_to_str, date_format_ymd ) - datetime.datetime.strptime( date_from_str, date_format_ymd ) ).days
def get_event_dictionary(self):
return self.__event_dict
def schedule_cluster_job(self, job_script: str, job_title: str, submit_log: Union[str, Path] = None,
job_log: str = '/dev/null', verbose: bool = False) -> bool:
slurm_config = self.__sibis_defs['cluster_config']
slurm = SlurmScheduler(slurm_config)
try:
return slurm.schedule_job(job_script, job_title, submit_log, job_log, verbose)[0]
except Exception as err_msg:
sbatch_cmd=slurm_config['base_cmd'].split(' ')[-1]
slog.info(job_title + "-" +hashlib.sha1(str(job_script).encode('utf-8')).hexdigest()[0:6],"ERROR: Failed to schedule job via slurm !",
job_script = str(job_script),
err_msg = str(err_msg),
slurm_config=str(slurm_config),
info="Make sure '" + sbatch_cmd +"' on '"+ slurm_config['connection']['host'] +"' exists! Debug by running test/test_redcap_to_casesdir.py")
return False
def schedule_old_cluster_job(self,job_script, job_title,submit_log=None, job_log=None, verbose=False):
qsub_cmd= '/opt/sge/bin/lx-amd64/qsub'
if not os.path.exists(qsub_cmd):
slog.info(job_title + "-" +hashlib.sha1(str(job_script).encode('utf-8')).hexdigest()[0:6],"ERROR: Failed to schedule job as '" + qsub_cmd + "' cannot be found!", job_script = str(job_script))
return False
sge_env = os.environ.copy()
sge_env['SGE_ROOT'] = '/opt/sge'
sge_param = self.__sibis_defs['old_cluster_parameters'].split(',')
if job_log :
sge_param += ['-o', job_log]
else :
sge_param += ['-o','/dev/null']
qsub_args= [ qsub_cmd ] + sge_param + ['-N', '%s' % (job_title) ]
#stderr=subprocess.STDOUT
qsub_process = subprocess.Popen( qsub_args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr= subprocess.PIPE, env=sge_env)
(stdoutdata, stderrdata) = qsub_process.communicate(str(job_script).encode('utf-8'))
cmd_str='echo "%s" | %s\n' % (job_script," ".join(qsub_args))
if stderrdata :
slog.info(job_title + "-" + hashlib.sha1(str(stderrdata).encode('utf-8')).hexdigest()[0:6],"ERROR: Failed to schedule job !", cmd = cmd_str, err_msg = str(stderrdata))
return False
if verbose:
print(cmd_str)
if stdoutdata:
print(stdoutdata.decode('utf-8'))
if submit_log:
with open(submit_log, "a") as myfile:
myfile.write(cmd_str)
myfile.write(stdoutdata.decode('utf-8'))
return True