-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathmain_sr.py
392 lines (314 loc) · 13.6 KB
/
main_sr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import os
import sys
import cv2
import argparse
import numpy as np
import logging
import time
from DSC_sr import DSC
import torch
from torch import nn
from torch.nn import MSELoss
from torch import optim
import torch.nn.functional as F
from torch.optim.lr_scheduler import MultiStepLR
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
import skimage.measure as ms
import progressbar
import skimage.io as io
import PIL.Image as I
from dataset_sr import TrainValDataset, TestDataset
import shutil
from utils import MyWcploss, ShadowRemovalL1Loss
logger = logging.getLogger('train')
logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
torch.cuda.manual_seed_all(2018)
torch.manual_seed(2018)
torch.backends.cudnn.benchmark = True
torch.cuda.set_device(1)
iter_num = 320000 #160000
def ensure_dir(dir_path):
if not os.path.isdir(dir_path):
os.makedirs(dir_path)
class L2Loss(nn.Module):
def __init__(self):
super(L2Loss, self).__init__()
def forward(self, predicted, target):
return torch.mean((predicted - target) ** 2)
class Session:
def __init__(self):
self.device = torch.device("cuda")
# SRD
self.log_dir = './SRD512_logdir'
self.model_dir = './SRD512_model'
# ensure_dir(self.log_dir)
ensure_dir(self.model_dir)
self.log_name = 'train_SRD512_alpha_1'
self.val_log_name = 'val_SRD512_alpha_1'
logger.info('set log dir as %s' % self.log_dir)
logger.info('set model dir as %s' % self.model_dir)
self.test_data_path = '/home/zhxing/Datasets/SRD_inpaint4shadow_fix/'
# self.test_data_path = '/home/zhxing/Datasets/DESOBA_xvision/'
self.train_data_path = '/home/zhxing/Datasets/SRD_inpaint4shadow_fix/train_dsc.txt'
# ISTD
# self.log_dir = './ISTD+512_logdir'
# self.model_dir = './ISTD+512_model'
# ensure_dir(self.log_dir)
# ensure_dir(self.model_dir)
# self.log_name = 'train_ISTD+512_alpha_1'
# self.val_log_name = 'val_ISTD+512_alpha_1'
# logger.info('set log dir as %s' % self.log_dir)
# logger.info('set model dir as %s' % self.model_dir)
# self.test_data_path = '/home/zhxing/Datasets/ISTD+/'
# self.train_data_path = '/home/zhxing/Datasets/ISTD+/train_dsc.txt'
self.multi_gpu = False
self.net = DSC().to(self.device)
self.l2_loss = L2Loss().to(self.device)
self.step = 0
self.save_steps = 20000
self.num_workers = 16
self.batch_size = 2 #
self.writers = {}
self.dataloaders = {}
self.shuffle = True
self.opt = optim.Adam([
{'params': [param for name, param in self.net.named_parameters() if name[-4:] == 'bias'],
'lr': 1e-5}, # Adjust learning rate for Adam
{'params': [param for name, param in self.net.named_parameters() if name[-4:] != 'bias'],
'lr': 1e-5, 'weight_decay': 5e-4}
], betas=(0.9, 0.999)) # Typical beta values for Adam
def tensorboard(self, name):
self.writers[name] = SummaryWriter(os.path.join(self.log_dir, name + '.events'))
return self.writers[name]
def write(self, name, out):
for k, v in out.items():
self.writers[name].add_scalar(k, v, self.step)
out['lr'] = self.opt.param_groups[0]['lr']
out['step'] = self.step
outputs = [
"{}:{:.4g}".format(k, v)
for k, v in out.items()
]
logger.info(name + '--' + ' '.join(outputs))
def get_dataloader(self, dataset_name, train_mode=True):
dataset = {
True: TrainValDataset,
False: TestDataset,
}[train_mode](dataset_name)
self.dataloaders[dataset_name] = \
DataLoader(dataset, batch_size=self.batch_size,
shuffle=self.shuffle, num_workers=self.num_workers, drop_last=True)
if train_mode:
return iter(self.dataloaders[dataset_name])
else:
return self.dataloaders[dataset_name]
def save_checkpoints(self, name):
ckp_path = os.path.join(self.model_dir, name)
if self.multi_gpu :
obj = {
'net': self.net.module.state_dict(),
'clock': self.step,
'opt': self.opt.state_dict(),
}
else:
obj = {
'net': self.net.state_dict(),
'clock': self.step,
'opt': self.opt.state_dict(),
}
torch.save(obj, ckp_path)
def load_checkpoints(self, name,mode='train'):
ckp_path = os.path.join(self.model_dir, name)
try:
obj = torch.load(ckp_path)
except FileNotFoundError:
return
self.net.load_state_dict(obj['net'])
if mode == 'train':
self.step = obj['clock']
if mode == 'test':
path = '../realtest/{}/'.format(self.model_dir[2:])
ensure_dir(path)
shutil.copy(ckp_path,path)
def inf_batch(self, name, batch):
if name == 'test':
torch.set_grad_enabled(False)
O, B = batch['O'], batch['B']
O, B = O.to(self.device), B.to(self.device)
predicts = self.net(O, batch['image_ori'])
predict_4, predict_3, predict_2, predict_1, predict_0, predict_g, predict_f = predicts
if name == 'test':
# No sigmoid for shadow removal task
return predicts
# Calculate losses without sigmoid
loss_4 = self.l2_loss(predict_4, B)
loss_3 = self.l2_loss(predict_3, B)
loss_2 = self.l2_loss(predict_2, B)
loss_1 = self.l2_loss(predict_1, B)
loss_0 = self.l2_loss(predict_0, B)
loss_g = self.l2_loss(predict_g, B)
loss_f = self.l2_loss(predict_f, B)
loss = loss_4 + loss_3 + loss_2 + loss_1 + loss_0 + loss_g + loss_f
# Log the losses
losses = {
'loss_all': loss.item(),
'loss_0': loss_0.item(),
'loss_1': loss_1.item(),
'loss_2': loss_2.item(),
'loss_3': loss_3.item(),
'loss_4': loss_4.item(),
'loss_g': loss_g.item(),
'loss_f': loss_f.item()
}
return predicts, loss, losses
def save_mask(self, name, img_lists):
data, label, predicts = img_lists
# 将数据和标签从LAB转换为RGB,并确保缩放和转换
data = (data.numpy().transpose(0, 2, 3, 1) * 255).astype('uint8') # 假设数据格式为 (N, C, H, W)
# label = (label.numpy().transpose(0, 2, 3, 1) * 255).astype('uint8') # 假设标签格式为 (N, C, H, W)
label = (label.numpy().transpose(0, 2, 3, 1)).astype('uint8') # 假设标签格式为 (N, C, H, W)
# 将预测转换为numpy数组,确保它们是3通道图像并缩放到255
# predicts = [
# (predict.cpu().data.numpy().transpose(0, 2, 3, 1) * 255).astype('float32') # 假设预测格式为 (N, C, H, W)
# for predict in predicts
# ]
predicts = [
(predict.cpu().data.numpy().transpose(0, 2, 3, 1)).astype('float32') # 假设预测格式为 (N, C, H, W)
for predict in predicts
]
# LAB到RGB转换
def lab_to_rgb(lab_img):
lab_img = lab_img.astype('float32')
lab_img[:, :, 0] = lab_img[:, :, 0] * 100 / 255.0 # L通道范围 [0, 100]
lab_img[:, :, 1] = lab_img[:, :, 1] - 128 # a通道范围 [-128, 127]
lab_img[:, :, 2] = lab_img[:, :, 2] - 128 # b通道范围 [-128, 127]
lab_img = cv2.cvtColor(lab_img, cv2.COLOR_LAB2RGB)
lab_img = np.clip(lab_img * 255, 0, 255).astype('uint8')
return lab_img
data = np.array([lab_to_rgb(img) for img in data])
label = np.array([lab_to_rgb(img) for img in label])
predicts = [np.array([lab_to_rgb(img) for img in predict]) for predict in predicts]
h, w = predicts[-1].shape[1:3]
num_preds = len(predicts)
gen_num = (2, 1) if len(data) > 1 else (1, 1)
# 准备输出图像
img = np.zeros((gen_num[0] * h, gen_num[1] * (2 + num_preds) * w, 3), dtype='uint8')
for i in range(gen_num[0]):
row = i * h
for j in range(gen_num[1]):
idx = i * gen_num[1] + j
tmp_list = [data[idx], label[idx]] + [predict[idx] for predict in predicts]
for k in range(len(tmp_list)):
col = (j * (2 + num_preds) + k) * w
tmp = tmp_list[k]
img[row: row + h, col: col + w] = tmp
# 保存图像
img_file = os.path.join(self.log_dir, f'{self.step}_{name}.jpg')
io.imsave(img_file, img)
def run_train_val(ckp_name='latest'):
sess = Session()
sess.load_checkpoints(ckp_name)
if sess.multi_gpu :
sess.net = nn.DataParallel(sess.net)
sess.tensorboard(sess.log_name)
sess.tensorboard(sess.val_log_name)
dt_train = sess.get_dataloader(sess.train_data_path)
dt_val = sess.get_dataloader(sess.train_data_path)
while sess.step <= iter_num:
# sess.sche.step()
sess.opt.param_groups[0]['lr'] = 2 * 5e-4 * (1 - float(sess.step) / iter_num
) ** 0.9
sess.opt.param_groups[1]['lr'] = 5e-4 * (1 - float(sess.step) / iter_num
) ** 0.9
sess.net.train()
sess.net.zero_grad()
try:
batch_t = next(dt_train)
except StopIteration:
dt_train = iter(sess.get_dataloader(sess.train_data_path))
batch_t = next(dt_train)
# out, loss, losses, predicts
pred_t, loss_t, losses_t = sess.inf_batch(sess.log_name, batch_t)
sess.write(sess.log_name, losses_t)
loss_t.backward()
sess.opt.step()
if sess.step % 10 == 0:
sess.net.eval()
batch_v = next(dt_val)
pred_v, loss_v, losses_v = sess.inf_batch(sess.val_log_name, batch_v)
sess.write(sess.val_log_name, losses_v)
if sess.step % int(sess.save_steps / 5) == 0:
sess.save_checkpoints('latest')
if sess.step % int(sess.save_steps / 10) == 0:
sess.save_mask(sess.log_name, [batch_t['image'], batch_t['B'],pred_t])
if sess.step % 10 == 0:
sess.save_mask(sess.val_log_name, [batch_v['image'], batch_v['B'],pred_v])
logger.info('save image as step_%d' % sess.step)
if sess.step % (sess.save_steps * 5) == 0:
sess.save_checkpoints('step_%d' % sess.step)
logger.info('save model as step_%d' % sess.step)
sess.step += 1
sess.save_checkpoints('final')
# for run_test function
def ensure_dir(path):
if not os.path.exists(path):
os.makedirs(path)
import os
import numpy as np
import torch.nn as nn
import progressbar
from PIL import Image
import cv2
def run_test(ckp_name):
sess = Session()
sess.net.eval()
sess.load_checkpoints(ckp_name, 'test')
num_params = sum(p.numel() for p in sess.net.parameters())
print(f'Number of model parameters: {num_params}')
if sess.multi_gpu:
sess.net = nn.DataParallel(sess.net)
sess.batch_size = 1
sess.shuffle = False
sess.outs = -1
dt = sess.get_dataloader(sess.test_data_path, train_mode=False)
input_names = open(os.path.join(sess.test_data_path, 'test_dsc.txt')).readlines() # "test.txt"
widgets = [progressbar.Percentage(), progressbar.Bar(), progressbar.ETA()]
bar = progressbar.ProgressBar(widgets=widgets, maxval=len(dt)).start()
for i, batch in enumerate(dt):
pred = sess.inf_batch('test', batch)
saved_pred = pred[-1] # tensor, shape 1,3,512,512, value [-1,1], should scaled to LAB space and then scaled to rgb space to save the image
# Scale the prediction to LAB space
saved_pred = (saved_pred.cpu().data.numpy().transpose(0, 2, 3, 1)).astype('float32') # (N, C, H, W) to (N, H, W, C)
# LAB to RGB conversion
def lab_to_rgb(lab_img):
lab_img = lab_img.astype('float32')
lab_img[:, :, 0] = lab_img[:, :, 0] * 100 / 255.0 # L channel range [0, 100]
lab_img[:, :, 1] = lab_img[:, :, 1] - 128 # a channel range [-128, 127]
lab_img[:, :, 2] = lab_img[:, :, 2] - 128 # b channel range [-128, 127]
lab_img = cv2.cvtColor(lab_img, cv2.COLOR_LAB2RGB)
lab_img = np.clip(lab_img * 255, 0, 255).astype('uint8')
return lab_img
saved_pred_rgb = np.array([lab_to_rgb(img) for img in saved_pred])
# Save the image
image_name = input_names[i].strip().split('/')[-1]
output_path = os.path.join('./test_sr/SRD512_DESOBA', image_name)
# output_path = os.path.join('./test_sr/ISTD+512', image_name)
os.makedirs(os.path.dirname(output_path), exist_ok=True)
Image.fromarray(saved_pred_rgb[0]).save(output_path)
bar.update(i + 1)
bar.finish()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-a', '--action', default='test')
parser.add_argument('-m', '--model', default='latest')
args = parser.parse_args(sys.argv[1:])
if args.action == 'train':
run_train_val(args.model)
elif args.action == 'test':
run_test(args.model)