Skip to content

Commit 12c65a4

Browse files
committed
fix JuliaLang#12375 (fix scaling of isapprox via more sensible default tolerances)
1 parent 85bbc1f commit 12c65a4

File tree

4 files changed

+20
-40
lines changed

4 files changed

+20
-40
lines changed

base/floatfuncs.jl

+6-27
Original file line numberDiff line numberDiff line change
@@ -165,33 +165,12 @@ for f in (:round, :ceil, :floor, :trunc)
165165
end
166166
end
167167

168-
# isapprox: Tolerant comparison of floating point numbers
169-
function isapprox(x::FloatingPoint, y::FloatingPoint; rtol::Real=rtoldefault(x,y), atol::Real=atoldefault(x,y))
170-
(isinf(x) || isinf(y)) ? x == y : abs(x-y) <= atol + rtol.*max(abs(x), abs(y))
171-
end
172-
173-
# promotion of non-floats
174-
isapprox(x::Real, y::FloatingPoint; rtol::Real=rtoldefault(x, y), atol::Real=atoldefault(x, y)) = isapprox(promote(x, y)...; rtol=rtol, atol=atol)
175-
isapprox(x::FloatingPoint, y::Real; rtol::Real=rtoldefault(x, y), atol::Real=atoldefault(x, y)) = isapprox(promote(x, y)...; rtol=rtol, atol=atol)
176-
177-
# other real numbers
178-
isapprox(x::Real, y::Real; rtol::Real=0, atol::Real=0) = abs(x-y) <= atol
179-
180-
# complex numbers
181-
isapprox(z::Complex, w::Complex; rtol::Real=rtoldefault(abs(z), abs(w)), atol::Real=atoldefault(abs(z), abs(w))) = abs(z-w) <= atol + rtol*max(abs(z), abs(w))
182-
183-
# real-complex combinations
184-
isapprox(x::Real, z::Complex; rtol::Real=rtoldefault(x, abs(z)), atol::Real=atoldefault(x, abs(z))) = isapprox(complex(x), z; rtol=rtol, atol=atol)
185-
isapprox(z::Complex, x::Real; rtol::Real=rtoldefault(x, abs(z)), atol::Real=atoldefault(x, abs(z))) = isapprox(complex(x), z; rtol=rtol, atol=atol)
168+
# isapprox: approximate equality of numbers
169+
isapprox(x::Number, y::Number; rtol::Real=rtoldefault(x,y), atol::Real=0) =
170+
x == y || (isfinite(x) && isfinite(y) && abs(x-y) <= atol + rtol*max(abs(x), abs(y)))
186171

187172
# default tolerance arguments
188-
rtoldefault(x::FloatingPoint, y::FloatingPoint) = cbrt(max(eps(x), eps(y)))
189-
atoldefault(x::FloatingPoint, y::FloatingPoint) = sqrt(max(eps(x), eps(y)))
173+
rtoldefault{T<:FloatingPoint}(::Type{T}) = sqrt(eps(T))
174+
rtoldefault{T<:Real}(::Type{T}) = 0
175+
rtoldefault{T<:Number,S<:Number}(x::T, y::S) = rtoldefault(promote_type(real(T),real(S)))
190176

191-
# promotion of non-floats
192-
for fun in (:rtoldefault, :atoldefault)
193-
@eval begin
194-
($fun)(x::Real, y::FloatingPoint) = ($fun)(promote(x,y)...)
195-
($fun)(x::FloatingPoint, y::Real) = ($fun)(promote(x,y)...)
196-
end
197-
end

doc/stdlib/math.rst

+3-9
Original file line numberDiff line numberDiff line change
@@ -417,17 +417,11 @@ Mathematical Operators
417417
Mathematical Functions
418418
----------------------
419419

420-
.. function:: isapprox(x::Number, y::Number; rtol::Real=cbrt(maxeps), atol::Real=sqrt(maxeps))
420+
.. function:: isapprox(x::Number, y::Number; rtol::Real=sqrt(eps), atol::Real=0)
421421

422-
Inexact equality comparison - behaves slightly different depending on types of input args:
422+
Inexact equality comparison ``true`` if ``abs(x-y) <= atol + rtol*max(abs(x), abs(y))``. The default ``atol`` is zero and the default ``rtol`` depends on the types of ``x`` and ``y``.
423423

424-
* For ``FloatingPoint`` numbers, ``isapprox`` returns ``true`` if ``abs(x-y) <= atol + rtol*max(abs(x), abs(y))``.
425-
426-
* For ``Integer`` and ``Rational`` numbers, ``isapprox`` returns ``true`` if ``abs(x-y) <= atol``. The `rtol` argument is ignored. If one of ``x`` and ``y`` is ``FloatingPoint``, the other is promoted, and the method above is called instead.
427-
428-
* For ``Complex`` numbers, the distance in the complex plane is compared, using the same criterion as above.
429-
430-
For default tolerance arguments, ``maxeps = max(eps(abs(x)), eps(abs(y)))``.
424+
For real or complex floating-point values, ``rtol`` is the square root of the epsilon (precision) of ``x-y``. This corresponds to requiring equality of about half of the significand digits. For other types, ``rtol`` defaults to zer.
431425

432426
.. function:: sin(x)
433427

test/fastmath.jl

+8-4
Original file line numberDiff line numberDiff line change
@@ -138,18 +138,22 @@ for T in (Complex64, Complex128, Complex{BigFloat})
138138
half = (1+1im)/T(2)
139139
third = (1-1im)/T(3)
140140

141+
# some of these functions promote their result to double
142+
# precision, but we want to check equality at single precision
143+
rtol = Base.rtoldefault(real(T))
144+
141145
for f in (:+, :-, :abs, :abs2, :conj, :inv, :sign,
142146
:acos, :acosh, :asin, :asinh, :atan, :atanh, :cos,
143147
:cosh, :exp10, :exp2, :exp, :expm1, :log10, :log1p,
144148
:log2, :log, :sin, :sinh, :sqrt, :tan, :tanh)
145-
@test isapprox((@eval @fastmath $f($half)), (@eval $f($half)))
146-
@test isapprox((@eval @fastmath $f($third)), (@eval $f($third)))
149+
@test isapprox((@eval @fastmath $f($half)), (@eval $f($half)), rtol=rtol)
150+
@test isapprox((@eval @fastmath $f($third)), (@eval $f($third)), rtol=rtol)
147151
end
148152
for f in (:+, :-, :*, :/, :(==), :!=, :^)
149153
@test isapprox((@eval @fastmath $f($half, $third)),
150-
(@eval $f($half, $third)))
154+
(@eval $f($half, $third)), rtol=rtol)
151155
@test isapprox((@eval @fastmath $f($third, $half)),
152-
(@eval $f($third, $half)))
156+
(@eval $f($third, $half)), rtol=rtol)
153157
end
154158
end
155159

test/floatapprox.jl

+3
Original file line numberDiff line numberDiff line change
@@ -43,3 +43,6 @@
4343
# Notably missing from this test suite at the moment
4444
# * Tests for other magnitudes of numbers - very small, very big, and combinations of small and big
4545
# * Tests for various odd combinations of types, e.g. isapprox(x::Integer, y::Rational)
46+
47+
# issue #12375:
48+
@test !isapprox(1e17, 1)

0 commit comments

Comments
 (0)