-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathdataset.py
executable file
·77 lines (58 loc) · 2.45 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
import cv2
import numpy as np
from numpy.random import RandomState
from torch.utils.data import Dataset
import torchvision.transforms as transforms
import PIL.Image as Image
from randomcrop import RandomHorizontallyFlip
class TrainValDataset(Dataset):
def __init__(self, name):
super().__init__()
self.dataset = name
self.root = '../SBU-shadow/SBUTrain4KRecoveredSmall/'
self.imgs = open(self.dataset).readlines()
self.file_num = len(self.imgs)
self.hflip = RandomHorizontallyFlip()
self.trans = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def __len__(self):
return self.file_num * 100
def __getitem__(self, index):
image_path,label_path = self.imgs[index % self.file_num][:-1].split(' ')
image = Image.open(self.root + image_path).convert('RGB').resize((400,400))
label = Image.open(self.root + label_path).convert('L').resize((400,400))
image,label = self.hflip(image,label)
label = np.array(label,dtype='float32') / 255.0
if len(label.shape) > 2:
label = label[:,:,0]
image_nom = self.trans(image)
label = np.array([label])
sample = {'O': image_nom,'B':label,'image':np.array(image,dtype='float32').transpose(2,0,1)/255}
return sample
class TestDataset(Dataset):
def __init__(self, name):
super().__init__()
self.dataset = name
self.root = '../SBU-shadow/SBU-Test/'
self.imgs = open(self.root + 'SBU.txt').readlines()
self.file_num = len(self.imgs)
self.hflip = RandomHorizontallyFlip()
self.trans = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def __len__(self):
return self.file_num
def __getitem__(self, index):
image_path,label_path = self.imgs[index % self.file_num][:-1].split(' ')
image = Image.open(self.root + image_path).convert('RGB').resize((400,400))
label = Image.open(self.root + label_path).convert('L').resize((400,400))
label = np.array(label,dtype='float32') / 255.0
if len(label.shape) > 2:
label = label[:,:,0]
image_nom = self.trans(image)
sample = {'O': image_nom,'B':label,'image':np.array(image)}
return sample