|
| 1 | +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 2 | +% % |
| 3 | +% SU2 configuration file % |
| 4 | +% Case description: Turbulent flow past the High-Lift CRM (AoA = 8 deg) % |
| 5 | +% Author: Thomas D. Economon % |
| 6 | +% Date: 2018.02.14 % |
| 7 | +% File Version 6.0.0 "Falcon" % |
| 8 | +% % |
| 9 | +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 10 | + |
| 11 | +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% |
| 12 | +% |
| 13 | +% Physical governing equations (EULER, NAVIER_STOKES, |
| 14 | +% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, |
| 15 | +% POISSON_EQUATION) |
| 16 | +PHYSICAL_PROBLEM= NAVIER_STOKES |
| 17 | +% |
| 18 | +% Specify turbulence model (NONE, SA, SA_NEG, SST) |
| 19 | +KIND_TURB_MODEL= SA |
| 20 | +% |
| 21 | +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT, DISCRETE_ADJOINT) |
| 22 | +MATH_PROBLEM= DIRECT |
| 23 | +% |
| 24 | +% Restart solution (NO, YES) |
| 25 | +RESTART_SOL= NO |
| 26 | +% |
| 27 | +% Regime type (COMPRESSIBLE, INCOMPRESSIBLE) |
| 28 | +REGIME_TYPE= COMPRESSIBLE |
| 29 | +% |
| 30 | +% System of measurements (SI, US) |
| 31 | +% International system of units (SI): ( meters, kilograms, Kelvins, |
| 32 | +% Newtons = kg m/s^2, Pascals = N/m^2, |
| 33 | +% Density = kg/m^3, Speed = m/s, |
| 34 | +% Equiv. Area = m^2 ) |
| 35 | +% United States customary units (US): ( inches, slug, Rankines, lbf = slug ft/s^2, |
| 36 | +% psf = lbf/ft^2, Density = slug/ft^3, |
| 37 | +% Speed = ft/s, Equiv. Area = ft^2 ) |
| 38 | +SYSTEM_MEASUREMENTS= US |
| 39 | + |
| 40 | +% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------% |
| 41 | +% |
| 42 | +% Mach number (non-dimensional, based on the free-stream values) |
| 43 | +MACH_NUMBER= 0.2 |
| 44 | +% |
| 45 | +% Angle of attack (degrees, only for compressible flows) |
| 46 | +AoA= 8.0 |
| 47 | +% |
| 48 | +% Free-stream temperature (Rankine for US) |
| 49 | +FREESTREAM_TEMPERATURE= 518.67 |
| 50 | +% |
| 51 | +% Reynolds number (non-dimensional, based on the free-stream values and ref MAC) |
| 52 | +REYNOLDS_NUMBER= 3.26E6 |
| 53 | +% |
| 54 | +% Reynolds length (ref MAC of 275.8 inch) |
| 55 | +REYNOLDS_LENGTH= 275.80 |
| 56 | + |
| 57 | +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% |
| 58 | +% |
| 59 | +% Reference origin for moment computation |
| 60 | +REF_ORIGIN_MOMENT_X = 1325.90 |
| 61 | +REF_ORIGIN_MOMENT_Y = 0.0 |
| 62 | +REF_ORIGIN_MOMENT_Z = 177.95 |
| 63 | +% |
| 64 | +% Reference length for pitching, rolling, and yawing non-dimensional moment |
| 65 | +REF_LENGTH= 275.80 |
| 66 | +% |
| 67 | +% Reference area for force coefficients (0 implies automatic calculation) |
| 68 | +REF_AREA= 297360.0 |
| 69 | +% |
| 70 | +% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, |
| 71 | +% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) |
| 72 | +REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE |
| 73 | + |
| 74 | +% -------------------- BOUNDARY CONDITION DEFINITION --------------------------% |
| 75 | +% |
| 76 | +% Navier-Stokes wall boundary marker(s) (NONE = no marker) |
| 77 | +MARKER_HEATFLUX= (TRI_bdy2, 0.0, TRI_bdy5, 0.0, TRI_bdy7, 0.0, TRI_bdy9, 0.0, QUAD_bdy2, 0.0, QUAD_bdy5, 0.0, QUAD_bdy7, 0.0, QUAD_bdy9, 0.0, TRI_bdy3, 0.0, QUAD_bdy3, 0.0 ) |
| 78 | +% |
| 79 | +% Farfield boundary marker(s) (NONE = no marker) |
| 80 | +MARKER_FAR= ( TRI_bdy1, TRI_bdy4, TRI_bdy6 ) |
| 81 | +% |
| 82 | +% Symmetry boundary marker(s) (NONE = no marker) |
| 83 | +MARKER_SYM= ( TRI_bdy8, QUAD_bdy8 ) |
| 84 | +% |
| 85 | +% Marker(s) of the surface to be plotted or designed |
| 86 | +MARKER_PLOTTING= (TRI_bdy2, TRI_bdy5, TRI_bdy7, TRI_bdy9, QUAD_bdy2, QUAD_bdy5, QUAD_bdy7, QUAD_bdy9, TRI_bdy3, QUAD_bdy3 ) |
| 87 | +% |
| 88 | +% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated |
| 89 | +MARKER_MONITORING= (TRI_bdy2, TRI_bdy5, TRI_bdy7, TRI_bdy9, QUAD_bdy2, QUAD_bdy5, QUAD_bdy7, QUAD_bdy9, TRI_bdy3, QUAD_bdy3) |
| 90 | + |
| 91 | +% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% |
| 92 | +% |
| 93 | +% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) |
| 94 | +NUM_METHOD_GRAD= GREEN_GAUSS |
| 95 | +% |
| 96 | +% Courant-Friedrichs-Lewy condition of the finest grid |
| 97 | +CFL_NUMBER= 15.0 |
| 98 | +% |
| 99 | +% Adaptive CFL number (NO, YES) |
| 100 | +CFL_ADAPT= YES |
| 101 | +% |
| 102 | +% Parameters of the adaptive CFL number (factor down, factor up, CFL min value, |
| 103 | +% CFL max value ) |
| 104 | +CFL_ADAPT_PARAM= ( 1.5, 0.5, 15.0, 100.0 ) |
| 105 | +% |
| 106 | +% Number of total iterations |
| 107 | +EXT_ITER= 30000 |
| 108 | + |
| 109 | +% ----------------------- SLOPE LIMITER DEFINITION ----------------------------% |
| 110 | +% |
| 111 | +% Coefficient for the limiter |
| 112 | +VENKAT_LIMITER_COEFF= 0.05 |
| 113 | +% |
| 114 | +% Coefficient for the sharp edges limiter |
| 115 | +ADJ_SHARP_LIMITER_COEFF= 3.0 |
| 116 | +% |
| 117 | +% Reference coefficient (sensitivity) for detecting sharp edges. |
| 118 | +REF_SHARP_EDGES= 3.0 |
| 119 | +% |
| 120 | +% Remove sharp edges from the sensitivity evaluation (NO, YES) |
| 121 | +SENS_REMOVE_SHARP= NO |
| 122 | + |
| 123 | +% ------------------------ LINEAR SOLVER DEFINITION ---------------------------% |
| 124 | +% |
| 125 | +% Linear solver for implicit formulations (BCGSTAB, FGMRES) |
| 126 | +LINEAR_SOLVER= FGMRES |
| 127 | +% |
| 128 | +% Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS) |
| 129 | +LINEAR_SOLVER_PREC= ILU |
| 130 | +% |
| 131 | +% Linaer solver ILU preconditioner fill-in level (0 by default) |
| 132 | +LINEAR_SOLVER_ILU_FILL_IN= 0 |
| 133 | +% |
| 134 | +% Minimum error of the linear solver for implicit formulations |
| 135 | +LINEAR_SOLVER_ERROR= 1E-10 |
| 136 | +% |
| 137 | +% Max number of iterations of the linear solver for the implicit formulation |
| 138 | +LINEAR_SOLVER_ITER= 5 |
| 139 | + |
| 140 | +% -------------------------- MULTIGRID PARAMETERS -----------------------------% |
| 141 | +% |
| 142 | +% Multi-grid levels (0 = no multi-grid) |
| 143 | +MGLEVEL= 0 |
| 144 | +% |
| 145 | +% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE) |
| 146 | +MGCYCLE= V_CYCLE |
| 147 | +% |
| 148 | +% Multi-grid pre-smoothing level |
| 149 | +MG_PRE_SMOOTH= ( 1, 2, 3, 3 ) |
| 150 | +% |
| 151 | +% Multi-grid post-smoothing level |
| 152 | +MG_POST_SMOOTH= ( 0, 0, 0, 0 ) |
| 153 | +% |
| 154 | +% Jacobi implicit smoothing of the correction |
| 155 | +MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 ) |
| 156 | +% |
| 157 | +% Damping factor for the residual restriction |
| 158 | +MG_DAMP_RESTRICTION= 0.75 |
| 159 | +% |
| 160 | +% Damping factor for the correction prolongation |
| 161 | +MG_DAMP_PROLONGATION= 0.75 |
| 162 | + |
| 163 | +% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% |
| 164 | +% |
| 165 | +% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, |
| 166 | +% TURKEL_PREC, MSW) |
| 167 | +CONV_NUM_METHOD_FLOW= ROE |
| 168 | +% |
| 169 | +% Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations. |
| 170 | +% Required for 2nd order upwind schemes (NO, YES) |
| 171 | +MUSCL_FLOW= YES |
| 172 | +% |
| 173 | +% Slope limiter (VENKATAKRISHNAN, MINMOD) |
| 174 | +SLOPE_LIMITER_FLOW= VENKATAKRISHNAN |
| 175 | +% |
| 176 | +% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) |
| 177 | +TIME_DISCRE_FLOW= EULER_IMPLICIT |
| 178 | +% |
| 179 | +% Relaxation coefficient |
| 180 | +RELAXATION_FACTOR_FLOW= 0.9 |
| 181 | + |
| 182 | +% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------% |
| 183 | +% |
| 184 | +% Convective numerical method (SCALAR_UPWIND) |
| 185 | +CONV_NUM_METHOD_TURB= SCALAR_UPWIND |
| 186 | +% |
| 187 | +% Monotonic Upwind Scheme for Conservation Laws (TVD) in the turbulence equations. |
| 188 | +% Required for 2nd order upwind schemes (NO, YES) |
| 189 | +MUSCL_TURB= NO |
| 190 | +% |
| 191 | +% Slope limiter (VENKATAKRISHNAN, MINMOD) |
| 192 | +SLOPE_LIMITER_TURB= VENKATAKRISHNAN |
| 193 | +% |
| 194 | +% Time discretization (EULER_IMPLICIT) |
| 195 | +TIME_DISCRE_TURB= EULER_IMPLICIT |
| 196 | +% |
| 197 | +% Relaxation coefficient |
| 198 | +RELAXATION_FACTOR_TURB= 0.9 |
| 199 | + |
| 200 | +% --------------------------- CONVERGENCE PARAMETERS --------------------------% |
| 201 | +% |
| 202 | +% Convergence criteria (CAUCHY, RESIDUAL) |
| 203 | +CONV_CRITERIA= RESIDUAL |
| 204 | +% |
| 205 | +% Residual reduction (order of magnitude with respect to the initial value) |
| 206 | +RESIDUAL_REDUCTION= 6 |
| 207 | +% |
| 208 | +% Min value of the residual (log10 of the residual) |
| 209 | +RESIDUAL_MINVAL= -12 |
| 210 | +% |
| 211 | +% Start convergence criteria at iteration number |
| 212 | +STARTCONV_ITER= 10 |
| 213 | +% |
| 214 | +% Number of elements to apply the criteria |
| 215 | +CAUCHY_ELEMS= 100 |
| 216 | +% |
| 217 | +% Epsilon to control the series convergence |
| 218 | +CAUCHY_EPS= 1E-10 |
| 219 | +% |
| 220 | +% Direct function to apply the convergence criteria (LIFT, DRAG, NEARFIELD_PRESS) |
| 221 | +CAUCHY_FUNC_FLOW= DRAG |
| 222 | +% |
| 223 | +% Adjoint function to apply the convergence criteria (SENS_GEOMETRY, SENS_MACH) |
| 224 | +CAUCHY_FUNC_ADJFLOW= SENS_GEOMETRY |
| 225 | + |
| 226 | +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% |
| 227 | +% |
| 228 | +% Mesh input file (Medium grid by default, same cfg file will work for Coarse) |
| 229 | +MESH_FILENAME= Woeber_Pointwise_HLCRM_FullGap_HexPrismPyrTets_Medium.cgns |
| 230 | +%MESH_FILENAME= Woeber_Pointwise_HLCRM_FullGap_HexPrismPyrTets_Coarse.cgns |
| 231 | +% |
| 232 | +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) |
| 233 | +MESH_FORMAT= CGNS |
| 234 | +% |
| 235 | +% Mesh output file |
| 236 | +MESH_OUT_FILENAME= mesh_out.su2 |
| 237 | +% |
| 238 | +% Restart flow input file |
| 239 | +SOLUTION_FLOW_FILENAME= solution_flow.dat |
| 240 | +% |
| 241 | +% Restart adjoint input file |
| 242 | +SOLUTION_ADJ_FILENAME= solution_adj.dat |
| 243 | +% |
| 244 | +% Output file format (TECPLOT, TECPLOT_BINARY, PARAVIEW, |
| 245 | +% FIELDVIEW, FIELDVIEW_BINARY) |
| 246 | +OUTPUT_FORMAT= PARAVIEW |
| 247 | +% |
| 248 | +% Output file convergence history (w/o extension) |
| 249 | +CONV_FILENAME= history |
| 250 | +% |
| 251 | +% Output file restart flow |
| 252 | +RESTART_FLOW_FILENAME= restart_flow.dat |
| 253 | +% |
| 254 | +% Output file restart adjoint |
| 255 | +RESTART_ADJ_FILENAME= restart_adj.dat |
| 256 | +% |
| 257 | +% Output file flow (w/o extension) variables |
| 258 | +VOLUME_FLOW_FILENAME= flow |
| 259 | +% |
| 260 | +% Output file adjoint (w/o extension) variables |
| 261 | +VOLUME_ADJ_FILENAME= adjoint |
| 262 | +% |
| 263 | +% Output objective function gradient (using continuous adjoint) |
| 264 | +GRAD_OBJFUNC_FILENAME= of_grad.dat |
| 265 | +% |
| 266 | +% Output file surface flow coefficient (w/o extension) |
| 267 | +SURFACE_FLOW_FILENAME= surface_flow |
| 268 | +% |
| 269 | +% Output file surface adjoint coefficient (w/o extension) |
| 270 | +SURFACE_ADJ_FILENAME= surface_adjoint |
| 271 | +% |
| 272 | +% Writing solution file frequency |
| 273 | +WRT_SOL_FREQ= 500 |
| 274 | +% |
| 275 | +% Writing convergence history frequency |
| 276 | +WRT_CON_FREQ= 1 |
| 277 | +% |
| 278 | +% Output residual values in the solution files |
| 279 | +WRT_RESIDUALS= NO |
| 280 | +% |
| 281 | +% Output limiters values in the solution files |
| 282 | +WRT_LIMITERS= NO |
| 283 | +% |
| 284 | +% Output the sharp edges detector |
| 285 | +WRT_SHARPEDGES= NO |
| 286 | + |
0 commit comments