-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsolver_minex.jl
46 lines (42 loc) · 1.68 KB
/
solver_minex.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
solver = BetaZeroSolver(pomdp=pomdp,
updater=up,
belief_reward=simple_minex_belief_reward,
params=BetaZeroParameters(
n_iterations=20,
n_data_gen=100,
n_holdout=50
),
collect_metrics=true,
verbose=true,
save_plots=true,
plot_incremental_data_gen=true,
plot_incremental_holdout=true,
plot_metrics_filename="intermediate_metrics_figure_minex.png")
# MCTS parameters
solver.mcts_solver = PUCTSolver(n_iterations=50,
exploration_constant=57.0,
k_action=41.09,
alpha_action=0.5657,
k_state=37.13,
alpha_state=0.9394,
depth=5,
final_criterion=MCTS.SampleZQN(τ=1, zq=1, zn=1),
counts_in_info=true)
# Neural network parameters
solver.nn_params.use_cnn = true
solver.nn_params.training_epochs = 10
solver.nn_params.n_samples = 100_000
solver.nn_params.learning_rate = 1e-6
solver.nn_params.λ_regularization = 1e-4
solver.nn_params.batchsize = 1024
solver.nn_params.layer_size = 256
solver.nn_params.optimizer = BetaZero.Flux.RMSProp
solver.nn_params.loss_func = BetaZero.Flux.mae
solver.nn_params.zero_out_tried_actions = true
solver.nn_params.normalize_input = false
solver.nn_params.use_dropout = true
solver.nn_params.p_dropout = 0.7
solver.nn_params.use_batchnorm = true
solver.nn_params.batchnorm_momentum = 0.7f0
solver.nn_params.incremental_save = true
solver.expert_results = (expert_accuracy=[0.84, 0.04], expert_returns=[-5.04, 0.861], expert_label="POMCPOW")