|
| 1 | +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 2 | +% % |
| 3 | +% SU2 configuration file % |
| 4 | +% Case description: Unsteady FSI of a NACA 0012 % |
| 5 | +% Author: Nicola Fonzi, Vittorio Cavalieri % |
| 6 | +% Institution: Politecnico di Milano % |
| 7 | +% Date: Dec 10, 2020 % |
| 8 | +% File Version 7.0.8 "Blackbird" (or newer) % |
| 9 | +% % |
| 10 | +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 11 | +% |
| 12 | +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% |
| 13 | +% |
| 14 | +% Physical governing equations (EULER, NAVIER_STOKES, NS_PLASMA) |
| 15 | +% |
| 16 | +SOLVER= RANS |
| 17 | +% |
| 18 | +% Specify turbulent model (NONE, SA, SA_NEG, SST) |
| 19 | +KIND_TURB_MODEL= SST |
| 20 | +% |
| 21 | +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) |
| 22 | +MATH_PROBLEM= DIRECT |
| 23 | +% |
| 24 | +% ------------------------- UNSTEADY SIMULATION -------------------------------% |
| 25 | +% |
| 26 | +TIME_DOMAIN = YES |
| 27 | +% |
| 28 | +% Numerical Method for Unsteady simulation(NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER, DUAL_TIME_STEPPING-2ND_ORDER, TIME_SPECTRAL) |
| 29 | +TIME_MARCHING= DUAL_TIME_STEPPING-2ND_ORDER |
| 30 | +% |
| 31 | +% Time Step for dual time stepping simulations (s) |
| 32 | +TIME_STEP= 1e-3 |
| 33 | +% |
| 34 | +% Maximum Number of physical time steps. |
| 35 | +TIME_ITER= 4000 |
| 36 | +MAX_TIME = 4.0 |
| 37 | +% |
| 38 | +% Number of internal iterations (dual time method) |
| 39 | +INNER_ITER= 50 |
| 40 | +% |
| 41 | +% Restart after the transient phase has passed |
| 42 | +RESTART_SOL = NO |
| 43 | +% |
| 44 | +% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------% |
| 45 | +% |
| 46 | +% Mach number (non-dimensional, based on the free-stream values) |
| 47 | +MACH_NUMBER= 0.1 |
| 48 | +% Angle of attack (degrees, only for compressible flows) |
| 49 | +AOA= 0.0 |
| 50 | +% |
| 51 | +% De-Dimensionalization |
| 52 | +REF_DIMENSIONALIZATION = DIMENSIONAL |
| 53 | +% |
| 54 | +FREESTREAM_TEMPERATURE= 273.0 |
| 55 | +% |
| 56 | +% Reynolds number (non-dimensional, based on the free-stream values) |
| 57 | +REYNOLDS_NUMBER= 4e+6 |
| 58 | +% |
| 59 | +% Reynolds length (1 m by default) |
| 60 | +REYNOLDS_LENGTH= 1.0 |
| 61 | +% |
| 62 | +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% |
| 63 | +% |
| 64 | +% Reference origin for moment computation |
| 65 | +REF_ORIGIN_MOMENT_X = 0.25 |
| 66 | +REF_ORIGIN_MOMENT_Y = 0.00 |
| 67 | +REF_ORIGIN_MOMENT_Z = 0.00 |
| 68 | +% |
| 69 | +% Reference length for pitching, rolling, and yawing non-dimensional moment |
| 70 | +REF_LENGTH= 1.0 |
| 71 | +% |
| 72 | +% Reference area for force coefficients (0 implies automatic calculation) |
| 73 | +REF_AREA= 1.0 |
| 74 | +% |
| 75 | +% -------------------- BOUNDARY CONDITION DEFINITION --------------------------% |
| 76 | +% |
| 77 | +% Navier-Stokes wall boundary marker(s) (NONE = no marker) |
| 78 | +MARKER_HEATFLUX= ( airfoil, 0.0 ) |
| 79 | +% |
| 80 | +% Farfield boundary marker(s) (NONE = no marker) |
| 81 | +MARKER_FAR= ( farfield ) |
| 82 | +% |
| 83 | +% Marker(s) of the surface to be plotted or designed |
| 84 | +MARKER_PLOTTING= ( airfoil ) |
| 85 | +% |
| 86 | +% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated |
| 87 | +MARKER_MONITORING= ( airfoil ) |
| 88 | +%-------------- Coupling conditions -------------------------------------------% |
| 89 | +% |
| 90 | +DEFORM_MESH = YES |
| 91 | +MARKER_DEFORM_MESH = ( airfoil ) |
| 92 | +DEFORM_STIFFNESS_TYPE = WALL_DISTANCE |
| 93 | +DEFORM_LINEAR_SOLVER_ITER= 200 |
| 94 | +MARKER_FLUID_LOAD = ( airfoil ) |
| 95 | +% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% |
| 96 | +% |
| 97 | +% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) |
| 98 | +NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES |
| 99 | +% |
| 100 | +% Courant-Friedrichs-Lewy condition of the finest grid |
| 101 | +CFL_NUMBER= 20.0 |
| 102 | +% |
| 103 | +% Adaptive CFL number (NO, YES) |
| 104 | +CFL_ADAPT= NO |
| 105 | +% |
| 106 | +% Parameters of the adaptive CFL number (factor down, factor up, CFL min value, |
| 107 | +% CFL max value ) |
| 108 | +CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 ) |
| 109 | +% |
| 110 | +% Runge-Kutta alpha coefficients |
| 111 | +RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 ) |
| 112 | +% |
| 113 | +% |
| 114 | +% Linear solver for the implicit formulation (BCGSTAB, FGMRES) |
| 115 | +LINEAR_SOLVER= FGMRES |
| 116 | +% |
| 117 | +% Min error of the linear solver for the implicit formulation |
| 118 | +LINEAR_SOLVER_ERROR= 1E-8 |
| 119 | +% |
| 120 | +% Max number of iterations of the linear solver for the implicit formulation |
| 121 | +LINEAR_SOLVER_ITER= 10 |
| 122 | +% |
| 123 | +% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% |
| 124 | +% |
| 125 | +% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, |
| 126 | +% TURKEL_PREC, MSW) |
| 127 | +CONV_NUM_METHOD_FLOW= JST |
| 128 | +% |
| 129 | +% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER) |
| 130 | +% |
| 131 | +% Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations. |
| 132 | +% Required for 2nd order upwind schemes (NO, YES) |
| 133 | +MUSCL_FLOW= YES |
| 134 | +% Slope limiter (VENKATAKRISHNAN, MINMOD) |
| 135 | +SLOPE_LIMITER_FLOW= VENKATAKRISHNAN |
| 136 | +% |
| 137 | +JST_SENSOR_COEFF= ( 0.5, 0.01 ) |
| 138 | +% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) |
| 139 | +TIME_DISCRE_FLOW= EULER_IMPLICIT |
| 140 | +% |
| 141 | +% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------% |
| 142 | +% |
| 143 | +% Convective numerical method (SCALAR_UPWIND) |
| 144 | +CONV_NUM_METHOD_TURB= SCALAR_UPWIND |
| 145 | +% |
| 146 | +% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER) |
| 147 | +% |
| 148 | +MUSCL_TURB= NO |
| 149 | +SLOPE_LIMITER_TURB= VENKATAKRISHNAN |
| 150 | +% |
| 151 | +% Time discretization (EULER_IMPLICIT) |
| 152 | +TIME_DISCRE_TURB= EULER_IMPLICIT |
| 153 | +% |
| 154 | +% --------------------------- CONVERGENCE PARAMETERS --------------------------% |
| 155 | +% |
| 156 | +% Convergence criteria (CAUCHY, RESIDUAL) |
| 157 | +CONV_CRITERIA = RESIDUAL |
| 158 | +% Field to apply Cauchy Criterion to |
| 159 | +CONV_FIELD= RMS_DENSITY |
| 160 | +% Min value of the residual (log10 of the residual) |
| 161 | +CONV_RESIDUAL_MINVAL= -9.0 |
| 162 | +% |
| 163 | +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% |
| 164 | +% |
| 165 | +% |
| 166 | +% Mesh input file |
| 167 | +MESH_FILENAME= airfoil.su2 |
| 168 | +% |
| 169 | +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) |
| 170 | +MESH_FORMAT= SU2 |
| 171 | +% |
| 172 | +% Mesh output file |
| 173 | +MESH_OUT_FILENAME= mesh_out.su2 |
| 174 | +% |
| 175 | +% Restart flow input file |
| 176 | +SOLUTION_FILENAME= restart_flow.dat |
| 177 | +% |
| 178 | +% Restart adjoint input file |
| 179 | +SOLUTION_ADJ_FILENAME= restart_adj.dat |
| 180 | +% |
| 181 | +% Output file format (PARAVIEW, TECPLOT, STL) |
| 182 | +TABULAR_FORMAT= CSV |
| 183 | +% |
| 184 | +% Output file convergence history (w/o extension) |
| 185 | +CONV_FILENAME= history |
| 186 | +% |
| 187 | +% Output file restart flow |
| 188 | +RESTART_FILENAME= restart_flow.dat |
| 189 | +% |
| 190 | +% Output file restart adjoint |
| 191 | +RESTART_ADJ_FILENAME= restart_adj.dat |
| 192 | +% |
| 193 | +% Output file flow (w/o extension) variables |
| 194 | +VOLUME_FILENAME= flow |
| 195 | +% |
| 196 | +% Output file surface flow coefficient (w/o extension) |
| 197 | +SURFACE_FILENAME= surface_flow |
| 198 | +% |
| 199 | +% Writing solution file frequency |
| 200 | +OUTPUT_WRT_FREQ = 10 |
| 201 | +% |
| 202 | +HISTORY_WRT_FREQ_INNER=1 |
| 203 | +SCREEN_WRT_FREQ_INNER =1 |
| 204 | +% Writing convergence history frequency% Writing convergence history frequency (dual time, only written to screen) |
| 205 | +HISTORY_WRT_FREQ_TIME=1 |
| 206 | +SCREEN_WRT_FREQ_TIME =1 |
| 207 | +% |
| 208 | +SCREEN_OUTPUT=(TIME_ITER, INNER_ITER, DRAG, LIFT, RMS_DENSITY, REL_RMS_DENSITY, CAUCHY_TAVG_DRAG, CAUCHY_TAVG_LIFT) |
| 209 | +HISTORY_OUTPUT=(ITER,REL_RMS_RES,RMS_RES, AERO_COEFF,TAVG_AERO_COEFF, CAUCHY) |
| 210 | +% |
0 commit comments