-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathAachen_Turbine.cfg
executable file
·349 lines (348 loc) · 13.1 KB
/
Aachen_Turbine.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% SU2 configuration file %
% Case description: AACHEN turbine 3D
% Version: 8.1.0 %
% Author: S. Vitale, A. Cappiello %
% Institution: Delft University of Technology %
% Date: Oct 20th, 2023 %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations
SOLVER= RANS
%
% Specify turbulent model (NONE, SA, SST)
KIND_TURB_MODEL= SA
%
% Mathematical problem (DIRECT, ADJOINT, LINEARIZED)
MATH_PROBLEM= DIRECT
%
% Restart solution (NO, YES)
RESTART_SOL= NO
%
MULTIZONE= YES
%
% List of config files for zone-specific options
CONFIG_LIST=(stator1.cfg, rotor.cfg, stator2.cfg)
%
% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------%
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 0.05
%
% Angle of attack (degrees, only for compressible flows)
AOA= 0.0
%
% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows)
FREESTREAM_PRESSURE= 140000.0
%
% Free-stream temperature (273.15 K by default)
FREESTREAM_TEMPERATURE= 300.0
%
% Free-stream temperature (1.2886 Kg/m3 by default)
FREESTREAM_DENSITY= 1.7418
%
% Free-stream option to choose if you want to use Density (DENSITY_FS) or Temperature TEMPERATURE_FS) to initialize the solution
FREESTREAM_OPTION= TEMPERATURE_FS
%
% Free-stream Turbulence Intensity
FREESTREAM_TURBULENCEINTENSITY = 0.025
%
% Free-stream Turbulent to Laminar viscosity ratio
FREESTREAM_TURB2LAMVISCRATIO = 100.0
%
%
%Init option to choose between Reynolds (default) or thermodynamics quantities for initializing the solution (REYNOLDS, TD_CONDITIONS)
INIT_OPTION= TD_CONDITIONS
%
% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation
REF_ORIGIN_MOMENT_X = 0.00
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
% Reference area for force coefficients (0 implies automatic calculation)
REF_AREA= 1.0
%
% Flow non-dimensionalization
REF_DIMENSIONALIZATION= DIMENSIONAL
%
%
% ------------------------------ EQUATION OF STATE ----------------------------%
%
% Different gas model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS)
FLUID_MODEL= IDEAL_GAS
%
% Ratio of specific heats (1.4 default and the value is hardcoded for the model STANDARD_AIR)
GAMMA_VALUE= 1.4
%
% Specific gas constant (287.058 J/kg*K default and this value is hardcoded for the model STANDARD_AIR)
GAS_CONSTANT= 287.058
%
% Critical Temperature (273.15 K by default)
CRITICAL_TEMPERATURE= 273.15
%
% Critical Pressure (101325.0 N/m^2 by default)
CRITICAL_PRESSURE= 101325.0
%
% Acentri factor (0.035 (air))
ACENTRIC_FACTOR= 0.035
%
% --------------------------- VISCOSITY MODEL ---------------------------------%
%
% Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY).
VISCOSITY_MODEL= SUTHERLAND
%
% Molecular Viscosity that would be constant (1.716E-5 by default)
MU_CONSTANT= 1.716E-5
%
% Sutherland Viscosity Ref (1.716E-5 default value for AIR SI)
MU_REF= 1.716E-5
%
% Sutherland Temperature Ref (273.15 K default value for AIR SI)
MU_T_REF= 273.15
%
% Sutherland constant (110.4 default value for AIR SI)
SUTHERLAND_CONSTANT= 110.4
%
% --------------------------- THERMAL CONDUCTIVITY MODEL ----------------------%
%
% Conductivity model (CONSTANT_CONDUCTIVITY, CONSTANT_PRANDTL).
CONDUCTIVITY_MODEL= CONSTANT_PRANDTL
%
% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
%Navier-Stokes wall boundary marker(s) (NONE = no marker)
MARKER_HEATFLUX= (BLADE1, 0.0, BLADE2, 0.0, BLADE3, 0.0, HUB1, 0.0, SHROUD1, 0.0, HUB2, 0.0, SHROUD2, 0.0, HUB3, 0.0, SHROUD3, 0.0)
%
% ------------------------ WALL FUNCTION DEFINITION --------------------------%
%
MARKER_WALL_FUNCTIONS= ( BLADE1, STANDARD_WALL_FUNCTION , BLADE2, STANDARD_WALL_FUNCTION , BLADE3, STANDARD_WALL_FUNCTION , HUB1, STANDARD_WALL_FUNCTION , SHROUD1, STANDARD_WALL_FUNCTION , HUB2, STANDARD_WALL_FUNCTION , SHROUD2, STANDARD_WALL_FUNCTION , HUB3, STANDARD_WALL_FUNCTION , SHROUD3, STANDARD_WALL_FUNCTION )
WALLMODEL_KAPPA= 0.41
WALLMODEL_B= 5.5
WALLMODEL_MINYPLUS= 5.0
WALLMODEL_MAXITER= 200
WALLMODEL_RELFAC= 0.5
% Periodic boundary marker(s) (NONE = no marker)
% Format: ( periodic marker, donor marker, rot_cen_x, rot_cen_y, rot_cen_z, rot_angle_x-axis, rot_angle_y-axis, rot_angle_z-axis, translation_x, translation_y, translation_z)
MARKER_PERIODIC= (PER1_STATOR1, PER2_STATOR1, 0.0, 0.0, 0.0, 0.0, 0.0, 8.7804878, 0.0, 0.0, 0.0, PER1_ROTOR, PER2_ROTOR, 0.0, 0.0, 0.0, 0.0, 0.0, 8.7804878, 0.0, 0.0, 0.0, PER1_STATOR2, PER2_STATOR2, 0.0, 0.0, 0.0, 0.0, 0.0, 8.7804878, 0.0, 0.0, 0.0)
%
%
%-------- INFLOW/OUTFLOW BOUNDARY CONDITION SPECIFIC FOR TURBOMACHINERY --------%
%
% Inflow and Outflow markers must be specified, for each blade (zone), following the natural groth of the machine (i.e, from the first blade to the last)
MARKER_TURBOMACHINERY= (INFLOW_STATOR1, OUTFLOW_STATOR1, INFLOW_ROTOR, OUTFLOW_ROTOR, INFLOW_STATOR2, OUTFLOW_STATOR2)
%
% Mixing-plane interface markers must be specified to activate the transfer of information between zones
MARKER_MIXINGPLANE_INTERFACE= (OUTFLOW_STATOR1, INFLOW_ROTOR, OUTFLOW_ROTOR, INFLOW_STATOR2)
% Mixing-plane interface markers must be specified to activate the transfer of information between zones
MARKER_ZONE_INTERFACE= (OUTFLOW_STATOR1, INFLOW_ROTOR, OUTFLOW_ROTOR, INFLOW_STATOR2)
%
% Non reflecting boundary condition for inflow, outfolw and mixing-plane
% Format inlet: ( marker, TOTAL_CONDITIONS_PT, Total Pressure , Total Temperature, Flow dir-norm, Flow dir-tang, Flow dir-span, under-relax-avg, under-relax-fourier)
% Format outlet: ( marker, STATIC_PRESSURE, Static Pressure value, -, -, -, -, under-relax-avg, under-relax-fourier)
% Format mixing-plane in and out: ( marker, MIXING_IN or MIXING_OUT, -, -, -, -, -, -, under-relax-avg, under-relax-fourier)
MARKER_GILES= (INFLOW_STATOR1, TOTAL_CONDITIONS_PT, 158245.38, 308.26, 1.0, 0.0, 0.0, 0.3, 0.0, OUTFLOW_STATOR1, MIXING_OUT, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.0, INFLOW_ROTOR, MIXING_IN, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.0, OUTFLOW_ROTOR, MIXING_OUT, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.0, INFLOW_STATOR2, MIXING_IN, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3, 0.0, OUTFLOW_STATOR2, STATIC_PRESSURE_1D, 110050.96, 0.0, 0.0, 0.0, 0.0 , 1.0, 0.0)
SPATIAL_FOURIER= NO
%
% This option insert an extra under relaxation factor for the Giles BC at the hub and shroud levels
GILES_EXTRA_RELAXFACTOR= (0.05, 0.05)
%
%---------------------------- TURBOMACHINERY SIMULATION -----------------------------%
%
% Format: (marker)
% If the ROTATING_FRAME option is activated, this option force
% the velocity on the boundaries specified to 0.0
MARKER_SHROUD= (SHROUD1, SHROUD2, SHROUD3)
%
% Specify kind of architecture (AXIAL, CENTRIPETAL, CENTRIFUGAL, CENTRIPETAL_AXIAL)
TURBOMACHINERY_KIND= AXIAL AXIAL AXIAL
%
% Uncomment to work with new_turbo_outputs
TURBO_PERF_KIND= (TURBINE, TURBINE, TURBINE)
%
% Specify kind of interpolation for the mixing-plane (LINEAR_INTERPOLATION, NEAREST_SPAN, MATCHING)
MIXINGPLANE_INTERFACE_KIND= LINEAR_INTERPOLATION
%
% Specify option for turbulent mixing-plane (YES, NO) default NO
TURBULENT_MIXINGPLANE= YES
%
% Specify ramp option for Outlet pressure (YES, NO) default NO
RAMP_OUTLET_PRESSURE= YES
%
% Parameters of the outlet pressure ramp (starting outlet pressure, updating-iteration-frequency, total number of iteration for the ramp)
RAMP_OUTLET_PRESSURE_COEFF= (140000.0, 150.0, 2000)
%
% Specify Kind of average process for linearizing the Navier-Stokes equation at inflow and outflow BC included mixing-plane
% (ALGEBRAIC, AREA, MASSSFLUX, MIXEDOUT) default AREA
AVERAGE_PROCESS_KIND= MIXEDOUT
%
% Specify Kind of average process for computing turbomachienry performance parameters
% (ALGEBRAIC, AREA, MASSSFLUX, MIXEDOUT) default AREA
PERFORMANCE_AVERAGE_PROCESS_KIND= MIXEDOUT
%
%Parameters of the Newton method for the MIXEDOUT average algorithm (under relaxation factor, tollerance, max number of iterations)
MIXEDOUT_COEFF= (1.0, 1.0E-05, 15)
%
% Limit of Mach number below which the mixedout algorithm is substituted with a AREA average algorithm
AVERAGE_MACH_LIMIT= 0.03
%
%
% ------------------------ SURFACES IDENTIFICATION ----------------------------%
%
% Marker(s) of the surface in the surface flow solution file
MARKER_PLOTTING= (BLADE1, BLADE2, BLADE3)
MARKER_MONITORING= (BLADE1, BLADE2, BLADE3)
MARKER_ANALYZE = (INFLOW_STATOR1, OUTFLOW_STATOR2)
%
% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES
%
% Courant-Friedrichs-Lewy condition of the finest grid
CFL_NUMBER= 2
%
% Adaptive CFL number (NO, YES)
CFL_ADAPT= NO
%
% Parameters of the adaptive CFL number (factor down, factor up, CFL min value, CFL max value )
CFL_ADAPT_PARAM= ( 1.3, 1.2, 1.0, 10.0)
%
%
% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
%
% Linear solver or smoother for implicit formulations
LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (ILU, LU_SGS, LINELET, JACOBI)
LINEAR_SOLVER_PREC= LU_SGS
%
% Min error of the linear solver for the implicit formulation
LINEAR_SOLVER_ERROR= 1E-4
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 15
%
% ----------------------- SLOPE LIMITER DEFINITION ----------------------------%
%
% Coefficient for the limiter
VENKAT_LIMITER_COEFF= 0.01
%
% Freeze the value of the limiter after a number of iterations
LIMITER_ITER= 999999
%
% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method
CONV_NUM_METHOD_FLOW= JST
ENTROPY_FIX_COEFF= 0.3
%
JST_SENSOR_COEFF= ( 0.5, 0.25 )
% Spatial numerical order integration
MUSCL_FLOW= NO
%
% Slope limiter (VENKATAKRISHNAN, VAN_ALBADA)
SLOPE_LIMITER_FLOW= VENKATAKRISHNAN
%
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT
%
% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------%
%
% Convective numerical method (SCALAR_UPWIND)
CONV_NUM_METHOD_TURB= SCALAR_UPWIND
%
% Spatial numerical order integration
MUSCL_TURB= NO
%
% Slope limiter (VENKATAKRISHNAN, MINMOD)
SLOPE_LIMITER_TURB= VENKATAKRISHNAN
%
% Time discretization (EULER_IMPLICIT)
TIME_DISCRE_TURB= EULER_IMPLICIT
%
% Reduction factor of the CFL coefficient in the turbulence problem
CFL_REDUCTION_TURB= 0.1
%
% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Number of total iterations
OUTER_ITER=20000
%
% Convergence criteria (CAUCHY, RESIDUAL)
CONV_FIELD=RMS_ENERGY[0]
%
% Min value of the residual (log10 of the residual)
CONV_RESIDUAL_MINVAL= -12
%
% Start convergence criteria at iteration number
CONV_STARTITER= 10
%
% Screen output fields (use 'SU2_CFD -d <config_file>' to view list of available fields)
SCREEN_OUTPUT= (OUTER_ITER, RMS_DENSITY[0], RMS_DENSITY[1], RMS_DENSITY[2], RMS_MOMENTUM-X[0], RMS_MOMENTUM-X[1], RMS_MOMENTUM-X[2], RMS_MOMENTUM-Y[0], RMS_MOMENTUM-Y[1], RMS_MOMENTUM-Y[2], RMS_MOMENTUM-Z[0], RMS_MOMENTUM-Z[1], RMS_MOMENTUM-Z[2], RMS_ENERGY[0], RMS_ENERGY[1], RMS_ENERGY[2])
%
% History output groups (use 'SU2_CFD -d <config_file>' to view list of available fields)
HISTORY_OUTPUT= (ITER, RMS_RES, TURBO_PERF)
%
% Volume output fields/groups (use 'SU2_CFD -d <config_file>' to view list of available fields)
VOLUME_OUTPUT= (COORDINATES, SOLUTION, PRIMITIVE, TURBOMACHINERY, RESIDUAL, LIMITER, VORTEX_IDENTIFICATION)
%
OUTPUT_FILES= (TECPLOT_ASCII, SURFACE_TECPLOT_ASCII, RESTART)
%
% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
% Mesh input file
MESH_FILENAME= Aachen_Turbine.su2
%
% Mesh input file format
MESH_FORMAT= SU2
%
% Mesh output file
MESH_OUT_FILENAME= Aachen_Turbine.su2
%
% Restart flow input file
SOLUTION_FILENAME= solution_flow.dat
%
% Restart adjoint input file
SOLUTION_ADJ_FILENAME= solution_adj.dat
%
% Output file format
TABULAR_FORMAT= TECPLOT
%
% Output file convergence history (w/o extension)
CONV_FILENAME= history
%
% Output file restart flow
RESTART_FILENAME= restart_flow.dat
%
% Output file restart adjoint
RESTART_ADJ_FILENAME= restart_adj.dat
%
% Output file flow (w/o extension) variables
VOLUME_FILENAME= flow
%
% Output file adjoint (w/o extension) variables
VOLUME_ADJ_FILENAME= adjoint
%
% Output objective function gradient (using continuous adjoint)
GRAD_OBJFUNC_FILENAME= of_grad.dat
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FILENAME= surface_flow
%
% Output file surface adjoint coefficient (w/o extension)
SURFACE_ADJ_FILENAME= surface_adjoint
%
% Writing solution file frequency
OUTPUT_WRT_FREQ= 1000
%
% Writing convergence history frequency
HISTORY_WRT_FREQ_OUTER= 1
WRT_ZONE_HIST = YES