Skip to content

Commit 9ed80bd

Browse files
authored
Merge pull request #26 from su2code/develop
Develop
2 parents 5c63f8d + 7b97f10 commit 9ed80bd

File tree

5 files changed

+69
-163
lines changed

5 files changed

+69
-163
lines changed

compressible_flow/Transitional_Flat_Plate/transitional_BC_model_ConfigFile.cfg

+4-5
Original file line numberDiff line numberDiff line change
@@ -17,12 +17,11 @@
1717
% POISSON_EQUATION)
1818
SOLVER= INC_RANS
1919
%
20-
% Specify turbulent model (NONE, SA, SA_NEG, SST)
20+
% Specify turbulent model (NONE, SA, SST)
2121
KIND_TURB_MODEL= SA
22-
%
23-
% Specify transition model (NONE, LM, BC)
24-
KIND_TRANS_MODEL= BC
25-
FREESTREAM_TURBULENCEINTENSITY = 0.18
22+
SA_OPTIONS= BCM
23+
% Turbulence intensity I = u'/U
24+
FREESTREAM_TURBULENCEINTENSITY = 0.0018
2625
%
2726
% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT)
2827
MATH_PROBLEM= DIRECT
Binary file not shown.
Binary file not shown.
Binary file not shown.

compressible_flow/Unsteady_NACA0012/unsteady_naca0012.cfg

+65-158
Original file line numberDiff line numberDiff line change
@@ -9,207 +9,114 @@
99
% %
1010
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1111

12-
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
12+
% SOLVER
1313
%
14-
% Physical governing equations (EULER, NAVIER_STOKES, NS_PLASMA)
15-
%
1614
SOLVER= RANS
17-
%
18-
% Specify turbulent model (NONE, SA, SA_NEG, SST)
1915
KIND_TURB_MODEL= SA
20-
%
21-
% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT)
16+
REF_DIMENSIONALIZATION= DIMENSIONAL
2217
MATH_PROBLEM= DIRECT
18+
19+
% RESTART
2320
%
24-
% ------------------------- UNSTEADY SIMULATION -------------------------------%
25-
%
26-
TIME_DOMAIN = YES
27-
%
28-
% Numerical Method for Unsteady simulation(NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER, DUAL_TIME_STEPPING-2ND_ORDER, TIME_SPECTRAL)
29-
TIME_MARCHING= DUAL_TIME_STEPPING-2ND_ORDER
30-
%
31-
% Time Step for dual time stepping simulations (s)
32-
TIME_STEP= 5e-4
33-
%
34-
% Maximum Number of physical time steps.
35-
TIME_ITER= 2200
36-
%
37-
% Number of internal iterations (dual time method)
38-
INNER_ITER= 50
39-
%
40-
% Restart after the transient phase has passed
41-
RESTART_SOL = YES
42-
%
43-
% Specify unsteady restart iter
44-
RESTART_ITER = 499
45-
% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------%
21+
RESTART_SOL= YES
22+
RESTART_ITER= 499
23+
24+
% COMPRESSIBLE FREE-STREAM
4625
%
47-
% Mach number (non-dimensional, based on the free-stream values)
4826
MACH_NUMBER= 0.3
49-
%
50-
% Angle of attack (degrees, only for compressible flows)
5127
AOA= 17.0
52-
%
53-
% De-Dimensionalization
54-
REF_DIMENSIONALIZATION = DIMENSIONAL
55-
%
56-
% Free-stream temperature (288.15 K by default)
5728
FREESTREAM_TEMPERATURE= 293.0
58-
%
59-
% Reynolds number (non-dimensional, based on the free-stream values)
60-
REYNOLDS_NUMBER= 1e+3
61-
%
62-
% Reynolds length (1 m by default)
29+
FREESTREAM_PRESSURE= 101325.0
30+
REYNOLDS_NUMBER= 1000.0
6331
REYNOLDS_LENGTH= 1.0
32+
33+
% REFERENCE VALUES
6434
%
65-
% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
66-
%
67-
% Reference origin for moment computation
68-
REF_ORIGIN_MOMENT_X = 0.25
69-
REF_ORIGIN_MOMENT_Y = 0.00
70-
REF_ORIGIN_MOMENT_Z = 0.00
71-
%
72-
% Reference length for pitching, rolling, and yawing non-dimensional moment
35+
REF_ORIGIN_MOMENT_X= 0.25
36+
REF_ORIGIN_MOMENT_Y= 0.00
37+
REF_ORIGIN_MOMENT_Z= 0.00
7338
REF_LENGTH= 1.0
74-
%
75-
% Reference area for force coefficients (0 implies automatic calculation)
7639
REF_AREA= 1.0
40+
41+
% BOUNDARY CONDITIONS
7742
%
78-
% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
79-
%
80-
% Navier-Stokes wall boundary marker(s) (NONE = no marker)
81-
MARKER_HEATFLUX= ( airfoil, 0.0)
82-
%
83-
% Farfield boundary marker(s) (NONE = no marker)
84-
MARKER_FAR= ( farfield)
85-
%
86-
% Marker(s) of the surface to be plotted or designed
87-
MARKER_PLOTTING= ( airfoil )
88-
%
89-
% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated
90-
MARKER_MONITORING= (airfoil)
43+
MARKER_HEATFLUX= ( airfoil, 0.0 )
44+
MARKER_FAR= ( farfield )
45+
MARKER_PLOTTING= ( airfoil )
46+
MARKER_MONITORING= ( airfoil )
47+
48+
% DISCRETIZATION
9149
%
92-
% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
50+
TIME_DOMAIN= YES
51+
TIME_MARCHING= DUAL_TIME_STEPPING-2ND_ORDER
52+
TIME_STEP= 5e-4
9353
%
94-
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
9554
NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES
96-
%
97-
% Courant-Friedrichs-Lewy condition of the finest grid
98-
CFL_NUMBER= 20.0
99-
%
100-
% Adaptive CFL number (NO, YES)
101-
CFL_ADAPT= NO
102-
%
103-
% Parameters of the adaptive CFL number (factor down, factor up, CFL min value,
104-
% CFL max value )
105-
CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 )
106-
%
107-
% Runge-Kutta alpha coefficients
108-
RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 )
109-
%
110-
%
111-
% Linear solver for the implicit formulation (BCGSTAB, FGMRES)
112-
LINEAR_SOLVER= FGMRES
113-
%
114-
% Min error of the linear solver for the implicit formulation
115-
LINEAR_SOLVER_ERROR= 1E-6
116-
%
117-
% Max number of iterations of the linear solver for the implicit formulation
118-
LINEAR_SOLVER_ITER= 5
119-
%
120-
% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
121-
%
122-
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
123-
% TURKEL_PREC, MSW)
12455
CONV_NUM_METHOD_FLOW= JST
125-
%
126-
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
127-
%
128-
% 1st, 2nd and 4th order artificial dissipation coefficients
129-
JST_SENSOR_COEFF= ( 0.5, 0.01 )
130-
%
131-
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
132-
TIME_DISCRE_FLOW= EULER_IMPLICIT
133-
%
134-
% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------%
135-
%
136-
% Convective numerical method (SCALAR_UPWIND)
56+
JST_SENSOR_COEFF= ( 0.5, 0.005 )
13757
CONV_NUM_METHOD_TURB= SCALAR_UPWIND
138-
%
139-
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
140-
%
14158
MUSCL_TURB= NO
59+
60+
% SOLUTION METHODS
14261
%
143-
% Time discretization (EULER_IMPLICIT)
62+
TIME_DISCRE_FLOW= EULER_IMPLICIT
14463
TIME_DISCRE_TURB= EULER_IMPLICIT
64+
CFL_NUMBER= 1e12
65+
CFL_ADAPT= NO
66+
LINEAR_SOLVER= FGMRES
67+
LINEAR_SOLVER_ERROR= 0.1
68+
LINEAR_SOLVER_ITER= 10
69+
70+
% INNER CONVERGENCE
14571
%
146-
% --------------------------- CONVERGENCE PARAMETERS --------------------------%
147-
%
148-
% Field to apply Cauchy Criterion to
72+
INNER_ITER= 10
14973
CONV_FIELD= REL_RMS_DENSITY
150-
% Min value of the residual (log10 of the residual)
15174
CONV_RESIDUAL_MINVAL= -3
75+
CONV_STARTITER= 0
76+
77+
% TIME CONVERGENCE
15278
%
153-
%% Time convergence monitoring
154-
WINDOW_CAUCHY_CRIT = YES
155-
%
156-
% List of time convergence fields
157-
CONV_WINDOW_FIELD = (TAVG_DRAG, TAVG_LIFT)
79+
TIME_ITER= 2000
15880
%
159-
% Time Convergence Monitoring starts at Iteration WINDOW_START_ITER + CONV_WINDOW_STARTITER
160-
CONV_WINDOW_STARTITER = 0
81+
% Starting iteration and type for windowed-time-averaging
82+
WINDOW_CAUCHY_CRIT= YES
83+
WINDOW_START_ITER= 500
84+
WINDOW_FUNCTION= HANN_SQUARE
16185
%
86+
% Monitored fields
87+
CONV_WINDOW_FIELD= ( TAVG_DRAG, TAVG_LIFT )
88+
% Time Convergence monitoring starts at iteration WINDOW_START_ITER + CONV_WINDOW_STARTITER
89+
CONV_WINDOW_STARTITER= 0
16290
% Epsilon to control the series convergence
163-
CONV_WINDOW_CAUCHY_EPS = 1E-3
164-
%
91+
CONV_WINDOW_CAUCHY_EPS= 1E-4
16592
% Number of elements to apply the criteria
166-
CONV_WINDOW_CAUCHY_ELEMS = 10
167-
%
168-
% Starting iteration for windowed-time-averaging
169-
WINDOW_START_ITER = 500
170-
%
171-
% Window used for reverse sweep. Options (SQUARE, HANN, HANN_SQUARE, BUMP)
172-
WINDOW_FUNCTION = HANN_SQUARE
173-
%
174-
% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
93+
CONV_WINDOW_CAUCHY_ELEMS= 10
94+
95+
% INPUT/OUTPUT
17596
%
176-
HISTORY_WRT_FREQ_INNER=0
177-
SCREEN_WRT_FREQ_INNER =1
97+
HISTORY_WRT_FREQ_INNER= 0
98+
SCREEN_WRT_FREQ_INNER= 100
17899
%
179100
% Mesh input file
180101
MESH_FILENAME= unsteady_naca0012_mesh.su2
181-
%
182-
% Mesh input file format (SU2, CGNS, NETCDF_ASCII)
183102
MESH_FORMAT= SU2
184103
%
185-
% Mesh output file
186-
MESH_OUT_FILENAME= mesh_out.su2
187-
%
188-
% Restart flow input file
104+
% Restart input files
189105
SOLUTION_FILENAME= restart_flow.dat
190-
%
191-
% Restart adjoint input file
192106
SOLUTION_ADJ_FILENAME= restart_adj.dat
193107
%
194-
% Output file format (PARAVIEW, TECPLOT, STL)
195-
TABULAR_FORMAT= TECPLOT
196-
%
197-
% Output file convergence history (w/o extension)
198-
CONV_FILENAME= 0_history
199-
%
200-
% Output file restart flow
108+
% Output restart files
201109
RESTART_FILENAME= restart_flow.dat
202-
%
203-
% Output file restart adjoint
204110
RESTART_ADJ_FILENAME= restart_adj.dat
205111
%
206-
% Output file flow (w/o extension) variables
112+
% Output file names
207113
VOLUME_FILENAME= flow
208-
%
209-
% Output file surface flow coefficient (w/o extension)
210114
SURFACE_FILENAME= surface_flow
115+
TABULAR_FORMAT= CSV
116+
CONV_FILENAME= history
211117
%
118+
SCREEN_OUTPUT= ( TIME_ITER, INNER_ITER, RMS_DENSITY, REL_RMS_DENSITY, DRAG, LIFT, CAUCHY_TAVG_DRAG, CAUCHY_TAVG_LIFT )
119+
HISTORY_OUTPUT= ( TIME_ITER, INNER_ITER, REL_RMS_RES, RMS_RES, AERO_COEFF, TAVG_AERO_COEFF, CAUCHY )
212120
%
213-
SCREEN_OUTPUT=(TIME_ITER, INNER_ITER, DRAG, LIFT, RMS_DENSITY, REL_RMS_DENSITY, CAUCHY_TAVG_DRAG, CAUCHY_TAVG_LIFT)
214-
HISTORY_OUTPUT=(ITER,REL_RMS_RES,RMS_RES, AERO_COEFF,TAVG_AERO_COEFF, CAUCHY)
215-
%
121+
OUTPUT_FILES= ( RESTART, PARAVIEW )
122+
OUTPUT_WRT_FREQ= ( 1, 1 )

0 commit comments

Comments
 (0)